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ABSTRACT:

This paper describes an efficient implementation of an image interpolation algorithm based on inverse distance weighting (IDW).
The time-consuming search for support pixels bordering the voids to be filled is facilitated through gapless sweeps of different
directions over the image. The scanlines needed for the sweeps are constructed from a path prototype per orientation whose
regular substructures get reused and shifted to produce aligned duplicates covering the entire input bitmap. The line set is followed
concurrently to detect existing samples around nodata patches and compute the distance to the pixels to be newly set. Since the
algorithm relies on integer line rasterization only and does not need auxiliary data structures beyond the output image and weight
aggregation bitmap for intensity normalization, it will run on multi-core central and graphics processing units (CPUs and GPUs).
Also, occluded support pixels of non-convex void patches are ignored, and over- or undersampling close-by and distant valid
neighbors is compensated. Runtime and accuracy compared to generated IDW ground truth get evaluated for the CPU and GPU
implementation of the algorithm on single-channel and multispectral bitmaps of various filling degrees.

1. INTRODUCTION

During the generation of digital surface models (DSMs), digital
terrain models (DTMs), true-ortho mosaics (TOMs), 3D model
textures and other two-dimensional remote sensing data prod-
ucts, areas where no information is available frequently occur.
The appearance of void patches may have a variety of causes,
for instance, the lack of available data when the acquisition
campaign on the targeted scene is subject to economic con-
straints that prohibit a comprehensive coverage. Invalid sam-
ples may also result from occlusions which cannot be worked
around by adapting the sensor pose or from applied process-
ing tools when the underlying algorithms run into ambigui-
ties that they can possibly detect but not adequately resolve.
An example for this behavior in photogrammetry is stereo im-
age matching as a prerequisite for 3D object reconstruction.
While searching for corresponding content in overlapping pairs
of oriented bitmaps, homogeneously or periodically textured
surfaces translate into sound but highly divergent disparity val-
ues. Such disparities will fail a subsequent consistency check
and get flagged as invalid. Further, when a scene containing
sensitive objects is acquired, these parts may have to be inten-
tionally replaced by dedicated void samples before the recorded
data can be passed to parties that do not have the appropriate se-
curity clearance.

In any case, many applications that operate on raster data de-
rived through remote sensing require their inputs to be continu-
ous and cannot handle nodata areas. This applies particularly to
simulation and visualization tasks. For instance, when the im-
pact of flooding or the propagation of sound is to be physically
modeled based on digital elevation information, nodata areas
may influence the dynamics of the waves and distort the output.
In 3D rendering, the display of terrain data or color imagery like
for mesh textures containing invalid samples might come along
with visible glitches that negatively affect the immersion expe-
rience. Therefore, when raster bitmaps contain patches without
information and there are no external sources at hand to cover

the voids, the gaps will have to be filled up from the available
valid image pixels by interpolation.

2. RELATED WORK AND MOTIVATION

There are several well-studied generic and application-specific
approaches that address the interpolation problem, and some of
them have been implemented as software modules for commer-
cial and open-source geographic information systems (GIS).
Among the deterministic methods solely operating on the avail-
able image content, inverse distance weighting (IDW) (Shep-
ard, 1968) calculates the intensities of missing samples as a
linear combination of existing near-by image pixels. The indi-
vidual contribution of these neighbors is inversely proportional
to their (Euclidean) distance to the location of the nodata sam-
ple to be filled. Comprehensive IDW implementations run with
quadratic time complexity regarding the pixel count of the input
data due to the necessary search for support points which can
be located anywhere within the image frame. The computa-
tional effort can be reduced to linearithmic and even linear time
when spatial partitioning using e.g. kd-trees or subsampling
techniques are deployed on the valid near-by samples. How-
ever, this involves external non-image data structures, and any
reduction in supporting pixels on which the linear combination
of IDW is hinged on presumably will introduce artifacts like
intensity discontinuities and star-shaped patterns.

Another deterministic approach for filling voids in raster data is
spline interpolation, that is, constructing two-dimensional piece-
wise polynomial differentiable functions going exactly through
the valid pixels and sampling them at the nodata positions (Fran-
ke, 1984). Similar to IDW, this technique known from image
resizing will preserve the intensity values in the support points
whose number directly affects the processing speed. However,
the use of polynomial curves limits the shape of the interpolants
depending on their degree and may introduce strong over- and
undershots on high-frequency image content near the bound-
aries of void patches. Instead of using polynomials, natural
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neighbor interpolation (Sibson, 1981) derives the contribution
of valid intensity values to set void pixels geometrically from
the Voronoi tessellation of the input bitmap. Originally, the con-
tribution of neighbor pixels surrounding a particular nodata area
has been obtained as the share a fictively constructed Voronoi
cell would consume from the existing regions of the initial parti-
tion. Since this approach requires multiple calculations of con-
vex polygon areas, computationally more efficient weighting
formulas have also been proposed using edge ratios (Kotulak et
al., 2017). In any case, natural neighbor interpolation requires
additional storage for the tessellation which however can be run
in linearithmic time regarding the image pixel count. Because
the Voronoi diagram will be accessed in read-only mode af-
ter its creation, lock-free multithreading can be deployed to fill
multiple void areas concurrently.

A statistical method for image interpolation which can be con-
sidered a generalization of inverse distance weighting is Krig-
ing (Krige, 1951). Kriging treats the available image samples
as realizations of random variables. The method attempts to
determine statistical measures on the spatial dependence of the
input data assuming local second-order stationarity and orien-
tation uniformity instead of immediately utilizing the available
image samples. This helps to suppress clustering effects de-
terministic interpolation is prone to. After model fitting, the
obtained measures named variograms are used to set up a linear
regression equation to be solved for the weights that control the
contribution of the support points when a particular void pixel
is to be predicted. Due to the construction of the variograms
and the involved matrix inversions which have to be performed
for each nodata element, naive Kriging not using approximat-
ing acceleration techniques is computationally more expensive
than IDW. However, the method will provide an estimate for
the uncertainty of the interpolated samples with respect to the
underlying covariance model, and it will minimize the devia-
tion as long as the stationarity and isotropy requirements on the
existing image samples are met.

Lately, with recent advances in machine learning, inpainting
methods have gained attention for image interpolation due to
their visually appealing and semantically sound results (Liu et
al., 2018). These approaches, which constitute a separate group
of algorithms, are commonly built on convolutional neural net-
works (CNNs) and related composite frameworks like genera-
tive adversarial networks (GANs) (Elharrouss et al., 2019). The
basic idea behind GAN-based inpainting is to obtain a genera-
tor neural network that learns to produce contextually plausible
samples filling nodata bitmap areas. For this purpose, the gen-
erator is coupled to a discriminator network which has been
trained on the synthesized output and true void-free imagery
and attempts to correctly distinguish the interpolated from the
complete bitmaps. The discriminator’s decision gets backprop-
agated into the generator component to adjust its model weights
with respect to a predefined loss function and iteratively im-
prove its capabilities to create more coherent interpolations.
When the discriminator is no longer able to differentiate be-
tween the synthesized and true samples, the generator has been
successfully enabled to perform void interpolation adequately.
Inpainting techniques based on CNNs tend to require a consid-
erable amount of computational effort for the initial learning
phase even on subsampled bitmaps (Chen and Haifeng, 2019).
Depending on the network architecture and the availability of
suitable training samples, interpolation results will show global
consistency regarding the existing image content. However,
there may be robustness issues on slightly varied input data and

a lack of explainability which could disqualify inpainting for
security-related applications (Došilović et al., 2018).

This paper will revisit the idea of deterministic image interpo-
lation and outline an efficient approximation of the inverse dis-
tance weighting algorithm. The search for support pixels con-
touring the nodata areas to be completed is performed along
densely packed rasterized scanlines of arbitrary directions over
the entire input image. It hence exposes linear worst-case time
complexity. The interpolation result depends on two intuitive
parameters, i.e., the direction count effectively being a sam-
pling factor on the boundaries of the nodata areas and a smooth-
ness exponent. This allows to trade processing speed for cov-
erage depending on the focus of the actual application. Us-
ing incremental integer line rasterization only, the presented
algorithm operates exclusively on pixel matrices without the
need for auxiliary non-bitmap storage. It therefore can be run
concurrently on both multi-core general-purpose central pro-
cessing units (CPUs) as well as dedicated graphics processors
(GPUs). In contrast to window-based IDW implementations,
occluded support pixels of non-convex nodata regions will be
ignored. Also, to converge towards an optimal interpolation re-
sult, over- and undersampling of near and far valid samples is
compensated. To assess the interpolation performance, runtime
and accuracy compared to generated IDW ground truth will be
evaluated for proof-of-concept CPU and GPU implementations
of the described algorithm on single-channel and multispectral
bitmaps of various filling percentages.

3. INTERPOLATION ALGORITHM DESCRIPTION

The proposed inverse distance weighting algorithm picks up an
idea originally posted for semi-global stereo matching with ar-
bitrary path orientations (Frommholz, 2020). Instead of mini-
mizing the matching cost for each pixel and disparity value us-
ing dynamic programming, the code executed during scanline
traversal will backup the position and intensities when a valid
input image pixel is encountered and remember this informa-
tion for the interpolation of any subsequent nodata values along
the path.

More specifically, given the input image containing void areas
to be completed from surrounding pixels, IDW interpolation is
performed along k parallel paths rij, 1 ≤ i ≤ n, 1 ≤ j ≤ k of
n equiangular orientations di = d1, ...,dn to eliminate a direc-
tional bias. The paths are constructed using the four-connected
component (4-cc) Bresenham algorithm known from computer
graphics (Bresenham, 1965). Pixels surrounding the nodata ar-
eas will be linearly combined to replace missing samples in at
most two coordinated sweeps per direction over the input image
as shown by figure 1.

3.1 Primary sweep

During the primary sweep performed first, the common shape
ri of the lines rij of direction di is rasterized by running the
Bresenham algorithm exactly once over the full horizontal or
vertical extent of the image plane depending on the slope. Path
sampling therefore must begin in one of the bitmap corners. As
a result, the longest sequence of linear segments, or runs r̃il,
in which the horizontal or vertical coordinate remains constant
is obtained for ri (figure 2). The runs characterize the fast-
changing major direction of the line to be discretized and come
in two lengths except for the possibly truncated first and last
segments (Stephenson and Litow, 2001).
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Figure 1. Primary (red) and secondary (black) sweeps over the
image to be interpolated for paths with an arbitrary slope α

Figure 2. Runs r̃i1, r̃i2, r̃i3 of the line prototype of shape ri with
a length of three (truncated start segment), four and five pixels

For IDW interpolation along a specific path over the input, the
run sequence archetype is followed starting at the respective im-
age boundary according to the sweep scheme. Each run pixel
at image position x′ gets tested for the nodata value assigned
to the bitmap. If the pixel content is valid, its position x = x′

is backed up forming the last support pixel pm(x) on the path.
Also, the intensities of pm(x) are verbatimly copied once to the
output image of the same dimensions and channel count as the
input bitmap. When a void pixel is hit after pm(x), its inten-
sities which initially have been reset to zero get incrementally
updated from the position and color information of the last sup-
port pixel according to a modified version of Shepard’s formula
as shown in equation 1.

u(x′) =
1∑

m∈M wmdwmo

∑
m∈M

wmdwmopm(x)

wmd =
1

dE(x,x′)s
=

1

‖x− x′‖s2

wmo =
8 dI(x,x

′)

n
=

8max(|x− x′|, |y − y′|)
n

(1)

In the equation, the pixel to be interpolated u(x′) is obtained
as the linear combination of its set M of support pixels. Their
contribution depends on the inverse of the Euclidean distance
dE to u(x′) raised to the power of the smoothness s and a co-
efficient wmo for oversampling compensation. The values wmo

are derived from the number of support pixels for u(x′) within
a discrete radius of dI on the image raster (figure 3) divided by
the direction count. Therefore, multiple contributions of close-
by support pixels to the interpolation result along the n scanned
paths will get neutralized by a lower share of their intensities,
and valid pixels in the distance virtually will be oversampled.
This effectively emulates a closed contour around u(x′) like in
the ideal IDW algorithm.

Figure 3. The 8 dI support pixels around a void pixel

If there is no prior valid pixel pm(x) available, interpolation
will not be performed for the current path instance. Because
the evaluation of equation 1 happens incrementally during the
sweep, the output image storing the u(x′) must feature a pixel
data type that is large enough to hold the aggregated weighted
intensities for all n orientations di. Similarly, the set of support
M is unknown in its entirety when the current line run is pro-
cessed. The total weights wmdwmo hence are accumulated in a
separate bitmap congruent to the input image. Normalization to
preserve the average image intensity will be deferred to a final
step once all directions have been dealt with.

After completing the pixel at the current image location, the
procedure is repeated for the next position on the run which can
be obtained through an increment or decrement of x′ by one
in the major path direction. When the current segment of the
precomputed sequence is exhausted, the position of the pixel to
be tested will be incremented or decremented with respect to
the minor path direction, and calculation will proceed with the
next line run. If the image frame is eventually left, a new path
rij+1 of the same orientation next to the current one will be
processed. For this purpose, the start position inside the bitmap
is reset to the original boundary and altered by one pixel in the
minor line direction, and the run sequence gets rewound to its
start.

The primary sweep terminates as soon as a new path rij+1 of di-
rection di begins outside the image. When this happens, at least
50% (diagonal paths, square image) and at most 100% (strictly
horizontal or vertical paths) of the input samples will have been
processed. Because adjacent rasterized paths are guaranteed to
be piecewise parallel and tightly aligned when the same run se-
quence gets repeatedly replayed as described, each image loca-
tion visited during the primary sweep is accessed exactly once.
Therefore, no intensity or weight update will be omitted or per-
formed multiple times for a particular position x′ removing any
chance for over- or underrepresented support pixels in the inter-
polation result.
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3.2 Secondary sweep

Except for perfectly horizontal and vertical path directions, a
secondary sweep will be needed to process those pixels of the
input image not visited during the primary sweep. Like in the
first pass, the run sequence is followed to obtain the position
x′ in order to either copy valid intensities as they are to the
output bitmap or run the interpolation formula. However, the
start position of the l-th secondary path along the respective
image boundary is computed as the accumulated length of the
runs r̃i1, ..., r̃il of the rasterized line prototype. Also, the path
gets stripped off its first l runs to be piecewise adjacent to the
paths of the primary sweep (see figure 4). Thus, overlaps and
gaps are avoided during pixel access between scanlines of the
secondary sweep. The sweep scheme prevents collisions with
the positions visited in the first pass over the input, weight and
output images involved in interpolation.

Figure 4. Truncation and shifted start of paths of shape ri during
the secondary sweep (shades of gray) ensure the alignment to

paths of the primary sweep (red) and second pass itself

3.3 Quality and time complexity

Because the primary and secondary sweep combined cover the
entire image, the incremental interpolation approach will fill
void areas of arbitrary size. The quality of the approxima-
tion compared to an ideal all-neighbor IDW implementation
depends on the number of path directions n which defines how
many support samples on the void contour will be taken for the
linear combination. In the worst case of a single valid pixel
surrounded completely by void samples, interpolation will oc-
cur along one path per image pass only and hence be degen-
erate. Since nodata values always get interpolated from the
last support pixel along a particular scanline, preceding valid
samples contouring non-convex voids will be ignored. Com-
pared to window-based IDW techniques which incorporate any
valid sample within the support frame, this built-in 2D visibil-
ity check helps to suppress intensity edges near the boundaries
to void areas that may arise from distant but yet contributing
intensity spikes.

During the sweeps, each position of the input image will be vis-
ited once per path direction. For a rectangular bitmap of w by
h pixels and c color bands, time complexity of the proposed
method yields O(whc) for an arbitrarily chosen but constant
orientation count n. In practice, executing the algorithm with
different direction counts should expose a proportional runtime
dependency. On the other hand, concurrently processing scan-
lines of the same sweep becomes possible without synchroniza-
tion. Due to the lack of path overlaps, data races are impos-
sible when the incrementally accumulated weights and output
intensities are written to the respective bitmaps. Therefore, a
speedup linear to the number of worker threads could be ide-
ally expected for a parallelized version of the interpolator.

4. IMPLEMENTATION

As a proof-of-concept, the proposed interpolation algorithm was
implemented in compatible C++ to run on both general-purpose
central processors (CPUs) and modern graphics cards (GPUs).
The prototype takes n-channel TIFF bitmaps comprising sam-
ples up to 32-bit floats commonly used to encode digital terrain.
Consistently to the input data, the created output and weight im-
ages likewise will be internally represented as interleaved 32-bit
floating-point matrices. As main parameters, the software can
be passed the nodata value, the number of scan directions con-
trolling the degree of IDW approximation and the smoothness
exponent. Further command-line options include the angular
offset of the path set along which the interpolation is to be con-
ducted, settings on oversampling compensation and postpro-
cessing, and hardware-related information like the thread count
and GPU configuration. When the tool successfully finishes, it
will save a TIFF bitmap of equal characteristics as the input.

4.1 CPU implementation

The CPU implementation1 almost directly reproduces line pro-
totype rasterization, the sweep scheme and intensity normaliza-
tion. Navigation inside the images and pixel access is accom-
plished using pointer arithmetic for fast relative positioning. All
processing stages utilize multithreading with dynamic schedul-
ing based on OpenMP (OpenMP Architecture Review Board,
2015). This accounts for varying line run lengths during inter-
polation along the traces and the unknown distribution of no-
data pixels that locally induce volatile execution times. Calcu-
lation of the Euclidean distance to the last support pixel is per-
formed incrementally for each path orientation. This removes
the square root function call from the line run loop at the cost of
small round-off errors from repeated additions leaving a single
non-elementary operation, i.e., a pow call when the smoothness
exponent gets applied to the intensity weights wmd of equation
1. Since in practice the difference between raster and Euclidean
distances is insignificant, the latter get recycled to obtain the
coefficients wmo for oversampling compensation.

4.2 GPU implementation

For the GPU implementation of the sketched algorithm, the
loop over the line runs in which the IDW equation gets in-
crementally evaluated was implemented as an OpenCL kernel
(Khronos OpenCL Working Group, 2021). Before the inter-
polation gets started, the involved images will be buffered in
graphics memory as 32-bit floating-point arrays. Also, the ker-
nel is passed the necessary image metadata to access pixels us-
ing pointer arithmetic, the IDW smoothness and several pre-
computed quantities like the sweep start positions, pixel off-
sets for the major and minor line directions and the Euclidean
distance increment for the current path orientation. Unlike the
CPU version performing monolithic sweeps on the entire im-
age array, the configured OpenCL kernel gets enqueued to work
on blocks of scanlines. This prevents GPU resets triggered on
high computational loads and ensures that even extensive inter-
polation jobs do not block the graphics card from displaying
normal content on the attached screens. When processing is
finished, the interpolation output will be read back from video
into system RAM before it gets concurrently normalized and
persistently stored.

1 source code available for download from https://github.com/

DLR-OS/myInterpolator
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In practice, the GPU-based interpolator mostly will be limited
by the available amount of graphics memory which must keep
three 32-bit image arrays involved in intensity weighting. To
lower the storage requirements, on decent graphics cards, at
least the weight bitmap could be reconfigured to store bfloat16
samples as they are already used for machine learning (Kalam-
kar et al., 2019). This cuts the space needed for the normaliza-
tion coefficients by half. However, quantization errors due to
the lack of precision will accumulate potentially yielding rough
interpolation results. Storage requirements can further be re-
duced to those of single-channel bitmaps when the IDW code
gets executed separately for each color band of multispectral
images for both the CPU and GPU implementation. Runtime
then scales with the channel count, and advantages resulting
from data caching cannot materialize. Also, there is a substan-
tial overhead for splitting up the images into color planes and
merging them afterwards which altogether will qualify this ap-
proach for special applications only.

4.3 Postprocessing

For the CPU and GPU version of the software, a postprocessing
filter is optionally available to smoothen sampling artifacts from
path-wise IDW approximation. It constitutes a 2D Gaussian of
a user-defined kernel size. Convolution for now is performed
separately for the horizontal and vertical image direction and
parallelized using OpenMP in both implementations due to the
small computational overhead for realistic window dimensions
compared to interpolation.

5. PERFORMANCE ANALYSIS

Performance analysis of the proposed algorithm focuses on run-
time and the degree of approximation of comprehensive inverse
distance weighting. There will be no discussion of the method’s
strengths and weaknesses compared to other interpolation tech-
niques which have already been covered in detail, for instance
by (Căt,eanu and Ciubotaru, 2020) for the DTM case.

5.1 Test sample generation

For the evaluation of the proposed algorithm, the CPU and GPU
branches of the software prototype were run on a set of graylevel
and multispectral input images with randomly added non-over-
lapping nodata areas of varying shapes. The voids were con-
structed by regularly sampling the perimeter of a unit circle be-
tween 3 to 20 times and scaling the vectors originating in the
circle center by a positive length value between 10 and 2000.
The resulting points were translated, rounded to integers and
connected by a 4-cc Bresenham rasterizer to form the outer con-
tour of a potentially concave polygon, however, only convex
shapes were kept. Any input image pixels located strictly in-
side the polygon were set to a nodata value of zero for all color
bands yielding the test data for the software. Perfect ground
truth against which the interpolated test data was compared to
resulted from the weighted linear combination of all valid con-
tour pixels of each nodata polygon utilizing precisely the same
formula as for the proof-of-concept implementation. To reduce
the runtime of this calculation, per-pixel visibility checks were
omitted. However, the convexity of the void polygons guaran-
tees that there will be no systematic bias due to shadowing.

To assess the IDW algorithm on real-world image encodings, a
15k by 15k (225 megapixel) 32-bit floating-point height map of
Heligoland/Germany photogrammetrically derived from MACS

HALE imagery (Brauchle et al., 2015) was altered as described
to keep 202240954 (∼90%), 134843025 (∼60%) and 68280296
(∼30%) of its valid pixels. This simulates a DSM that has been
stripped elevated objects to eventually become a DTM. Simi-
larly, 16-bit RGB and panchromatic (PAN) true-ortho mosaics
congruent to the perforated DSM got prepared to assess the in-
fluence of the pixel data type and channel count. Figure 5 de-
picts the DSM data as a representative for the input set.

(a) (b)

(c) (d)

Figure 5. DSM test data (a) full image, (b) 90% valid pixels,
(c) 60% valid pixels, (d) 30% valid pixels

5.2 Test results on the CPU

Tests for the CPU implementation of the prototype were con-
ducted on a workstation equipped with an AMD EPYC 7402p
2.8 GHz 24-core general-purpose processor and 256 GiB of
DDR4 RAM from 2019 that was running the Windows 10 64-
bit operating system. Table 1 summarizes the results for the
prepared images for a smoothness exponent s = 2 and orien-
tation counts n = 64, 256 and 1024 without postprocessing.
The values for n have been set empirically to represent low,
medium and high-quality approximations of the ideal IDW al-
gorithm. Runtime is in seconds utilizing one thread per physical
CPU core excluding I/O. Also, the durations for image initial-
ization and normalization have been stripped from the results
since both steps altogether just took milliseconds. Throughput
is given in megapixels per second, and approximation quality
is obtained from the pixel-wise comparison of the interpolation
output to the ground truth as the mean and standard deviation
for the set of void areas, i.e., not counting valid image pixels.
Calculation of the statistical quantities is performed on the Eu-
clidean distance of the intensity values treated as coordinate tu-
ples in the underlying image color space. For single-channel
bitmaps, this is equivalent to the absolute difference between
every two samples compared.

Numbers indicate that the proposed IDW algorithm approxi-
mates ideal inverse distance weighting fairly well. The mean
difference for the DSM is close to its vertical resolution of about

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-53-2022 | © Author(s) 2022. CC BY 4.0 License.

 
57



Image
(valid %)

n time s mpix/s mean stddev

Heligoland
DSM (90%)

64 36.0 6.257 0.165 0.165
256 134.7 1.670 0.162 0.163

1024 559.4 0.402 0.162 0.163

Heligoland
DSM (60%)

64 36.0 6.245 0.166 0.199
256 141.2 1.594 0.163 0.197

1024 595.1 0.378 0.163 0.197

Heligoland
DSM (30%)

64 44.3 5.077 0.157 0.178
256 174.7 1.288 0.153 0.176

1024 698.8 0.322 0.152 0.176

Heligoland
PAN (90%)

64 34.7 6.493 330.4 384.1
256 140.9 1.597 277.7 348.7

1024 555.8 0.405 273.6 346.8

Heligoland
PAN (60%)

64 36.3 6.192 311.4 347.6
256 144.2 1.560 255.1 317.7

1024 621.9 0.362 250.2 316.7

Heligoland
PAN (30%)

64 44.2 5.087 309.4 343.2
256 183.0 1.229 253.1 316.0

1024 704.5 0.319 247.8 315.3

Heligoland
RGB (90%)

64 38.9 5.780 597.9 658.8
256 136.6 1.648 503.9 601.6

1024 573.6 0.392 496.4 598.8

Heligoland
RGB (60%)

64 49.8 4.515 555.1 597.4
256 179.8 1.251 454.8 549.4

1024 754.7 0.298 445.8 548.0

Heligoland
RGB (30%)

64 53.5 4.202 549.4 586.5
256 216.7 1.038 449.0 542.6

1024 877.4 0.256 439.3 541.8

Table 1. Runtime, throughput, mean difference and standard
deviation to the reference interpolation for n path orientations

for the CPU implementation of the proposed algorithm

0.1 m, and nearly all interpolated void heights will differ from
the average deviation to the ground truth by no more than six
times that value. Regarding the true-orthos, the mean differ-
ence to the optimal filling is about 0.7% to 1.8% of the effective
dynamic range (mean intensity ±3σ) of 15 bits per color chan-
nel. For all images, the error decreases when the path direction
count goes up, and there seems to be little gain in interpolation
quality beyond 256 orientations for the test data. This observa-
tion is consistent with a visual inspection of the obtained out-
puts (figure 6) where no prominent artifacts can be identified
at first sight for all three values n. However, the correspond-
ing heat maps which dye the per-pixel differences to the refer-
ence according to their magnitude from blue to green, yellow
and red reveal streaking due to contour undersampling partic-
ularly for the low and medium direction counts. This mostly
affects the interior parts of the void polygons since the distance
to the support pixels reaches its maximum while path coverage
drops. Postprocessing will diffuse the artifacts locally reduc-
ing the mean difference and standard deviation only marginally
(figure 7). On the other hand, in these regions, the overall di-
vergence to the ground truth diminishes as there is an averaging
effect in both the reference and calculated results when the al-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. DSM interpolation details (a) prepared image, 60%
valid pixels, (b) reference IDW interpolation, (c) interpolation

for n = 64, (d) heat map for n = 64, (e) interpolation for
n = 256, (f) heat map for n = 256, (g) interpolation for
n = 1024, (h) heat map for n = 1024 path orientations

most equal distance weights approach zero. The red spots in the
heat map are situated near local intensity discontinuities in the
DSM. In these areas, the vast number of precise samples in the
reference data attenuates the influence of close elevated (bright)
objects in contrast to the linear oversampling compensation ap-
plied by the line-based IDW implementation.

Runtime of the CPU version on the test data grows proportion-
ally by 3.51 to 4.31 as predicted when the number of path ori-
entations quadruples independently of the image type. It in-
creases by up to 59% when the fill ratio of the images drops
from 90% to 30%, and going from 90% to 60% valid pixels is
less expensive than the switch from 60% to 30% at least for the
DSM and PAN data. Also, the slowdown is greater for the RGB
than the graylevel bitmaps, particularly when switching from 64
to 256 orientations. Since all input gets converted to floating-
point samples, there is only marginal deviations between the
single-channel DSM and PAN bitmaps. When comparing the
execution speed for the RGB and PAN images, an average de-
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(a) (b)

(c) (d)

Figure 7. DSM interpolation details after postprocessing with a
31 x 31 Gaussian kernel, 60% valid pixels (a) interpolation for
n = 64, (b) heat map for n = 64, (c) interpolation for n = 256,

(d) heat map for n = 256 path directions

celeration of 18% occurs during the measurements with a peak
value of 37% although three times the intensities need to be pro-
cessed for the multispectral bitmap. The disparity most likely
can be attributed to data locality of the interleaved matrix stor-
age. The design choice enables fast inner loops to traverse the
color channels and boosts the CPU cache hit rate. It also pro-
vides an explanation for the contrasting slowdown behavior on
falling fill ratios between the graylevel and color images.

Scalability for the CPU implementation is almost linear with
speedups between 1.82 and 1.91 when the OpenMP thread count
gets doubled as indicated by table 2 for 256 path orientations on
the DSM bitmap with 60% valid pixels. A reproducible outlier
occurs for four workers which are only 1.41 times as fast as run-
ning two threads concurrently. No explanation can be given for
this behavior at the moment. Due to two-way hardware-level
parallelization, thread counts greater than the number of physi-
cal CPU cores further accelerate program execution on the test
system. Minimum runtime of 117 seconds occurs at around 40
threads which is a 17% decrease compared to using 24 workers.

threads 1 2 4 8 16 24

time s 2047 1072 758 411 226 141

threads 28 32 36 40 44 48

time s 134 124 119 117 119 125

Table 2. Scalability of the CPU version of the interpolator for the
Heligoland DSM with 60% valid pixels, n = 256 path directions

5.3 Test results on the GPU

Measurements for the GPU branch of the software were taken
on the DSM and RGB images of Heligoland/Germany using an
OpenCL 2.1-capable AMD Radeon RX580 consumer graphics
card with 8 GiB of GDDR5 video memory from 2018 that was
installed into the EPYC workstation. The amount of available
VRAM is just enough to accommodate the 7.54 GiB in total for
the multispectral true-ortho, the corresponding weight image
and output bitmap. Kernel block size was empirically chosen

as 250 million 32-bit float samples not causing any GPU stalls
on the test data. This setting means that the graylevel images
could be processed as a whole. Table 3 contains the results.

Image
(valid %)

n time s mpix/s mean stddev

Heligoland
DSM (90%)

64 10.5 21.504 0.165 0.165
256 36.2 6.212 0.162 0.163

1024 139.4 1.614 0.162 0.163

Heligoland
DSM (60%)

64 12.1 18.629 0.166 0.199
256 42.9 5.242 0.163 0.197

1024 164.5 1.368 0.163 0.197

Heligoland
DSM (30%)

64 13.3 16.981 0.157 0.178
256 47.3 4.760 0.153 0.176

1024 183.6 1.225 0.152 0.176

Heligoland
RGB (90%)

64 16.0 14.104 597.9 658.8
256 51.4 4.376 503.9 601.6

1024 193.3 1.164 496.4 598.8

Heligoland
RGB (60%)

64 18.9 11.929 555.1 597.4
256 63.6 3.536 454.9 549.4

1024 242.3 0.929 445.8 548.0

Heligoland
RGB (30%)

64 21.6 10.428 549.4 586.5
256 73.6 3.058 449.0 542.6

1024 282.2 0.797 439.3 541.9

Table 3. Runtime, throughput, mean difference and standard
deviation to the reference interpolation for n path orientations

for the GPU implementation of the proposed algorithm

The numbers indicate that interpolating the DSM on the graph-
ics card is between 2.43 to 4 times faster than on the CPU. Run-
time shows slightly sub-linear growth when the number of path
directions quadruples. It increases by 15% to 25% as the valid
pixel count shrinks from 90% to 60%, however, the slowdown
on the transition from a fill ratio of 60% to 30% lies only be-
tween 10% and 16%. This indicates that completing smaller
voids like they appear in the heavily perforated images better
suits the used GPU than the CPU hardware independently of
the color bands. For the RGB TOM, there is a speed penalty
of 1.39 to 1.62 in contrast to the single-channel DSM. Inter-
polation quality in terms of the mean difference and standard
deviation for the void areas is on par with the CPU implemen-
tation showing only insignificant fluctuations. This is probably
caused by rounding discrepancies between the GPU and central
processor and the native power function used as an optimization
in the OpenCL kernel code.

6. CONCLUSION

This paper has described a deterministic approximation of in-
verse distance weighting interpolation that can fill void areas of
arbitrary size in single- and multichannel images. Aside from a
temporary bitmap and the output image, the proposed algorithm
does not require any auxiliary data structures dissimilar to the
input. Interpolation quality and speed are controlled via two
key parameters, that is, the path orientation count as the sam-
pling rate on the boundaries of nodata areas and a smoothness
exponent. Multithreaded proof-of-concept implementations for
both the CPU and GPU have been discussed and evaluated on
data sets that are representative for remote sensing.
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As future work, to further simplify the use of the presented so-
lution, the choice for the orientation count is to be automatically
estimated from the maximum size of void patches detected dur-
ing the first few passes over the input image. The number of
directions then could be dynamically adjusted at runtime ac-
cording to the outcome. Also, memory consumption of the al-
gorithm is to be optimized particularly for its use on GPUs.
For this purpose, the weight image involved in the calculation
needs to be switched to 16-bit floating-point numbers or similar
compact representations. However, to be efficient, this will re-
quire native hardware and software support which currently is
not widely available.

In the long term, to process terapixel bitmaps, an adaptation
of the existing implementation to an out-of-core image subsys-
tem with block or row paging is to be evaluated. Possible solu-
tions to convert the algorithm to an external memory architec-
ture comprise tiling with overlaps and scheduling the concur-
rent path traversal either breadth-first or depth-first depending
on the scanline orientation. Specifically for DSM interpolation,
when the height map is not to be converted to a DTM, the IDW
method is to be analyzed on whether it also can perform ”from
lowest” interpolation, i.e., prefer the dark pixels around a no-
data area. This would require knowledge about the intensities
on the void boundaries to be present during incremental inter-
polation. It needs to be evaluated how this information can be
obtained preferably without affecting the storage requirements
unfavorably.
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