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ABSTRACT:

The photogrammetric 3D stereo reconstruction from pairs of strereo images is rising interest in the past few years in space field
downstream. Nowadays, it is conceivable that a large production of DSMs from satellite images can become the primary source
of 3D information on a global scale. However, in urban areas, DSMs produced with current technology suffer from poor quality.
Indeed, even using very high resolution (VHR) images, there is too little information to generate disparity maps that reproduce very
well defined shaped objects such as buildings.
To address this issue, one solution may be to artificially increase image resolution beyond the sensor limits. Super resolution (SR)
algorithms are designed to recover high frequencies, introducing significant information in a scene characterized by strong and
frequent discontinuities such as a city. State-of-the-art methods relying on Deep Learning have shown remarkable results in this
sense. The aim of this work is therefore to assess the contribution of single image SR Deep Learning techniques to the stereo
matching and DSMs generation in an urban context, highlighting potential advantages and limitations that can show up when
introducing such a technology in a multi-view stereo pipeline. The proposed contributions are: a methodology for super resolution
of VHR data that takes into account realistic simulation of a satellite product; a testbed for the evaluation of the impact of super
resolution on 3D photogrammetric reconstruction; a local analysis of the consequences of deep learning SR of VHR images on
stereo matching.

1. INTRODUCTION

1.1 Context

The 3D photogrammetric reconstruction from pairs of strereo
images is a growing application in space field downstream.
Thanks to the performance of Very High Resolution (VHR,
ground sampling distance less than 1 m) satellites of last gen-
eration and a better revisit time, it is possible to render smaller
scale objects, such as building and trees so that it is appropriate
to talk about Digital Surface Models (DSMs) computed from
pairs of satellite images. Data in DSM format are significant in
the remote sensing context, and their value is foreseen to raise
in the following years, due growing applications in space field
downstream, from 3D city mapping to urban fluid mechanics
studies, from landcover to glacier studies (Lebègue et al., 2020).
With respect to other technologies of 3D geographical represen-
tation, e.g. point clouds, DSMs are more convenient because
simpler to manipulate with current techniques. Moreover, once
a satellite is in orbit, DSMs obtained by pairs of satellite image
are more straightforward to be produced than lidar ones, which
require ad hoc campaigns and are thus characterized by a lower
temporal frequency.

In such a framework, the Centre national d’étude spatiales
(CNES) is developing the Constellation Optique 3D (CO3D)
mission (Lebègue et al., 2020). This optical constellation,
whose launch is foreseen in 2023, will provide simultaneous
VHR pairs. In this way, temporal differences will be mini-
mized, allowing improvements in point cloud generation. CS
Group will develop the image processing components of the
CO3D ground segment. The DSM generation pipeline is key
and at this purpose, CS developed for CNES two tools: CARS

(Michel et al., 2020), a multi view stereo pipeline that from
a stereo pair generates the corresponding DSM; Pandora (De-
fonte et al., 2021), which is in charge of the stereo matching
step from rectified images.

Nevertheless, when it comes to reconstruct objects at a finer
scale, many challenges have to be tackled when using stereo-
reconstruction. In particular, DSMs in urban areas may suffer
from poor quality. This can be seen as bottleneck for many criti-
cal applications. At this subject, the DSM generation pipeline is
key and stereo matching is the crucial step of the chain. Most al-
gorithms work by computing, along epipolar lines, a cost func-
tion that tells the similarity between the neighborhoods of two
points in the left and the right image. Such a function is hereby
referred as cost profile or similarity measure and tells us where
it’s more likely to find the right disparity.

In order to enhance stereo matching step one solution may be
to increase resolution beyond the sensor limits. Besides stan-
dard interpolation techniques, more sophisticated methods to
upsample an image have been proposed and they’re usually re-
ferred to as Super-resolution (SR) methods. The general con-
cept of Super-resolution refers to those algorithms designed for
increasing an image resolution as if employing a sensor with a
higher nominal resolution. In spatial domain it might be seen
as the problem of finding the less aliased and blurred interpo-
lation of an image, while in the Fourier space it consists of re-
covering high frequencies from the low ones. SR is a noto-
riously ill-posed inverse problem: infinite solutions exist and,
typically, prior knowledge is used to guide the optimization to-
wards the best achievable solution. DNNs are then suitable for
such a task as they allow automatic extraction of meaningful
highly abstract knowledge, removing the need for identifying
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case-specific features (Haut et al., 2018).

Given these premises, it is of interest for the development of
CO3D DSM pipeline but also for the photogrammetry com-
munity to assess whether super-resolved images via innovative
deep learning techniques can be beneficial for stereo matching.

1.2 Related work

Only few works explored this subject beforehand, suggesting
that there might be an interest in using single image super res-
olution (SISR) for DSM generation, but also highlighting the
challenges to overcome in order to rigorously prove it. First, su-
per resolution via deep neural network is a relatively new tech-
nology and their usage might involve some challenges. Indeed,
in order to train a SR network we would need a set of images in
input/low resolution (LR) and the associated target/high resolu-
tion (HR) samples, taken with the very same instrument on the
very same scene. Since such a dataset is extremely challeng-
ing to be obtained, especially for space applications, we usually
choose a HR dataset and apply degradation and downsample
operations to obtain the LR one. To do so, it is usually assumed
a sensor model that is applied in the HR-LR transformation. In
SR works we often see that little or no importance is given to
the simulation of real satellite images, both in terms of source
images and HR-LR degradation. Typically, the methodology re-
lies on widely used datasets (UC-Merced, RSCNN7, AID, etc.),
borrowed by image classification studies, whose origin and pro-
cessing is not always mastered. A simplified LR dataset genera-
tion technique (usually bicubic downsampling) is adopted. This
is partially justified by the fact in most works the focus is on
the model itself and a common benchmark easy to reproduce is
needed in order to compare the performance of different mod-
els. However, this undermines the credibility of such models
when it comes to reliably super resolve real VHR data.

The last few years saw a flourishing of SISR works, in computer
vision as well as in remote sensing. Detailing the entire state-of-
the-art for SR is beyond the scopes of this paper; nonetheless we
consider recent developments for our super resolution method.
Among all possible architectures, residual and Generative Ad-
versarial Networks (GAN) are claimed to be the most powerful
methods for super resolution (Anwar et al., 2020) (Tsagkatakis
et al., 2019). In a GAN two networks are trained: a generator
that upsamples the input image, and a discriminator whose task
is to recognize which image is real between the ground truth
and the generated sample. The networks try to fool each other
and the result of this game should be an increase in SR image
perceptual value.

An experience aiming at evaluating SISR in the context of
stereo matching is proposed in (Zhang et al., 2019), but in their
work the model is trained on a dataset created for object detec-
tion (DOTA) and assuming a bicubic degradation for the gener-
ation of the LR training set. Additionally, the reference used to
compute the statistics is also a product of a DSM pipeline and
this might introduce a bias in the quantitative results. More-
over, the neural networks used in that work (namely SRCNN
(Dong et al., 2014) and VDSR (Kim et al., 2016)) are out-
dated with respect to recent developments, and many other net-
works have shown superior performance. Other related works
can be found in literature. (Burdziakowski, 2020b) utilizes a
dataset composed by UAV images, artificially blurred and then
deblurred using a DNN, showing how blurred images lead to
worse DSMs. (Pashaei et al., 2020) proves that a denser point
cloud can be generated when using super resolved images but

it is not clear whether this is due to the upsampling itself or to
the information added by the deep neural networks. In another
work, (Burdziakowski, 2020a) also addresses point cloud den-
sity but the DSM pipeline leads to contradictory results, as it
returns worse quality DSMs when having a denser point cloud,
even in the case of the reference HR.

1.3 Hypothesis and objectives

It has been illustrated that, already by using standard interpola-
tion techniques, we’re able to better characterize the cost func-
tion optima thanks to the smaller sampling distance (Szeliski
and Scharstein, 2004). On the other hand, this doesn’t intro-
duce any spectral structure that might be useful for the match-
ing algorithm to better estimate the disparity. That’s why the
use of super resolution (SR) methods seems to be justified at
this purpose. Fig. 1 shows how the Fourier transform of a
neural network super resolved image seems to propagate the
spectrum of the image, unlike bicubic upsampling apart from
rebound artifacts does not create high frequencies. The hypoth-
esis to verify is that this spectral information can benefit the
stereo matching step, increasing the confidence in the estima-
tion of the right disparity from the similarity measures (Fig. 2).
It can be shown that the reliability of a disparity measure can
propagate into a stereo pipeline leading to more accuracy in the
final product (Sarrazin et al., 2021). The aim of this work is
therefore to assess whether plugging a SR pre-processing step
into a multi-view stereo pipeline can benefit DSM production
in urban regions.

LR Bicubic SR

Figure 1. Spectra of an input image, its bicubic interpolation and
its super resolved version using deep learning techniques

Figure 2. High and low confidence level cost profiles

To do so, we set up an experiment for comparing multiple su-
per resolved image DSMs to a reference. The results of such
an experience are presented in section 3. In order to increase
the relevancy of this work, we address the issues that have been
highlighted in the related works in paragraph 1.2. First, we
propose a training set generation procedure that takes into ac-
count realistic satellite degradation, targeting a particular sensor
model (Pléiades). Training methodology and results are pre-
sented in section 2. Second, we’ll rely on state-of-the-art neural
networks for SR. Together with the Enhanced SR GAN (ESR-
GAN) (Wang et al., 2018), the Residual Dense Network (RDN)
(Zhang et al., 2018) was implemented, since the latter has an
architecture really similar to the ESRGAN generator. In this
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way, we’ll try to isolate the contribution of a discriminator. Fur-
thermore, all the experiments will include a bicubic upsampling
counterexample in order to discern the real influence of artifi-
cial intelligence the effects that we observe by a mere increase
in image sampling, and thus justifying the employment of com-
plex models such as deep neural networks. Finally, we use a
lidar reference when measuring DSMs errors to obtain more re-
liable estimation.

On the top of that, none of the works presented in section 1.2,
isolates the contribution of SR to the stereo matching itself. In
fact, DSM pipelines are composed by multiple steps and the
propagation of errors through them is a subject which is not yet
mastered in photogrammetry. Yet, the actual contribution of su-
per resolution must lie in this step as it is where radiometric
information is transformed into a first depth estimation. There-
fore, in section 4 we’ll present a qualitative analysis of match-
ing when the stereo couple is upsampled using super resolution
networks, by means of similarity (or cost) profiles, whose defi-
nition has been supplied in paragraph 1.1

2. CREATION OF A VHR SATELLITE
SUPER-RESOLUTION SET, TRAINING AND

EVALUATION

2.1 Data and methods

For this study, the objective is to dispose of a deep neural net-
work capable of super resolving very high resolution (VHR)
pan-sharpened images of Pléiades type (resolution 50 cm), to
a target ground sampling distance closer to aerial sensing (≤
30 cm). At this purpose, a set of multi-spectral aerial acquisi-
tions at 10 cm GSD totaling 1.8 GB was kindly provided by
the CNES and used as source data. They consist of twenty
4096x4096 PELICAN (Deliot et al., 2006) images on urbanized
areas in France and they have been used to generate both the LR
and HR datasets. Even if available and used for pan-sharpening,
the NIR band was discarded from the training and result anal-
ysis. The CNES also provided the means for the generation
of the dataset. They are represented by an implementation and
the configurations of the Chane Simulation Image (CSI), a tool
that allows to apply any step of a satellite image acquisition
pipeline to a given image, producing realistic degradation. The
source images are converted into luminance values so that ac-
quisition through an imaging system can be simulated taking
into account, at least, the modulation transfer function (MTF)
and the sensor noise. Hence, the product is resampled at the de-
sired resolution. The following sets are generated: the LR set,
at 50 cm taking into account on board and on ground treatments
of a real VHR satellite (in this case, Pléiades) product, thus in-
cluding the addition of noise through the definition of a signal
to noise ratio, compression and decompression, denoising, de-
convolution and resampling and pan-sharpening operations; the
HR set, for which only a dezoom and a quantification in 12 bits
are applied. We considered in this work both scale factors 2 and
4 for the networks, fixing thus the GSD of the HR set to 25 cm
and 12.5 cm, respectively.

With these settings, training was performed on a a GPU node re-
served with 1 GPU NVIDIA Tesla T4, 4 CPUs Skylake 2.2GHz
92 Gb RAM. Moreover, a test portion of these data was kept out
of the training. Network hyperparameters were roughly fine-
tuned by means of grid and random searches.

Once the training succeeded, the models could be used in infer-
ence mode for evaluation. Peak Signal-to-Noise Ratio (PSNR)

(Eq. 1) was considered as in most of other super resolution
works. It is an inverse measure of the Root Mean Square Error
(RMSE) that takes into account the maximum value that a pixel
can have L.

PSNR = 10 log10

( L2

RMSE

)
(1)

Structure SIMilirarity Index (SSIM) is also taken into account
s. In (Eq. 2), µx, µy, σ

2
x, σ

2
y are averages and variances along

the x and y direction, the constants c1, c2, c3 are, respectively,
(k1L)2, (k2L)2 , c1

2
, with k1 set to 0.01 and k2 to 0.03.

SSIM =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2)

2.2 Results

LR Bicubic RDN ESRGAN HR

Figure 3. Inference on a test image, scale factor 2

LR Bicubic RDN ESRGAN HR

Figure 4. Inference on a test image, scale factor 4

Figure 3 and 4 shows some samples from the test set, which
was composed by three images of the same type of the training
set but not used for training. RDN and ESRGAN results are
compared to LR, HR and bicubic upsampling. Table 1 resumes
the quantitative evaluation of the test set images super resolved
via the two networks for both scale factors. The results are
rather encouraging as the networks outperform bicubic upsam-
pling both in terms of PSNR and SSIM. Superior metrics can
be observed in the case of RDN, but perceptually ESRGAN can
achieve more sharpness.

PSNR [dB] SSIM
Bicubic x2 18.54 0.4705
RDN x2 23.88 0.7753
ESRGAN x2 20.97 0.6335
Bicubic x4 17.47 0.3191
RDN x4 22.94 0.5898
ESRGAN x4 19.31 0.4032

Table 1. 2D statistics of the test set

More importantly, the inference super resolution was success-
ful on real Pléiades acquisitions of Montpellier, as we can see
in figures 5 and 6. It is noteworthy that in the training set there
are no images from the site shown in these two samples. This
demonstrates how, in spite of the limited amount of data in
terms of variety, the network could generalize a sensor model
irrespectively of a specific landscape. Although not measur-
able, the impression here is that the LR sample is improved in a
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perceptual sense. Edges are sharper and objects more detailed,
even if not necessarily in a physical manner.

LR Bicubic RDN ESRGAN

Figure 5. Inference on Pléiades data, Montpellier dataset, scale
factor 2

Bicubic Bicubic RDN ESRGAN

Figure 6. Inference on Pléiades data, Montpellier dataset, scale
factor 4

2.3 Discussion

LR ESRGAN HR

LR ESRGAN HR

Figure 7. Test image, scale factor 4, two cases of ESRGAN
hallucinations

By observing figures 3, 4, 5, 6 we can compare the results of
the networks. For what concerns RDN, the object contours are
well rendered, yet the interiors are artificially smoothened and
no meaningful detail is added when passing from scale factor 2
to 4. On the other hand, ESRGAN shows an impressive sharp-
ening capability when pushed to zoom 4, but this comes at the
price of evident artifact generation: uniform regions are incon-
sistently textured and some objects can be even mistaken and
resolved as different entities that have been better learned, as in
figure 7. In the top example, an air conditioning plant is mis-
taken for a car. Less common objects are more prone to cause
hallucinations, because there are very few (or even absent) sam-
ples in the training set and therefore the network upscales them
as the known object that more closely resembles their LR ver-
sion, (i.e. a car). The bottom example shows a texture learned
by the network for a tree propagated into a field. These evi-
dent artifacts suggest that the utilization of ESRGAN in a 3D
pipeline it’s potentially critical, because nothing can guarantee
that these hallucinations are coherent between left and right im-
ages, leading to mismatches.

3. APPLICATION TO DSM GENERATION

3.1 Data and methods

The trained networks were used in inference mode for Pléiades
stereo acquisitions of the cities of Toulouse and Montpellier.
Two region of interest, one for each site, covering around 3.33
km2 were considered for this experiment. Left and right pan-
sharpenend images are passed through the networks indepen-
dently. Then the super resolved images are used as inputs in
CARS, CNES’ multi-view stereo pipeline (Michel et al., 2020),
and the final outputs are compared to the results obtained us-
ing the original and the bicubically upsampled data. In other
words, a pre-processing super resolution step is added prior to a
DSM generation process, identifying 4 cases that will be com-
pared this section: no treatment to the inputs (LR), bicubic up-
sampling, RDN and ESRGAN inference. Since in order to do
stereo vision we need two gray scale images, only one band
was extracted from the RGB images for the experiments (green
and red were both tested). CARS configuration was kept as
default, apart from epipolar error upper and lower bounds that
were set to, respectively, 80 and -80. Unlike, Pandora’s (De-
fonte et al., 2021) configuration, the stereo matching core of
CARS, was modified to use Zero-mean Normalized Cross Cor-
relation (ZNCC) (Eq 3).

ZNCC(IL(x, y), IR(x+ d, y)) =∑
(i,j)∈W

(IL(i, j)− µLW )(IR(i+ d, j)− µRw)√
σL.σR

(3)

µR,Lw and σR,Lw are, respectively, the mean and the standard
deviation calculated on the windows used for computing the
similarity measure. The window size (dimension in pixels of
the side of the square defining the window) was set to 5 for the
LR inputs, and scaled with respect to zoom factor: as window
size can only be odd, for a scale factor 2 we set this parame-
ter to 9, for a scale factor 4 to 19. In this way, approximately
the same content is present for all scales, yet at different reso-
lutions. Furthermore, the penalties utilised for the semi-global
matching (SGM) optimization (Hirschmuller, 2007) in Pandora
were adapted to the ZNCC measure, by setting P1 and P2, re-
spectively, to 2 and 4.

Once generated, the different DSMs needed to be evaluated in
order to asses the SR contribution. This was possible thanks to
a reference lidar that served as ground truth for the Montpel-
lier dataset. At this stage, a necessary premise has to be put
in advance. When it comes to measure the global quality of a
DSM, there are not many options a part from the mere calcula-
tion of the error with respect to a reference and of the associated
standard statistics (Höhle and Höhle, 2009). When relying on
a lidar as reference, there might be some temporal differences
(e.g. new buildings) in comparison to the utilized data. In other
words, 3D metrics is not as developed and reliable as the 2D
one when it comes to global analysis. We tried to address this
issue by considering, together with the Root Mean Square Error
(RMSE) the Normalized Median Absolute Deviation (NMAD)
(Eq. 4), a statistic, first proposed in (Höhle and Höhle, 2009),
designed for DSMs that is a sort of median more resistant to
outliers,

NMAD = 1.4826medianj(|∆hj −m∆h|) (4)
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∆hj being the individual errors and m∆h median of the errors.

3.2 Results

Input stereo
pair

% valid
points

RMSE σ [m] NMAD

LR 95.53 4.17 4.58 1.27
Bicubic x2 94.29 4.02 4.63 0.92
RDN x2 94.99 4.18 4.62 0.84
ESRGAN x2 95.03 4.11 4.64 0.88
Bicubic x4 98.11 4.43 4.66 0.98
RDN x4 98.38 4.65 4.71 0.97
ESRGAN x4 98.18 4.71 4.94 1.13

Table 2. 3D statistics for Montpellier dataset. Measures in
meters

Table 2 resumes the quantitative results on a large ROI for both
zoom 2 and 4. In terms of RMSE no improvement could be
detected. Moreover, we see an increase when passing to zoom
4 with neural network cases performing worse than the bicubic
one. On the other hand, the percentage of valid points grows
for a stronger upscale. In practice, objects can be better re-
constructed but more outliers are present and the noise amount
amplifies, especially when upscaling the input couple 4 times.
Nonetheless, we could observe up to 34% gain in NMAD for
the RDN case for a scale factor 2. NMAD measure highlights
an enhancement when zooming the input images by a factor
two, using the networks but also for a bicubic interpolation.
However, for a zoom 4 such a gain seems to vanish.

(a) Montpellier, hillshade

(b) Montpellier

(c) Toulouse

Figure 8. Details from experiment result DSMs. Input stereo
couple is upscaled by a factor 2 by means of the method in the

subcaptions. Lidar sample is shown for Montpellier dataset

3.3 Discussion

Qualitatively, a global modest improvement when upscaling the
stereo couple (interpolation or super resolution) is present, as
we can observe in figure 8a. Less evident is whether or not SR
networks outperform standard bicubic interpolation for this ap-
plication. In general, deep learning models have the property of
well sharpening edges in a 2D image and this can be found in
3D with an enhanced rendering of streets and edges. In Fig. 8b
the buildings are better distinguished when applying super res-
olution and bicubic interpolation, while only in the ESRGAN
case they are totally separated. On the other hand, deep neural
networks seem not to be advantageous in homogeneous areas
and this can be seen in figure 8c as their inputs lead to a fail-
ure in well reconstructing the stadium building (red box), and
to an amplification noise in correspondence of the river (light
blue box) and football terrain (yellow box).

The results shown in this section 3 are not totally satisfactory as:
(a) there’s no evidence that the use of SR networks outperforms
standard bicubic interpolation for the 3D task and (b) forcing
a factor 4 zoom doesn’t improve the DSM quality. However,
the used 3D photogrammetry pipeline might be too complex to
have total control on the path of the injected information. In
other words, it might be too ambitious to rely on a mere input-
output comparison for our analysis and contributions of differ-
ent upscaling techniques might be flattened in some steps dur-
ing the process. In order to account for that, a further analysis
is proposed is section 4, trying to isolate the SR image con-
tributions. The critical step in this sense is the matching cost
computation where a similarity measure is performed in order
to associate patches of the left and right images along an epipo-
lar line.

4. SIMILARITY MEASURE PROFILE ANALYSIS

4.1 Data and methods

With the purpose of understanding whether and how the simi-
larity measures between image patches are influenced by SR,
cost profiles are an useful tool. By locally analyzing these
curves and the patches involved in the match, it was possible
to find some clues about the influence of radiometric and spec-
tral differences to depth estimation. To do, we set up a tool
to visualize, for a given pixel, the plot of the similarity coef-
ficient versus the disparity of the considered cases (LR, bicu-
bic upsampling, RDN and ESRGAN super resolution), the area
surrounding the pixel, the windows (also highlighted with a red
square in the bigger crop) used in the matching and the corre-
sponding spectra, for both left right and left images. A ground
truth (”GT”) estimate of the disparity could be retrieved from
lidar data following the approach depicted in (Cournet et al.,
2020). Since the lidar was only available in Montpellier dataset,
the analysis was performed with these data. The red band was
considered for this analysis, being the region of interest char-
acterized by tiled roofs. The measure used for its computation
is Zero-Mean Normalized Cross Correlation (Eq. 3), with the
same window size parameters used in section 3.1 (i.e. 5 for LR
samples, 9 for scale factor 2 and 19 for scale factor 4). To illus-
trate the results of this analysis, we’ll present some significant
examples, each one corresponding to the matching operation
on a single pixel. Although this kind of analysis suffers from
a local character, and depends on the specific pixel considered,
the samples proposed are representative of a large array of stud-
ied matching and they were chosen in order to highlight some
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features that have been found multiple times in the experiment
set.

4.2 Results
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(a) Cost profile, ZNCC
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(c) Right image

Figure 9. High contrast, illumination change. Cost profile and
stereo matching detail, scale factor set to 2.
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Bicubic RDN ESRGAN LR
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(c) Right image

Figure 10. High contrast, traffic line. Cost profile and stereo
matching detail, scale factor set to 4.

The reported examples of figures 9, 10, 11, 12 will be com-
mented in paragraph 4.3. We remark that for the plotted func-
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Figure 11. Incoherent artifact, tree. Cost profile and stereo
matching detail, scale factor set to 4.
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Figure 12. Homogenous area, roof, cost profile and stereo
matching detail, scale factor set to 4.

tions, being correlations, their maxima correspond to the most
probable disparities. We are interested in how accurate and
well defined the maximum of these functions is with respect
to ground truth. Images, windows and spectra help us in giving
an interpretation to these curves.
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4.3 Discussion

Figure 9 shows that with high contrast features, such as the dis-
continuity between illuminated and dark side of a roof, the con-
fidence in the measure strongly benefits from super resolution.
In fact, well sharpened edges and a more precise spectrum lead
to correct the disparity estimation and to totally exclude a vast
portion of the disparity range because characterized by lower
values. The RDN and ESRGAN prediction is more reliable and
this introduces stability in the stereo pipeline. This intuition is
confirmed in figure 10. This example covers the very same area
shown in Fig. 8b. We remark a better resolution of the street
when upsampling the inputs to the DSM pipeline. Furthermore,
ESRGAN is the only one capable of completely separating the
two buildings. Indeed, the impressive definition of this super
resolved image leads to a similarity profile in which we are
very confident. This sample also supports the hypothesis that,
when zoom is forced, ESRGAN is capable of adding significant
(yet not necessarily reliable) information, while bicubic and by
some degree RDN convey more or less the same information
which in these cases cannot guarantee a confident match.

On the other hand, when it comes to uniform or textured areas,
the use of super resolution turns out to be disadvantageous. In
figure 11, the considered pixel is part of a tree which is not con-
sistently rendered by the SR networks. In ESRGAN case, it is
likely to be mistaken for a building in the left image while fairly
returned as a tree in right image. This leads inevitably to con-
fusion in the matching step and indeed the ESRGAN similarity
function is essentially wrong, whilst the LR original image and
the bicubic upscale, although not presenting a selective profile,
manage to guess the real disparity with discrete accuracy. By
looking at the spectra, we see how RDN and especially ESR-
GAN force high frequencies even where they’re not needed,
adding unhelpful details instead of facilitating disparity esti-
mation. As pointed out when illustrating figure 8c, in uniform
zones the networks cause noisier DSMs. This might be due to
the fact that RDN makes such areas even more homogeneous,
while ESRGAN textures them inconsistently. This is to say,
stereo matching always needs some sort of contrast, so uniform
zones are notoriously complicated areas for stereo matching.
Nevertheless, in figure 12 enough information is present origi-
nally to guess the actual optimum in LR and bicubic interpola-
tion cases. The considered roof, which presents slight radiomet-
ric oscillations in the original data, looks smoothened by RDN
in the left and right images. As a consequence, the matching
algorithm struggles in finding the disparity. ESRGAN, in turn,
strongly textures such a surface, totally filling up the spectrum.
However, this texture is something that the network associates
to roofs in general, and not specific to the roof in question, lead-
ing to a very flat profile that doesn’t contain any information on
the real disparity.

5. DISCUSSION AND CONCLUSIONS

5.1 Final considerations

Super resolution is one of the most prominent image enhance-
ment techniques for satellite applications being studied in the
last years. Nonetheless, the usefulness of such a technology for
satellite data based services and products has yet to be proven.
DSM generation from VHR data is a significant example that
was examined in this study. With respect to previous works, in
our testbed we tried to remove sources of bias such as non mas-
tered stereo pipelines, poor quality reference data, inaccurate

degradation model for SR dataset generation as well as gaps
with respect to state-of-the-art for what concerns SR. Look-
ing at the setup of the experiment and the data used, the most
related work is (Zhang et al., 2019), where the authors care-
fully suggest that there might be an interest in this application.
Our findings do not refute this idea, but highlight how, looking
only at the final output, results can appear counterintuitive and
it might not be clear what is due to super resolution and what
to some side effects produced by the DSM pipeline. Therefore,
we dug further into the topic by taking into account the essence
of 3D stereo reconstruction, i.e. the stereo matching step. In
this work, we show how SR spectral contribution in terms of
sharpness can be beneficial in presence of high contrast fea-
tures. However, high frequencies forced by the networks can
be non reliable or even unneeded, thus uniform zones become
characterized by artifacts, and textured areas may present in-
consistency with respect to the reality. This leads inevitably
to mismatching and in turn allows uncertainties to propagate
through the stereo pipeline canceling out the favorable effects
that can be seen in presence of strong contrast. As a matter
of fact, the overhead image of city is essentially composed by
uniform or textured objects (roofs, parks, squares), divided by
discontinuities (building edges, traffic lines), so it might not be
worth to be more precise in stereo matching on edges and lines
while introducing errors elsewhere.

5.2 Resume

With the aim of improving the quality of the DSMs generated
by CARS multiview stereo pipeline (Michel et al., 2020) in ur-
ban context, a large scale experiment was carried out, to as-
sess whether deep learning based single image super resolu-
tion could be beneficial to this process. Two neural networks,
RDN (Zhang et al., 2018) and ESRGAN (Wang et al., 2018),
were utilized and a bicubic interpolation counterexample was
taken into account as well. A realistic satellite image dataset
for super resolution was created, using CNES’ image simula-
tion tool to apply the model of Pléiades image pipeline and this
led to remarkable results when applying the networks to real
VHR data. Visual and quantitative analysis showed how SR
was successfully implemented, but this comes at the price of
more synthetic images and flagrant local artifacts. Later, we
could learn that better 2D metrics doesn’t automatically propa-
gate into better 3D models, as SR input pairs do not outperform
standard bicubic upsampled pairs when it comes to DSM gen-
eration. Moreover, an increase in noise can be observed when
forcing a zoom 4, mostly in uniform or textured regions, and
in ESRGAN input pair upscaling case. A further local anal-
ysis of similarity measures during stereo matching step could
give more insight into the contribution of SR to 3D reconstruc-
tion from satellite pairs. The hypothesis that a denser spectrum
can be beneficial for stereo matching when carried out in corre-
spondence of discontinuities was confirmed, as less errors and
more selective similarity functions could be observed where the
matching is performed in the presence of high contrast features.
On the other hand, uncontrolled artifact generation and incon-
sistent patterns in super resolved images lead to poor matching
in uniform and textured areas. Hence, without addressing these
shortcomings, it is not clear whether it’s possible to exploit SR
potential with reliability in 3D photogrammetry.

Being a relatively new branch of application, further study
should be performed to better understand whether these new
hypothesis are correct. The results shown in section 4 lack of
quantitative insight, although representative of numerous tests.
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In order to support the intuitions proposed, it could be useful
to project a left image using the disparity map resulting by a
matching, and compare it to the right image. In this way, we
should be able to highlight on a larger scale the areas where
matching was more or less successful. Additionally, one could
generate confidence maps by assigning a measure of the re-
liance at every pixel of a stereo matching as in (Sarrazin et al.,
2021). Furthermore, it is possible that other combinations of
data/loss can improve the results of the presented and hence
supply images better suited for any application, including DSM
production. For instance, one could enlarge the data base or per-
form monochromatic SR, instead of RGB as in this work. Fi-
nally, enforcing coherency between left and right images could
potentially limit the mismatches caused by uncontrolled arti-
fact generation. Finally, enforcing coherency between left and
right images could potentially limit the mismatches caused by
uncontrolled artifact generation.
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