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ABSTRACT:

The necessity to identify errors in the context of image-based 3D reconstruction has motivated the development of various methods
for the estimation of uncertainty associated with depth estimates in recent years. Most of these methods exclusively estimate aleat-
oric uncertainty, which describes stochastic effects. On the other hand, epistemic uncertainty, which accounts for simplifications
or incorrect assumptions with respect to the formulated model hypothesis, is often neglected. However, to accurately quantify the
uncertainty inherent in a process, it is necessary to consider all potential sources of uncertainty and to model their stochastic beha-
viour appropriately. To approach this objective, a holistic method to jointly estimate disparity and uncertainty is presented in this
work, taking into account both aleatoric and epistemic uncertainty. For this purpose, the proposed method is based on a Bayesian
Neural Network, which is trained with variational inference using a probabilistic loss formulation. To evaluate the performance
of the method proposed, extensive experiments are carried out on three datasets considering real-world indoor and outdoor scenes.
The results of these experiments demonstrate that the proposed method is able to estimate the uncertainty accurately, while showing
a similar and for some scenarios improved depth estimation capability compared to the dense stereo matching approach used as
deterministic baseline. Moreover, the evaluation reveals the importance of considering both, aleatoric and epistemic uncertainty, in
order to achieve an accurate estimation of the overall uncertainty related to a depth estimate.

1. INTRODUCTION

Reconstructing the 3D geometry of a scene from stereo images
is a fundamental task in photogrammetry and computer vision,
commonly forming the basis for higher-level tasks that build
on the estimated depth information. While current dense stereo
matching methods demonstrate convincing results, with deep
learning-based approaches showing a particularly low number
of erroneous estimates, the resulting depth information is not
free of errors. Especially image regions with a weak texture,
that are occluded or that are located close to depth discontinuit-
ies remain challenging and may cause errors in the dense stereo
matching procedure. In order to not propagate such errors to
higher-level tasks unknowingly, a measure of the uncertainty
associated to a depth estimate is needed. In turn, tasks that
rely on image-based depth information, such as 3D pedestrian
tracking (Nguyen and Heipke, 2020) or the estimation of the
pose and shape of a vehicle (Coenen and Rottensteiner, 2021),
may be improved if the associated uncertainty is known. On
the other hand, knowledge on the uncertainty might even be
a crucial prerequisite for safety-critical tasks, for example, for
applications from the domain of autonomous driving.

Following the taxonomy proposed by Hacking (1975), two
types of uncertainties can, in general, be distinguished: aleat-
oric and epistemic uncertainty. Aleatoric uncertainty is con-
tained in the data and caused by variable, non-deterministic or
simply unpredictable behaviour of a process under considera-
tion. In contrast, epistemic uncertainty accounts for incorrect
or inaccurate model hypotheses. From the perspective of dense
stereo matching, aleatoric uncertainty accounts for effects such
as sensor noise, occlusion and matching ambiguities caused,
for example, by texture-less areas or repetitive patterns within

a scene. Epistemic uncertainty, on the other hand, considers
assumptions that simplify the matching process and character-
istics that are missing in the definition of this process (or in case
of deep learning-based approaches in the training data), such
as features and shades that imply a certain geometric shape.
Note that the assignment of specific effects to either aleatoric or
epistemic uncertainty is not fixed, but depends on the definition
of the problem domain. In the literature, several methods have
been presented addressing aleatoric uncertainty estimation for
dense stereo matching. These methods cover a wide range
of functional and stochastic models, while commonly repres-
enting aleatoric uncertainty either as confidence, a unit-less
measure of reliability in the range between zero and one, or
as standard deviation of a particular probability distribution.
In contrast, the estimation of epistemic uncertainty, and thus
also the joint estimation of aleatoric and epistemic uncertainty,
is much rarely discussed in the literature with respect to more
complex photogrammetric tasks, which is particularly true for
dense stereo matching. However, to accurately estimate the
uncertainty embedded in a process, it is necessary to consider
all potential sources of uncertainty.

To overcome this limitation, a holistic method to jointly es-
timate depth and uncertainty is presented in this work, consid-
ering aleatoric and epistemic uncertainty, both modelled in a
Bayesian deep learning framework. Thus, the main contribu-
tion of this work is the realisation of a Bayesian Neural Net-
work (BNN), in terms of the definition of a functional and a
stochastic model. The functional model is characterised by
probabilistic convolutional layers that are trained using Vari-
ational Inference (VI) and that are incorporated into an end-to-
end trainable Convolutional Neural Network (CNN) architec-
ture, which has already proven to be well-suited for the task
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of dense stereo matching. The stochastic model is based on a
naive mean field approximation, assuming a variational distri-
bution that consists of an independent Gaussian distribution for
each parameter of the probabilistic convolutional layers. The
loss function proposed is formulated in a way that the estim-
ation of all three values, depth, aleatoric and epistemic uncer-
tainty, can be learned jointly and end-to-end. For this purpose,
the ideas of likelihood maximisation under a specific mixture
distribution and the minimisation of the Kullback-Leibler (KL)
divergence between the assumed variational distribution and the
exact posterior are combined.

2. RELATED WORK

In recent years, many publications have been presented in the
literature addressing uncertainty estimation in the context of
dense stereo matching. While this emphasises the relevance and
the actuality of this topic, most of these works focus exclusively
on the estimation of aleatoric uncertainty. As shown by Hu
and Mordohai (2012) and Poggi et al. (2021) in comprehensive
evaluations, a multitude of approaches has been proposed for
this task, using the stereo images directly or various (interme-
diate) representations of the dense stereo matching procedure,
such as a cost volume or a disparity map, as input. The aleatoric
uncertainty itself is typically represented either as confidence,
a value between zero and one that represents how trustworthy
the associated depth estimate is, or as the standard deviation
of a particular probability distribution. While most works in
the literature measure aleatoric uncertainty in terms of confid-
ence (Hu and Mordohai, 2012; Kim et al., 2019), this approach
does not allow to assess the uncertainty in pixels or metric units
and thus prevents to reason about the actual error magnitude.
On the other hand, aleatoric uncertainty can be learned in a
Bayesian way via maximum likelihood estimation (Kendall and
Gal, 2017). Following this approach, the parameters of a par-
ticular probability distribution, for example, mean and standard
deviation of a Gaussian distribution over the disparity, are un-
derstood as predictions, while maximising the likelihood of the
ground truth disparity during training. Different types of distri-
butions have been proposed for this purpose, with an approach
based on a mixture of a Laplace and a Uniform distribution,
which considers the geometry and appearance of the observed
scene, showing the best results so far (Zhong and Mehltretter,
2021). However, almost all of these methods model aleatoric
uncertainty estimation as a separate task that is carried out sub-
sequent to the actual dense stereo matching. While this pro-
cedure simplifies the individual tasks, as only one value has to
be estimated at a time while the other one is kept constant, it
prevents from exploiting synergies that may arise from the joint
estimation of depth and the associated aleatoric uncertainty.

Compared to aleatoric uncertainty, which is commonly treated
as an additional predictive value, the estimation of epistemic
uncertainty is typically more difficult and is addressed far less
frequently in the literature. However, this type of uncertainty
helps to mitigate the problem of overconfident predictions and
to identify cases in which a method is highly uncertain regard-
ing its prediction, for example, processing data outside of the
learned data distribution. To cope with this task, in particu-
lar the use of stochastic neural networks has proven to be well
suited, which allow to learn a distribution over the parameters,
instead of learning point estimates as parameter values (Jospin
et al., 2020). Epistemic uncertainty is then commonly estimated
via Monte Carlo sampling by deriving the central moments of
the probability distribution describing the final result from the

aggregation of the individual samples. Common realisations
of stochastic neural networks are ensembles of deterministic
neural networks that have been trained independently, Monte
Carlo dropout and BNNs. Ensemble learning is the simplest
of these three concepts, using varying seed values (Lakshmin-
arayanan et al., 2017), different subsets of the training data
(Moukari et al., 2019) or the parameter values of the same net-
work obtained after various numbers of training epochs as indi-
vidual networks to form an ensemble (Huang et al., 2017). On
the other hand, Monte Carlo dropout, as used in (Kendall and
Gal, 2017), is similar to classical dropout used for the purpose
of regularisation during training, but applies this procedure not
only during training but also at test time. Placing a Bernoulli
distribution over the network weights, the weights are set to
zero with a certain probability, resulting in a slightly different
parametrisation of the same network for every forward pass.

BNNs constitute the third and last realisation of stochastic
neural networks being discussed in this section that allows
to define a prior for the parameters of the network, treating
the uncertainty in a Bayesian manner. Despite the fact that
the basic concepts of BNNs are already known for decades
(MacKay, 1992), they have only recently been used in practice
for more complex tasks, such as image-based object classi-
fication (Brosse et al., 2020). While ensemble learning as
well as Monte Carlo dropout generally have the limitation that
prior knowledge and the correlation between parameters of the
network can not be considered, both is in principle possible
using a BNN. A first step of using a BNN in the context
of dense stereo matching was taken by Mehltretter (2020):
They describe a BNN-based approach that allows to jointly
estimate depth and aleatoric as well as epistemic uncertainty,
characterising it as being close to the approach followed in
the present work. Despite the good results for the epistemic
uncertainty estimates, the authors state that the joint estimation
of depth and aleatoric uncertainty leads to a deterioration of
the depth estimation capability. This limitation is the main
motivation for the present work and is aimed to be overcome
by the methodology presented.

3. METHODOLOGY

In this section, a novel method to estimate depth and its as-
sociated aleatoric and epistemic uncertainty in the context of
dense stereo matching is proposed, which is based on Bayesian
deep learning. The input to the proposed method are stereo-
scopic image pairs (IL, IR), referring to the left image IL of
such a pair as the reference image. It is assumed that both im-
ages were captured simultaneously, allowing to neglect the in-
fluence of movements of parts of the scene depicted, and have
a reasonable overlap in which the depth can be determined via
triangulation. Moreover, the stereo image pairs are presented
to the proposed method after planar rectification, assuming that
the interior orientations of both cameras and the relative orient-
ation between them is known. In the following, the functional
model in form of a BNN architecture is introduced first, before
the stochastic model is described.

3.1 Functional Model

The functional model of the method presented in this work
is defined as a BNN and is based on two CNN architectures
presented in the literature: Geometry and Context Network
(GC-Net) proposed by Kendall et al. (2017) and Cost Volume
Analysis Network (CVA-Net) proposed by Mehltretter and
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Heipke (2021). GC-Net is a dense stereo matching approach
that follows the classical taxonomy of Scharstein and Szeliski
(2002): First, features are extracted from the left and right
image using a Siamese architecture consisting of multiple 2D
convolutional layers with residual connections. In the second
step, a cost volume is built by concatenating a feature vector
from the left image with a feature vector from the right image
for all potential point correspondences, defined by the corres-
ponding horizontal epipolar line and the specified disparity
range. This initial cost volume is further processed using 3D
convolutional and transposed convolutional layers arranged
in an encoder-decoder structure with skip connections. The
output of this structure is a 3D cost volume similar to the one
computed by conventional dense stereo matching approaches,
from which a disparity map is extracted using a differentiable
soft argmin layer. On the other hand, CVA-Net allows to es-
timate aleatoric uncertainty associated to depth estimates based
on a cost volume (extract). For this purpose, several layers of
3D convolutions are used to initially combine cost information
from a spatial local neighbourhood, before processing the result
of this combination along the depth axis per pixel. To obtain an
aleatoric uncertainty estimate per pixel, global average pooling
is applied which reduces the processed 3D cost volume into a
2D uncertainty map. Both architectures are chosen because of
their good accuracy for the tasks of dense stereo matching and
aleatoric uncertainty estimation, respectively, while having a
relatively low number of parameters.

The fusion of the two CNN architectures described is realised
by adding CVA-Net as aleatoric uncertainty estimation branch
to GC-Net, which runs in parallel to the soft argmin layer (see
Fig. 1). While the basic structures of both architectures re-
main unchanged, CVA-Net receives the whole optimised cost
volume, instead of operating on a cost volume extract as ori-
ginally proposed by Mehltretter and Heipke (2021), which is
possible due to the fully convolutional character of this CNN ar-
chitecture. To transform the combined architecture from a CNN
into a BNN, the parameters of the network are no longer learned
directly, as it is done by conventional deep learning and which
would result in constant point estimates for every parameter, but
sampled from a probability distribution which is defined by the
stochastic model presented in the following section. In this con-
text, the network parameters θ are sampled anew for every in-
dividual forward pass k, which results in slightly different vari-
ants of the same network fθ and thus in disparity maps D and
aleatoric uncertainty maps UA that vary with each sample:

fθk (IL, IR) = (Dk,UA,k) . (1)

Carrying out several such forward passes, this procedure is
commonly referred to as Monte Carlo sampling, whereas the
employment of a trained BNN for testing with K Monte Carlo
samples can be understood as sampling from an ensemble of
K different neural networks. Thus, similar to other ensembling
approaches, the disparity estimates resulting from several such
samples k with k ∈ {1, ..,K} are combined, to compute the
mean and variance of the distribution of these predictions:

D(p) = d̄p =
1

K

K∑
k=1

dp,k , (2)

UE(p) = σ2
E,p =

1

K − 1

K∑
k=1

(dp,k − d̄p)2 . (3)

Aggregating the resulting disparity estimates d of a pixel p over
k samples, the average disparity estimate d̄ and the variance σ2

E

are used to obtain a disparity map D and an epistemic uncer-
tainty map UE , respectively. This procedure is justified by the
observation that deviations between different disparity estim-
ates assigned to the same pixel reflect the model’s uncertainty
to determine the correct disparity, which allows to approximate
the epistemic uncertainty based on these deviations. Because
the aleatoric uncertainty estimates vary with each Monte Carlo
sample as well, it is necessary to aggregate the aleatoric uncer-
tainty maps of all samples drawn to obtain a consistent result:

UA(p) =
1

K

K∑
k=1

σ2
A,p,k , (4)

where σ2
A represents the aleatoric uncertainty computed accord-

ing to the probabilistic model described in the next section.

Similar to the concepts presented in (Brosse et al., 2020; Mehl-
tretter, 2020), not all parameters of the network architecture
presented are treated in a probabilistic manner. While Brosse
et al. (2020) argue that it is sufficient to only model the final
layer(s) of an architecture probabilistically to assess the epi-
stemic uncertainty and to benefit from the positive effect of en-
semble learning on the accuracy, they only investigate such a
setup in the context of classification. Preliminary experiments
carried out in the context of this work and the results of (Mehl-
tretter, 2020) have shown that a different approach is preferable
for dense stereo matching: Only the weights belonging to con-
volutional filter kernels used in the feature extraction step (2D
convolutions) and the multi-scale feature matching step in the
encoder of the cost volume optimisation (3D convolutions) are
treated probabilistically. In contrast, the parameters belonging
to operations used to up-sample the intermediate feature maps
(3D transposed convolutions), which is carried out in the de-
coder part of the cost volume optimisation step, are retained de-
terministically (cf. Fig. 1). Compared to treating all parameters
in a probabilistic manner, the proposed procedure reduces the
number of trainable parameters and the computational effort.

Besides the desired capability to estimate epistemic uncertainty,
treating some parts of the network in a probabilistic manner fur-
ther allows to reduce the model capacity without decreasing the
accuracy of the estimated disparity maps. For this purpose, the
number of filter channels nc is adjusted, which is set to nc = 32
for almost all layers of the original GC-Net architecture and to
multiples of 32 if the spatial resolution of the feature maps is re-
duced in the inner layers of the encoder-decoder structure. As
shown by the results of preliminary experiments, nc can be re-
duced by 25% to 24 channels without affecting the performance
of the described probabilistic variant, while this adjustment de-
creases the accuracy of the deterministic baseline. Such an ad-
aptation of nc reduces the number of parameters of the network
as well as the size of the intermediate feature maps and thus the
memory footprint and the computational effort. In summary,
the proposed transformation of the described combination of
GC-Net and CVA-Net into a probabilistic variant using 24 fil-
ter channels increases the number of parameters to be learned
only marginally from about 3.6 to 3.7 Mio. (assuming that the
stochastic model is defined as described in the next section).

3.2 Stochastic Model

To use the previously defined BNN for the purpose of Bayesian
inference, the posterior distribution p(θ|D) of the network para-
meters θ given a set of training data D is required. However,
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Figure 1. Overview of the functional model. While the probabilistic adaptation of the GC-Net architecture is trained to predict a
disparity map corresponding to the left image of a planar rectified stereo image pair, the probabilistic convolutional layers further allow
to estimate the corresponding epistemic uncertainty via Monte Carlo sampling. CVA-Net is integrated as a separate branch, operating
on the optimised cost volume to additionally predict an aleatoric uncertainty map. Source: Adapted from Mehltretter (2020).

computing and thus also sampling from this exact posterior dis-
tribution is typically an intractable problem, due to the integ-
ral involved in the evidence which in general cannot be solved
analytically. Therefore, variational inference is applied in this
work, aiming to learn the parameters φ of a variational distri-
bution q that approximates the exact posterior distribution. To
measure the distance between the exact posterior distribution
and its approximation, the KL divergence proposed by Kullback
and Leibler (1951) is used, which is minimised during training
in order to maximise the similarity of the two distributions.

To reduce the number of parameters to be learned and the com-
putational overhead arising from VI compared to conventional
deep learning, it is assume that the variational distribution over
the latent variables, i.e., the network parameters, factorises as:

q(θ1, θ2, ..., θn) =

n∏
i=1

q(θi) . (5)

This assumption is commonly referred to as mean field approx-
imation, whereas a naive form is used in this work, assuming
a partition into independent groups of single latent variables.
The result is a diagonal Gaussian posterior, similar to the one
proposed by Graves (2011). Consequently, the parameters of
the variational distribution consist of a mean vector µ and a
diagonal variance-covariance matrix Σ = I · σ2, where I is
the identity matrix, so that every network parameter treated in
a probabilistic manner is drawn from an independent Gaussian
distribution: θi ∼ N (µi, σ

2
i ). According to Graves (2011), this

further allows to calculate the overall KL divergence between
the exact posterior distribution and the variational distribution
as the sum of the divergence terms corresponding to the indi-
vidual partitions of the variational distribution:

LKL =

n∑
i=1

KL(qφ(θi)||p(θ|D)) . (6)

To further enable the proposed BNN to estimate aleatoric uncer-
tainty, in addition to the disparity of a pixel and its associated
epistemic uncertainty, the geometry-aware model of Zhong and

Mehltretter (2021) is adapted in this work. This approach re-
lies on the assumption that the aleatoric uncertainty associated
to a pixel’s disparity estimate can be represented by a probab-
ility distribution, which is characterised by a set of parameters
that are predicted by a CNN. During training, the ability to pre-
dict these parameters is optimised with the objective of maxim-
ising the likelihood of the corresponding ground truth disparity
under the probability distribution assumed (Kendall and Gal,
2017). Following this procedure, aleatoric uncertainty can be
learned as standard deviation from the distribution of the dis-
parity error, thus avoiding the need for a direct reference for the
uncertainty, such as explicit parametrisations of the probability
distribution. Note that contrary to the procedure proposed in
the original publication of Zhong and Mehltretter (2021), the
disparity estimate is not fixed in this work, but is optimised to-
gether with the aleatoric uncertainty.

The geometry-aware model of Zhong and Mehltretter (2021)
is chosen due to its superior performance compared to other
probabilistic models and its ability to adapt to challenging scen-
arios that are common in the context of dense stereo matching,
such as occlusions and weakly textured areas. According to this
model, the error of pixels that are expected to have a unique cor-
respondence in the second image of a stereo pair (referred to as
unique matching assumption) is assumed to be Laplacian dis-
tributed. On the other hand, errors arising from weakly textured
and occluded regions are assumed to be uniformly distributed
in specific intervals. Formulating these two assumptions as log
likelihood terms, the following equations are obtained:

LL =

√
2

exp(sp)
|dp − d̂p|+ sp , (7)

LU =

{
0.5x2 if |x| ≤ γ
γ|x| − 0.5γ2 otherwise ,

(8)

where d is the estimated and d̂ the ground truth disparity, while
s is the logarithm of the standard deviation of the assumed
Laplace distribution. x is defined as the difference between
the absolute disparity error and half the length of the interval
with uniform distribution rp, resulting in: x = |dp − d̂p| − rp.
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While the ground truth disparity d̂ needs to lie in the interval
[d − r, d + r] to maximise the probability, x is minimised to
prevent the network from predicting unreasonable large inter-
vals. With the relationship between the interval length and the
standard deviation σU of the uniform distribution, it further is:
r =
√

3σU . The complete term LU is set up in form of a Huber
loss function (Huber, 1981). Combining the two assumptions
on the distribution of the disparity error, the following loss func-
tion can be obtained, which allows to train the proposed BNN
end-to-end in a supervised manner using training data D:

LAleatoric =
1

|D|
∑
p∈D

βerror ·(ci·LL+(1−cp)·LU+LBCE) , (9)

LBCE = βp · h(op, ôp) , (10)

where c is a binary variable indicating whether the unique
matching assumption is met or not. According to the definition
of this binary classification discussed earlier, c is defined as:
c = ¬o ∧ ¬t, where o specifies if the correspondence in
the second image is occluded and t whether the pixel in the
reference image is located in a weakly textured area. While
t is determined based on the reference image directly using
the criterion specified by Scharstein and Szeliski (2002), o is
predicted by the CVA-Net branch of the proposed network in
addition to the log standard deviation. In order to optimise
the capability of predicting whether a pixel’s correspondence
is occluded or not, the loss function is extended by a binary
cross-entropy term h, minimising the difference between the
predicted and the reference occlusion values o and ô. In this
context, the pixel-dependent weight βp is defined as:

βp = βBCE · (ôp · (βoccluded − 1) + 1) . (11)

It considers the class imbalance between non-occluded and oc-
cluded pixels using the ratio of their frequency in the training
set as βoccluded as well as a static weight βBCE, which is used to
balance the influences of the binary cross-entropy term and the
likelihood term. Compared to the original loss formulation by
Zhong and Mehltretter (2021), we add a coefficient βerror used
to weight the individual training samples according to their dis-
parity error. This procedure is necessary if the error of the pre-
dicted disparities is not well distributed over the disparity range
considered, but mainly concentrated around zero. While this
is a desired behaviour in the context of dense stereo matching,
it motivates to preferably predict small aleatoric uncertainties,
thus resulting in an effect comparable to the one arising from
imbalanced training samples in a classification setup.

Combining the different parts of the stochastic model that are
necessary to estimate epistemic and aleatoric uncertainty and
that have been described before, the following final loss formu-
lation is obtained:

LFull-Uncertainty = LAleatoric + βKL · LKL , (12)

where βKL is a hyper-parameter used to balance the two parts
of the loss function. Relying on the concept of stochastic vari-
ational inference (Hoffman et al., 2013), the training procedure
of the proposed BNN does not differ from the one used for or-
dinary CNNs in the sense that common optimisation algorithms
can be applied. To mitigate the negative impact of stochastic
sampling of parameters during training on the convergence be-
haviour, we apply Flipout as proposed by Wen et al. (2018).

Under the assumption that the aleatoric and the epistemic un-

certainty are randomly and independently distributed, quadratic
error propagation is applied to obtain the overall uncertainty as-
sociated with the disparity estimate of a pixel p:

σ2
p = σ2

A,p + σ2
E,p , (13)

from which the definition of the overall uncertainty map U fol-
lows as U = UA + UE . Consequently, following the method
proposed, the estimation of disparity and aleatoric uncertainty
is learned together exploiting the principle of likelihood maxim-
isation, while the estimation of epistemic uncertainty is further
enabled by the usage of a BNN trained via VI.

4. EXPERIMENTAL SETUP

In this section, the experimental setup used to evaluate the pro-
posed methodology is described. For this purpose, the datasets
used for training and testing are presented in Section 4.1. In
Section 4.2, the framework for training the proposed approach
is discussed, including an overview of the hyper-parameter set-
tings. This section closes with a presentation of the strategy and
criteria for testing in Section 4.3.

4.1 Datasets

In the experiments carried out in the context of this work, four
different datasets have been used: Sceneflow FlyingThings3D
(Mayer et al., 2016), InStereo2K (Bao et al., 2020), Middle-
bury stereo benchmark version 3 (Scharstein et al., 2014) and
KITTI, which we define as the combination of the KITTI 2012
and 2015 stereo datasets (Geiger et al., 2012; Menze and Gei-
ger, 2015). All these datasets consist of stereo image pairs with
ground truth disparity maps corresponding to the reference im-
age of each pair. The Sceneflow dataset contains about 27 thou-
sand synthetic stereo image pairs that show abstract scenes with
randomly located objects and provides a reference for the dis-
parity for all pixels. The InStereo2K and Middlebury datasets
consist of 2050 and 15 stereo image pairs, respectively, that
show different indoor scenes. For both datasets, the reference
for the disparity is captured via structured light and is provided
for about 90% of the pixels. Lastly, the KITTI dataset con-
sists of 394 stereo image pairs that show various street scenes
and provides a reference for the disparity for about 30% of the
pixels, which is derived from LIDAR point clouds.

4.2 Training Procedure

The BNN presented in this work is trained end-to-end in a fully
supervised manner. Because of the large amount of training
data necessary, the network is first trained for 24 epochs on 21
thousand synthetic stereo image pairs from the Sceneflow data-
set, before it is fine-tuned for 57 epochs on 1800 real-world
image pairs of the InStereo2K dataset. In each epoch, a random
crop of size 384 × 96 pixels from every image pair is fed to
the network using a mini-batch size of one. The optimum num-
ber of training epochs is determined via early stopping, i.e., the
training procedure is terminated if the validation loss does not
decrease in three consecutive epochs and the set of parameters
associated to the epoch with minimum validation loss is used
for testing. For both, training and fine-tuning, 100 images of
the respective dataset are used as validation set. Moreover, in
all training epochs and in the first 47 epochs of fine-tuning, the
network is only optimised for the task of disparity estimation,
neglecting the aleatoric uncertainty. For this purpose, the term
LAleatoric in Equation 12 is replaced by the L1 loss. Only the last
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10 epochs of fine-tuning are carried out using the loss function
shown in Equation 12. This approach improves the convergence
behaviour compared to directly optimising for both, disparity
and aleatoric uncertainty, and leads to overall better results. The
optimisation itself is realised using RMSProb (Tieleman and
Hinton, 2012) with a learning rate of 10−3.

The disparity range considered during training is limited to
[0,191] pixels, thus pixels with a ground truth disparity out-
side of this range are discarded and not used for training the
network parameters. The ratio between occluded and non-
occluded pixels βoccluded used in Equation 11 is determined
based on the ground truth disparity maps used for training
and is set to βoccluded = 20. The parameter γ, which gov-
erns the transition between the two parts of the Huber loss
in Equation 8, and the coefficient βBCE, which weights the
binary-cross entropy term relative to the likelihood term in
Equation 11, are set to one. The Gaussian distributions that
form the variational distribution and from which the parameters
of the probabilistic 2D and 3D convolutional layers are sampled
as θi ∼ N (µi, σ

2
i ), are initialised with µ = 0 and σ2 = 1.

In addition, all deterministic convolutional and transposed
convolutional layers are initialised using the Glorot normal
initialiser (Glorot and Bengio, 2010). The hyper-parameter
βKL, which is used to weight the KL divergence relative to the
loss term LAleatoric (see Eq. 12), is not set statically, but adapted
during the training process. More precisely, βKL is set to zero
for the first training epoch, allowing the optimisation process to
focus on adapting the variational parameters with the exclusive
objective of minimising the disparity error in the beginning of
the training procedure. In the following five epochs, βKL is
incremented by 0.2 per epoch, gradually increasing the regular-
isation effect of the KL divergence. In all consecutive epochs,
βKL is constantly set to one. Finally, as stated in Equation 9,
the training samples are weighted according to their disparity
error, differentiating between values in three different ranges:
βerror = 1.3 for a disparity error smaller than one pixel, βerror =
7.7 for a disparity error in the range of [1, 5) pixels and βerror =
12.5 for a disparity error larger or equal than five pixels. The
individual values of βerror are determined based on the error
distribution of the training samples before starting to optimise
for disparity and aleatoric uncertainty jointly.

4.3 Evaluation Strategy and Criteria

To set the results of the method proposed in this work in con-
text and to allow a reasonable assessment, four different vari-
ants are examined and compared: deterministic, deterministic
+ CVA-Net, probabilistic and probabilistic + CVA-Net. determ-
inistic is used as baseline and is equivalent to the original GC-
Net proposed by Kendall et al. (2017). deterministic + CVA-
Net complements the original deterministic GC-Net by CVA-
Net as described in Section 3. probabilistic is equivalent to the
method described in this work, but it is optimised for the es-
timation of disparity only, neglecting aleatoric uncertainty by
replacing the term LAleatoric in Equation 12 with the L1 loss. Fi-
nally, probabilistic + CVA-Net is the complete method as pro-
posed in this work. All four variants are trained following the
strategy presented in Section 4.2. Lastly, according to (Mehl-
tretter, 2020), the number of Monte Carlo samplesK (cf. Eq. 2-
4) that are drawn per test sample in the context of the two prob-
abilistic variants is set to 50.

For the purpose of computing quantitative results, 100 random
image pairs are used per dataset during testing (and all 15 image

pairs in case of the Middlebury dataset) that have not been seen
by the network, i.e., the training, validation and test sets are
strictly separated. The disparity range considered in the experi-
ments is adapted to each dataset based on the maximum ground
truth disparity present in the respective dataset. The quality of
the disparity estimates is measured using the Mean Absolute
Error (MAE), the Root Mean Square Error (RMSE) and the
Pixel Error Rate (PER). The PER is the percentage of pixels for
which the difference between estimated and reference disparity
exceeds a threshold τ , using one, three and five pixels as values
for τ in the evaluation of this work. To assess the quality of the
estimated uncertainty, the Pearson correlation coefficient r∆d,σ

between the absolute disparity error ∆d and the estimated un-
certainty in form of the standard deviation σ is used.

5. RESULTS

Analysing the correlation coefficients listed in Table 1, it can be
seen that the variant that considers aleatoric and epistemic un-
certainty jointly results in the highest correlation between the
absolute disparity error and the estimated uncertainty for all
three datasets evaluated. While the exclusive consideration of
epistemic uncertainty leads to slightly worse results, only tak-
ing into account aleatoric uncertainty reduces the correlation
significantly. It is also noticeable that the correlation decreases,
with an increase of the domain gap between training and test
data. While the correlations are highest on the InStereo2K data-
set which was also used for fine-tuning the network parameters,
they are worse for the Middlebury dataset, which also shows in-
door scenes but with different characteristics and captured using
a different set-up, and are worst for the KITTI dataset, which
shows outdoor scenes and thus has the largest domain gap to
the training data. In addition, the variant that only estimates
aleatoric uncertainty seems to be especially sensitive regarding
these differences in the data processed. This effect can be ex-
plained by the fact that such a domain gap is mainly reflected
by the uncertainty embedded in the model, because the defini-
tion of domain gap implies that the statistical properties of the
data used to train the parameters of a model differs from the
properties of the data used to test this model. Consequently, as
the uncertainty that is embedded in the model is neglected, the
variant considering aleatoric uncertainty only is less suitable to
estimate uncertainty that arises from a domain gap in the data.

These observations are also supported by the sparsification plots
shown in Figure 2. In these plots, the mean absolute error is
shown with respect to the percentage of disparity estimates con-
sidered, which is reduced discarding pixels having assigned the
largest uncertainty estimates first. While all three variants lead
to similar curves for the InStereo2K dataset, significant differ-
ences can be seen for the Middlebury and the KITTI dataset.
For these two datasets, the exclusive consideration of aleatoric
uncertainty is not sufficient to infer the disparity error from the
uncertainty, leading to a clearly higher MAE for the same dens-
ity compared to the two other variants. This behaviour is also
illustrated by the qualitative examples shown in Figures 3 and
4. For the example from the InStereo2K dataset, the uncertainty
estimates of all three variants allow to identify the majority of
erroneous disparity estimates, most of them being part of an
artefact located at the left side of the image which is caused by
the complete absence of texture in this region. With respect to
the example from the KITTI dataset, however, only the vari-
ants that consider epistemic uncertainty are capable of predict-
ing uncertainty estimates that show a strong relation to the ac-
tual disparity error. In contrast, the uncertainty map obtained
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Pixel Error Rate [%] MAE
[px]

RMSE
[px]

Standard deviation [px]
r∆d,στ = 1 τ = 3 τ = 5 alea. epis. comb.

InStereo2K
deterministic 17.9 8.9 7.1 3.7 8.0 - - - -
deterministic + CVA-Net 18.1 9.0 7.3 2.9 6.8 1.3 - 1.3 0.57
probabilistic 19.1 10.4 7.8 2.5 5.7 - 2.4 2.4 0.69
probabilistic + CVA-Net 18.3 9.7 7.5 2.5 6.2 1.2 2.1 2.8 0.70

Middlebury
deterministic 32.4 20.0 16.0 4.5 10.9 - - - -
deterministic + CVA-Net 35.7 23.4 19.2 5.7 12.8 2.7 - 2.7 0.33
probabilistic 33.9 20.4 16.2 4.4 11.0 - 3.0 3.0 0.65
probabilistic + CVA-Net 35.8 23.7 19.4 5.6 12.1 1.8 2.8 4.0 0.70

KITTI
deterministic 35.8 7.5 4.0 1.5 4.2 - - - -
deterministic + CVA-Net 37.9 9.7 6.0 2.0 5.9 3.5 - 3.5 0.29
probabilistic 34.3 8.8 5.2 1.7 5.4 - 5.4 5.4 0.62
probabilistic + CVA-Net 36.2 9.7 6.1 2.0 6.1 2.2 5.3 6.7 0.66

Table 1. Quantitative comparison of different variants of the method proposed. The listed variants are analysed with respect to the
disparity error metrics described in Section 4.3, the average of the estimated uncertainties, whereas the combined standard deviation
is computed based on Equation 13, and the Pearson correlation coefficient of the absolute disparity error and the combined estimated
standard deviation. A hyphen indicates that a certain type of uncertainty is not estimated using the respective model.

(a) InStereo2K (b) Middlebury (c) KITTI

Figure 2. Sparsification plots with respect to the different types of uncertainties estimated. The figures show the mean absolute
disparity error considering all test images of the respective dataset on the y-axis and the percentage of considered disparity estimates
on the x-axis. The percentage is reduced discarding pixels that have assigned the highest uncertainties first. The depicted curves
correspond to the aleatoric, epistemic and combined uncertainty predicted with the variants deterministic + CVA-Net, probabilistic and
probabilistic + CVA-Net, respectively.

with the variant that considers aleatoric uncertainty only con-
tains higher uncertainties for more distant points in the scene,
but does not provide particularly large uncertainty estimates for
pixels with a large disparity error.

Analysing the mean standard deviations listed in Table 1, it can
be seen that the estimated aleatoric and epistemic uncertainty is
always larger if only one type of uncertainty is considered in the
estimation. This indicates that while aleatoric and epistemic un-
certainty can be clearly separated in theory, to some extent both
approaches are able to also account for uncertainty from sources
assigned to the respective other type of uncertainty. However,
the standard deviation of their combination is always larger than
the individual uncertainties, implying that both types of uncer-
tainty contribute to an accurate quantification and that a model
that takes into account only aleatoric or only epistemic uncer-
tainty is not capable to reflect the error distribution to be ex-
pected properly. As discussed before, this observation is also
supported by the respective correlation coefficients.

The results corresponding to the disparity error reveal that intro-
ducing CVA-Net as additional network branch used to estimate
aleatoric uncertainty does not only allow to assess the aleatoric
uncertainty, but also influences the disparity estimation itself.
While for the deterministic variant of GC-Net this influence can
mainly be seen on the improved MAE and RMSE values for the

InStereo2K dataset, the combination with CVA-Net has a pos-
itive effect on the pixel error rates for the probabilistic variant
of GC-Net (cf. Tab. 1). While such an improvement can only be
seen on the InStereo2K dataset that was used for fine-tuning the
network parameters, the disparity error is slightly increased for
the Middlebury and the KITTI dataset. This indicates that the
combination of GC-Net and CVA-Net leads to an over-fitting to
the characteristics of the training data, which has a negative im-
pact on the transferability of a trained model to other datasets.
Therefore, the results show that the joint estimation of disparity
and aleatoric uncertainty has no negative impact on the disparity
estimation capability if the training and the test data is similar,
which demonstrates that this limitation stated in the literature
can partly be overcome by the method proposed in this work.
However, the observed over-fitting effect and thus the negative
impact on the disparity estimates in the presence of a domain
gap requires further investigations in future work.

Overall, the experimental results analysed in this section
demonstrate the importance of estimating both aleatoric and
epistemic uncertainty, in order to achieve an accurate and reli-
able estimation of the actual uncertainty associated to a depth
estimate obtained via dense stereo matching. In practical terms,
the large advantage of uncertainty estimation can be seen in the
sparsification plots: Discarding only the 10% of pixels having
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(a) Reference image (b) Reference disparity (c) Region mask

(d) EAleatoric (e) EEpistemic (f) ECombined

(g) UAleatoric (h) UEpistemic (i) UCombined

Figure 3. Qualitative comparison of different variants of the
method proposed on an example of the InStereo2K dataset.
The figure shows the absolute disparity error maps E in compar-
ison to the associated uncertainty maps U of the three variants
that estimate aleatoric, epistemic and both kinds of uncertainty
together, respectively. In both the error and the uncertainty maps,
small values are shown in white, large ones in dark red / black.
Note that the values of the three uncertainty maps are scaled to
the same interval to allow for an easier comparison. The refer-
ence disparity map shows large disparities in orange to red and
small ones in turquoise to dark blue. The region mask highlights
regions that are especially challenging in the context of dense ste-
reo matching, showing weakly textured areas in beige, occluded
areas in red and pixels close to depth discontinuities in orange.

assigned the highest uncertainty, the mean absolute disparity
error can be reduced by more than 50%, which is true for all
datasets evaluated. This demonstrates that the approach for
jointly estimating aleatoric and epistemic uncertainty presented
in this work is capable of identifying the majority of erroneous
disparity estimates and to assign an uncertainty with a mag-
nitude that is related to the actual error magnitude as implied
by the relatively high correlation coefficients achieved.

6. CONCLUSIONS

Addressing the task of uncertainty estimation in the context of
dense stereo matching, a holistic approach is presented in this
work that allows depth to be jointly estimated along with its
associated uncertainty based on a stereo image pair. For this
purpose, a BNN is proposed that is trained via Variational In-
ference, using a loss formulation that jointly optimises for the
likelihood of a mixture distribution to estimate aleatoric uncer-
tainty and for the similarity of the specified variational distri-
bution and the exact posterior for the estimation of epistemic
uncertainty. The experimental results underline the importance
of estimating epistemic uncertainty: While the exclusive con-
sideration of aleatoric uncertainty is sufficient to detect erro-

neous disparity estimates in the absence of a domain gap, it
does not allow to capture the model uncertainty which typically
dominates the uncertainty arising from the data given a strong
difference in the characteristics of training and test data. Over-
all, the joint estimation of both, aleatoric and epistemic uncer-
tainty, has demonstrated the best results and is thus the means of
choice. The concepts for estimating aleatoric and epistemic un-
certainty presented in this work, although only evaluated on the
GC-Net architecture, can in principle be applied to any CNN
architecture designed for dense stereo matching, requiring only
the presence of some kind of cost volume. The practical applic-
ability of both concepts in combination with more recent neural
network architectures will be investigated in future work.

Besides the good results achieved, especially the analysis of the
correlation between the disparity error and the estimated uncer-
tainty reveals space for improvements. To keep the complexity
of the assumed variational distribution low, a naive mean-field
approximation with a Gaussian prior and a diagonal variance-
covariance matrix is used as stochastic model for the proposed
BNN in this work. Both are strong assumptions that potentially
limit the quality of the estimated uncertainty. Consequently,
further investigations on both, the definition of the prior and the
consideration of correlations, for example, extending the mean-
field approximation to a general formulation, are exciting dir-
ections for future research that promise further improvements.
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