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ABSTRACT:

Virtual laser scanning (VLS) allows the generation of realistic point cloud data at a fraction of the costs required for real acquisitions.
It also allows carrying out experiments that would not be feasible or even impossible in the real world, e.g., due to time constraints
or when hardware does not exist. A critical part of a simulation is an adequate substitution of reality. In the case of VLS, this
concerns the scanner, the laser-object interaction, and the scene. In this contribution, we present a method to recreate a realistic
dynamic scene, where the surface changes over time. We first apply change detection and quantification on a real dataset of an
erosion-affected high-mountain slope in Tyrol, Austria, acquired with permanent terrestrial laser scanning (TLS). Then, we model
and extract the time series of a single change form, and transfer it to a virtual model scene. The benefit of such a transfer is that no
physical modelling of the change processes is required. In our example, we use a Kalman filter with subsequent clustering to extract
a set of erosion rills from a time series of high-resolution TLS data. The change magnitudes quantified at the locations of these rills
are then transferred to a triangular mesh, representing the virtual scene. Subsequently, we apply VLS to investigate the detectability
of such erosion rills from airborne laser scanning at multiple subsequent points in time. This enables us to test if, e.g., a certain
flying altitude is appropriate in a disaster response setting for the detection of areas exposed to immediate danger. To ensure a
successful transfer, the spatial resolution and the accuracy of the input dataset are much higher than the accuracy and resolution that
are being simulated. Furthermore, the investigated change form is detected as significant in the input data. We, therefore, conclude
the model of the dynamic scene derived from real TLS data to be an appropriate substitution for reality.

1. INTRODUCTION

Virtual laser scanning (VLS), or the simulation of laser scan-
ning surveys, is a method to acquire point clouds instead of us-
ing real data. Compelling advantages of VLS include the pos-
sibility to simulate vast amounts of data at a very low cost, the
generation of training data for machine learning with perfectly-
known reference labels, or the simulation of hardware that does
not yet exist (Winiwarter et al., 2021). VLS may also be used
for survey planning (Hämmerle et al., 2017) or validation of
signal analysis methods (Richter and Maas, 2022).

A prerequisite for the simulation of realistic point clouds is
the existence of an appropriate 3D model of the scene to be
scanned. If the target is VLS of the Earth’s topography, such a
model can be created from scratch in 3D modelling software,
by simulation of physical processes (e.g., drip erosion, debris
flow, or landslides), or by transfer from existing datasets, usu-
ally recorded at a higher quality than what is aimed for in the
simulation. For example, the simulation of a UAV-based sur-
vey can employ a model derived from terrestrial laser scanning
(TLS) data (Weiser et al., 2021).

For the simulation of surface change, physical models are of-
ten employed (Chang et al., 2015). These models build on
the knowledge of the subsurface dynamics, e.g. deep-seated
landslides. These models are difficult to employ, if underlying
causes for the surface change are not known sufficiently well
∗ Corresponding author

or no such models are available, or if multiple geomorphic pro-
cesses act on the same position resulting in a signal superim-
position at the surface.

We aim to transfer a change form detected in a real 4D point
cloud dataset (three spatial and one temporal dimension) and
apply its morphometric properties and their temporal changes
to a different surface, represented by a mesh model. This mesh
model can subsequently be scanned using VLS, and the res-
ulting point cloud can be analysed for the detectability of the
modelled change with the simulated acquisition.

The use case presented here transfers an erosion form from a
TLS dataset to a virtual scene representing a high-mountain set-
ting and then investigates whether the surface changes can be
detected in data acquired with airborne laser scanning (ALS).
In a disaster response situation, such a scenario can be ima-
gined when it is necessary to quickly assess slope stabilities of
large affected areas, e.g., after heavy rainfall, where immediate
danger of debris flow is present. A lower flight altitude with
lower flight speeds results in a more detailed sampling of the
surface, as the spatial resolution is increased. However, with
higher altitudes, more area can be covered per time unit. It is
therefore desirable to find an optimal altitude, where change
can be reasonably well detected, yet as much area as possible
can be covered. Additionally, this altitude varies depending on
the magnitude of the observed change, which is assumed to
increase over time. Stakeholders need information on (a) the
point in time when a change form becomes identifiable for (b)
different choices of flight altitudes. We, therefore, develop an
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approach to apply VLS to a multitemporal dataset.

The objective of this paper is to generate virtual dynamic
scenes, adding to the established methods of transferring phe-
nomena from existing datasets to virtual scenes by creating
mesh models from processed TLS point cloud time series. We
focus on terrain surface changes induced by mass movements,
i.e., ignoring effects from vegetation such as trees or tall grass.

Section 2 presents the 4D point cloud dataset used in this study.
Subsequently, the methods of processing this 4D dataset by spa-
tial and temporal smoothing, clustering, extraction of a single
change form, transfer to a virtual scene, and simulation of laser
scanning are explained (Section 3). We present (Section 4) and
discuss (Section 5) the results and draw conclusions for real use
cases (Section 6).

2. DATASET

The 4D point cloud dataset used to extract the change form is
a near-continuous TLS time series, acquired over one week in
Vals, Tyrol, Austria, in August 2020. The time series is part
of a larger investigation over multiple months (Schröder and
Nowacki, 2021). The scene was monitored after a rockfall
event, which caused a large debris cone at the foot of the slope.
The time-series features surface activity due to subsequent an-
thropogenic works as well as erosional mass movement patterns
of rill erosion.

The time series was acquired between 2020-08-20 00:00
and 2020-08-25 20:00 (CEST, formatted YYYY-MM-DD
HH:MM), every two hours, resulting in 71 epochs. We aligned
all subsequent epochs to the first epoch (“null epoch”) by an
ICP algorithm (Besl and McKay, 1992) operating on manually
delineated stable parts outside of the observed slope. We use
the OPALS software (Pfeifer et al., 2014, v 2.3.2) for this ICP
alignment. After the alignment, vegetation points and outliers
were removed from the dataset by applying a statistical outlier
filter (k=8, multiplier=10.0; Rusu et al., 2008) and an SMRF
filter (cell size=0.5 m, slope=2; Pingel et al., 2013), as well as
a filter on the waveform deviation (≤50), all implemented in
PDAL (PDAL Contributors, 2018).

We obtain epoch-wise changes and associated uncertainties us-
ing the multiscale model-to-model cloud comparison (Lague
et al., 2013) combined with error propagation (M3C2-EP) as
presented by Winiwarter et al. (2021) for a subset of the points
of the null epoch, so-called “core points”. The subset was cre-
ated by resampling from the point cloud to obtain a homogen-
ous point density of about 0.8 points/m2. For each core point,
a normal vector was estimated from a neighbourhood defined
by a 5 m radius, and the M3C2 search cylinder had a radius of
0.5 m and a maximum length of 3 m.

The result of this preprocessing is a point cloud containing the
core points, each attributed with change values and uncertain-
ties for every bitemporal comparison (i.e., 2× 70 = 140 attrib-
utes). The core point cloud, coloured by bitemporal changes
between the first and the last epoch is displayed in Figure 1.

3. METHODS

The method and the workflow of the study are presented in the
following subsections and are visualized in Figure 2. Accord-
ingly, we

Figure 1. Overview of the TLS dataset of Vals. The
rockfall-affected area is in the centre of the dataset, from which

we extract erosion rills (marked by the dashed polygon) for
transfer to a virtual dataset. The large magnitude changes at the
bottom of the slope are caused by excavator works transporting

loose sediment.

1. perform change analysis using Kalman filtering, where the
bitemporal point cloud differences are transformed to 4D
change information,

2. create clusters for the individual change patterns in the
scene,

3. extract a single cluster’s dynamic properties, i.e., the dis-
placement values over time,

4. generate a virtual scene to act as a host for the transferred
change form,

5. transfer change information to the host scene,

6. acquire data using virtual laser scanning (VLS),

7. apply bitemporal change analysis on the simulated time
series, and

8. analyse the results.

Figure 2. Overview of the processing and analysis steps
presented in this contribution.

3.1 Change analysis using Kalman filtering

To extract the erosion form from the dataset, we follow the
method presented by Winiwarter et al. (2022a). We first ap-
ply Kalman filtering (Kalman, 1960) with Rauch-Tung-Striebel
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(RTS) smoothing (Rauch et al., 1965) to the time series of
change values at each core point location. The method is based
on a mathematical description of the surface change system.
In the employed implementation, a constant acceleration, non-
constant velocity and change values are used as the state of the
system. The Kalman filter and the RTS smoother use the ob-
servations, in our case the epoch-wise bitemporal change quan-
tification, in combination with the system description and as-
sumptions on how much the - otherwise fixed - acceleration can
change over time, to arrive at smoothed estimates for change
value, velocity and acceleration. In addition to smoothing, it
allows interpolation over data gaps and further provides uncer-
tainty measures for the derived values.

As the state vector is transitioned from one point in time to the
next, the effects of the estimated acceleration are applied to the
velocity value, and from there to the change value. Measure-
ments are then used to update these estimates, taking their in-
dividual uncertainties into account. In this way, the Kalman
filter finds the best estimates for the state given all preceding
measurements. The RTS smoother is subsequently applied in
reverse order, starting with the most recent measurement. This
enables the reduction of uncertainty and incorporation of all of
the available data into the final estimates (cf. Figure 3). The
thereby obtained uncertainty increases on the last day of the
observation period since no future measurements are available
to be included in the estimation. We, therefore, disregard the
data of the last day in the following analyses.

3.2 Clustering and extraction of change characteristics

We use the smoothed time series of change values in a sub-
sequent clustering method based on Kuschnerus et al. (2021).
Therein, kMeans clustering is applied to find core points where
the change histories over time are similar and then group these
core points. From the clustering result, we can identify the
erosion form and extract the time series for the affected core
points.

The clustering allows for identifying local change occurrences,
which can then be segmented from the dataset as individual
change forms. In our case, we manually identify three erosion
rills (shown by the dashed polygon in Figure 1), which we trans-
fer to a virtual target scene (Section 3.3). The Kalman smoother
estimates of change values for the core points within this area
are selected and used for the virtual scene generation.

3.3 Virtual scene generation

To approach the transfer of a selected and extracted change
form to a different geographic setting, we generate a virtual
scene of a V-shaped valley of which we scan one side, repres-
enting a typical high-mountain slope. We model this slope as
a plane, acting as a canvas for us to transfer the change object
onto. The change form is then transferred as follows: An eigen-
value decomposition is applied on the covariance matrix of the
point cloud subset with extracted changes. Using the obtained
eigenvectors, a principal axis transformation is carried out. The
point cloud is then meshed using Delaunay triangulation in the
two major dimensions. The minor dimension (normal to the
best-fitting plane of the dataset) is disregarded, and replaced by
the target terrain. In our application, the target terrain is flat,
therefore all values in this dimension are initially set to zero.

For each epoch to be transferred, the results of the Kalman
smoother are evaluated. As noise has been largely eliminated

from these time series, the estimates for displacement are ap-
plied directly to the third dimension of the flattened dataset. In
the case of a more complex target terrain, they could be added
in the direction of the target normal vectors, as shown in Equa-
tion 1, where x1, x2, x3 are the three coordinate components of
the target mesh nodes, the index o represents the origin data set
coordinates, n is the target normal vector in its three compon-
ents and d is the displacement value obtained from the Kalman
smoother.

x1 = x1,o + nx,1 · d
x2 = x2,o + nx,2 · d
x3 = x3,o + nx,3 · d

(1)

In case that the displacement in the first two dimensions is
not zero, the triangulation should be carried out after adding
the displacement and for each epoch separately, to avoid self-
intersections or overlapping triangles.

For the last step in the scene generation, the mesh with its dis-
placed nodes is mapped back to the terrain, in our case it is
rotated to form the flank of the V-shaped valley.

3.4 Point cloud acquisition using VLS

We perform VLS using the open-source software HELIOS++.
It allows the simulation of laser scanning acquisitions from
different platforms, including static terrestrial and airborne
sensors. A key feature is also the modelling of diverging laser
beams in a sub-ray approach, where multiple sub-rays are em-
ployed to create a single return waveform (Winiwarter et al.,
2022b).

In our use case of a heavy rain event causing erosion on steep
slopes in a larger area, we are interested in deriving answers to
two main questions: With a given laser scanning system, how
high can we fly to still reliably identify the change form as sig-
nificant, and at what point in time (e.g., days after the rain event)
can this identification be carried out. For this, we perform mul-
tiple simulations with different flying altitudes over the virtual
scenes generated for each epoch, resulting in a time series of
3D point clouds for each acquisition strategy.

As a sample sensor, we use a RIEGL VQ-780i. The sensor prop-
erties are taken from the sensor datasheet1 and used as input to
HELIOS++ (Table 1).

Parameter
Deflector type Rotating polygon
Max. scan angle ± 30 deg
Pulse repetition rate (PRR) 350-1000 kHz
Scan rate 20-300 lps
Beam divergence 0.25 mrad
Ranging accuracy 0.05 m
Altitude (above ground) 500-4000 m
Platform speed 45-75 m/s

Table 1. Sensor properties and platform settings used in the VLS
simulation. The settings closely resemble a RIEGL VQ-780i,

and the platform speeds are limits for typical fixed-wing aircraft,
e.g., the Diamond DA42.

1 http://www.riegl.com/uploads/tx_pxpriegldownloads/
RIEGL_VQ-780i_Datasheet_2019-09-02.pdf (last accessed
2022-01-10)
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Figure 3. Example time series of an erosion form. The location corresponds to the rill marked ’III’ in Figure 10. The Kalman
smoother result averages out daily patterns, yet still closely corresponds to the change form. At the end of the acquisition period, the

uncertainty in the Kalman smoother (here represented by the Level of Detection at 95% significance) increases, as no future
measurements are available.

Alt. Speed PRR Scan rate Pdens. Prod.
[m] [m/s] [kHz] [lps] [pts/m2] [km2/h]
500 45 1000 227 25.7 94
750 60 1000 215 12.8 187

1000 70 1000 201 8.3 291
1500 75 1000 169 5.1 468
2000 75 1000 147 3.9 624
2500 75 1000 131 3.1 779
3000 75 700 100 1.8 935
3500 75 500 79 1.1 1091
4000 75 350 62 0.7 1247

Table 2. Scan rates to produce a uniform point pattern for
different settings of altitude above ground level (Alt.), flight

speed and pulse repetition rate (PRR). Furthermore, resulting
point densities (Pdens.) and laser scanning productivity (Prod.)
assuming horizontal terrain and no overlap between adjacent

flight strips were calculated for the different settings used in the
VLS experiment.

Given the pulse repetition rate (PRR), flight speed, and altitude
above ground, the scan rate can be adapted to ensure a uni-
form point spacing in along- and across-track directions on the
ground. The scan rate characterizes the number of scan lines per
second and is equal to the rotation speed of the polygonal mirror
multiplied by the number of mirror facets. Using RIEGL’s Ri-
PARAMETER2 software, we derived scan rates, resulting point
densities (at nadir position, assuming horizontal ground) as well
as the productivity (area covered per time unit, not consider-
ing strip overlap) for different combinations of flight altitude,
flight speed and PRR. The PRR was adapted to fit the max-
imum measurement distance according to the datasheet, the
flight speed was set to be a minimum for a typical fixed-wing
aircraft at the lowest altitude, increasing up to an altitude of
1500 m, and then remaining constant at 75 m/s (145 knots, 270
km/h) as typical cruising speed for such an aircraft. The res-
ulting acquisition settings used in the simulations are shown in
Table 2.

2 Version 2.4.2.7a024f68, http://www.riegl.com/products/
software-packages/riparameter/, (last accessed 2022-01-10)

3.5 Analysis of the simulated point cloud

The simulated point clouds resulting from each parameter set
are analyzed for changes using M3C2 distances to quantify
erosion. The first epoch is taken as a reference epoch for the
respective analysis of each successive epoch. We apply a sens-
itivity study to find a set of M3C2 parameters that works best
for all investigated flying altitudes, resulting in a 3 m radius for
normal vector calculation and 0.5 m radius for the M3C2 cyl-
inder projection. From the distance values obtained for points
outside of the change form, which are representing stable sur-
faces, we can derive the registration error, which we quantify to
be 0.01 m.

We select the mesh nodes as core points, as they correspond to
the core points employed in the Kalman smoother. Therefore,
we can directly compare the attribution of significant change
from the bitemporal ALS point cloud differences to the changes
obtained from multitemporal Kalman filtering. As the latter acts
as a model for the simulation, it serves as a reference in our
evaluation.

For each parameter set identified by its altitude, we extract (a)
the point in time where the change form becomes visible in the
change quantification, (b) the point in time when significant
change shows the erosion rills, and (c) measures of precision
(number of true positives divided by number of positives in the
estimation), recall (number of true positives divided by number
of positives in the reference), and F1-score (harmonic mean of
precision and recall) to investigate the detection rates of loca-
tions where change was found to be significant.

4. RESULTS

We model the surface displacement for three erosion rills ex-
tracted from the Vals dataset. The rills show negative displace-
ment values at the top, where sediment is transported by grav-
itational mass movement, and positive values towards the bot-
tom, where the material is deposited. A sample time series for
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one of the locations experiencing erosion is visualised in Fig-
ure 3. Individual M3C2 distances are shown (red crosses) along
with the Kalman smoother estimate (green line) and its respect-
ive uncertainty (green shaded area, converted to a 95% signi-
ficance level) stemming from the original TLS measurements.
The uncertainty of the bitemporal comparison is additionally
indicated (red dots).

After extracting the cluster, the core points are mapped onto a
planar triangle mesh. As an example, the mesh with applied
displacement values after five days (at the end of the simulated
timespan) is presented in Figure 4. The displacement values
in the visualisation are multiplied by a factor of 20 so that the
erosion rills and the deposition areas can be identified.

Figure 4. Mesh which is used as a scene model in the
simulation, with displacement predicted from the Kalman

smoother after five days. Displacement values are multiplied by
a factor of 20 for this visualisation.

The different flight altitudes result in different point patterns on
the ground. The scan rate is adapted for each flying altitude to
achieve even point densities in along-strip and across-strip dir-
ections according to the parameter settings in Table 2. For each
flight altitude, M3C2 distances are calculated for each epoch,
using the first epoch as a reference. As we select the original
core point locations for M3C2 distance calculation, they are the
same for each altitude.

Figure 5(a) shows the quantified M3C2 distances for an alti-
tude of 500 m and the surface topography after five days. In
Figure 5(b), the core points with significant change are visual-
ized in red. For this altitude and at this point in time, the pattern
of the change form is clearly identifiable. In contrast, Figure 6
depicts the same results for an altitude of 3000 m. The form is
not identifiable in the M3C2 differences, as it is superimposed
by noise. In the significance plot (Figure 6b), it cannot be iden-
tified.

Repeating this analysis for all altitudes and intervals of 6 h al-
lows for identifying an optimal acquisition altitude. The preci-
sion, recall, and F1-score of the core points for which change
was detected are visualized in Figures 7-9. The plots show the
simulated time series per acquisition setting, i.e. for different
altitudes. The main change event of erosion which occurs after
66 h is marked by the first vertical line, For this point in time,

Figure 5. M3C2 point cloud result for 500 m flight altitude after
5 days. a) M3C2 point cloud distances, b) significant change.

Figure 6. M3C2 point cloud result for 3000 m flight altitude after
5 days. a) M3C2 point cloud distances, b) significant change.

the values of precision, recall, and F1-score are summarized in
Table 3. While the recall and F1 scores are highest for the low-
est flight altitude, the precision value is highest for an altitude
of 1000 m at this point in time.

Finally, we map the core points by the altitude where they are
first detected, starting from the highest altitude (Figure 10). The
key idea behind this is that an operator may decide which fea-
tures need to be detectable, for example, based on the real data
that was used in the scene generation. By identifying the colour
in which these features are visible, the required survey altitude
can be selected. In Figure 10, this information is shown for
two different points in time, namely 2020-08-23 00:00 (after
the main change event) and 2020-08-25 00:00 (at the end of
the time series). The outer two rills (I and III) appear in or-
ange and brown colours at the end of the observation period
(Figure 10b) and are therefore detectable from altitudes below
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Flight altitude [m] Prec. [%] Recall [%] F1 []
500 53.67 86.38 0.662
750 55.91 76.34 0.645

1000 60.87 70.25 0.652
1500 44.77 55.20 0.494
2000 35.53 54.12 0.429
2500 22.46 37.99 0.282
3000 19.11 10.75 0.138
3500 N/A 0.00 0.000
4000 N/A 0.00 0.000

Table 3. Precision, recall, and F1-score of identified significant
change for different flight altitudes, 66 h into the time series

(2020-08-23 00:00, just after the main change event).

Figure 7. Precision over time for each flight altitude. Altitudes
of 500 m, 750 m and 1000 m are presented as dash-dotted,

dotted, and dashed, respectively, to aid visual separation. The
precision for 4000 m is undefined (0/0) throughout the time

series. The colours correspond to the colour bar and the two grey
lines correspond to the two epochs shown in Figure 10.

2500 m, whereas the middle rill (II) only starts to exhibit an
identifiable linear shape when including the simulation at 1000
or even 500 m altitude. For the earlier point in time, the outer
rills become visible at 2000 m, and the middle one is barely
visible even when acquired at 500 m altitude.

5. DISCUSSION

The time series in Figures 7-9 show how the values of precision,
recall, and F1-score of surface change detection using VLS data
develop over time for each altitude. As expected, all three met-
rics improve (i.e., achieve higher values) for lower altitudes,
corresponding to better detectability. However, the lowest alti-
tude corresponds to the lowest productivity, that is, the area that
can be covered within the time of a single survey flight. There-
fore, a small reduction in the scores, e.g., by using 1000 m in-
stead of 500 m altitude, may be an appropriate practical con-
sideration. This still allows for a similar detection performance
(the difference in F1-score is less than 0.05), but a three-fold
increase in productivity (cf. Table 2).

A drop in performance between 2020-08-21 and 2020-08-22
can be seen especially for lower altitudes (Figure 9). Our in-
vestigation shows that this is mainly due to a decrease in the
precision of change detection at this time (Fig. 7). The precision
is given as the ratio of the number of correctly detected change

Figure 8. Recall over time for each flight altitude. Altitudes of
500 m, 750 m and 1000 m are presented as dash-dotted, dotted,
and dashed, respectively, to aid visual separation. The recall for

4000 m is zero throughout the time series. The colours
correspond to the colour bar and the two grey lines correspond

to the two epochs shown in Figure 10.

and the total number of points that were identified as changes.
In our case, the number of points where the change (in the refer-
ence) is significant at that point in time is quite small - no more
than 60 to 70 points until the major change event occurs on the
evening of 2020-08-22. A small number of false positives (i.e.,
points detected as ’change’ where no change was recorded in
the reference) therefore leads to a seemingly large decrease in
the performance. Similarly, the recall value drops due to a num-
ber of false negatives, which result from the generally increased
Level of Detection for the bitemporal comparison, in contrast
to the Kalman smoother result. After 2020-08-23, the evalu-
ation becomes more stable as the number of points attributed to
change increases.

Our results confirm the hypothesis that small-magnitude change
can only be detected from relatively low altitudes. This has also
been reported in the literature for real data, e.g., by Yurtseven
(2019), who found that the altitude of an image-based stereo-
photogrammetric UAV survey has a large influence on errors in
the acquired data. The vertical error scales with the altitude in
photogrammetric surveys, however, this is not directly applic-
able for our use case of laser scanning. Here, the effect of the
increased beam footprint, especially for flat incidence angles
(cf. Fey and Wichmann, 2017), and the decreased point density
play a major role. Julge et al. (2014) investigated a multitem-
poral ALS and TLS dataset and found that they were unable
to identify a certain scarp in a single ALS dataset that was ac-
quired at a higher altitude than previous acquisitions. In a dif-
ferent application, Morsdorf et al. (2008) showed that estimates
of tree height, fractional canopy cover and leaf area index can
be derived more accurately from lower flight altitudes. Also
for these cases, simulation could provide a suitable estimate of
the data quality that can be achieved, assuming an appropriate
scene model representing the vegetation can be found.

In our application, the creation of dynamic scenes was allowed
by employing the full TLS time series. To answer the question
of the optimal flight altitude, the point in time - and with that,
the magnitude of change - has to be considered for data acquisi-
tion. For example, for detection on 2020-08-24, the altitudes of
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Figure 9. F1-score over time for each flight altitude. Altitudes of
500 m, 750 m and 1000 m are presented as dash-dotted, dotted,
and dashed, respectively, to aid visual separation. The F1-score

for 4000 m is zero throughout the time series. The colours
correspond to the colour bar and the two grey lines correspond

to the two epochs shown in Figure 10.

500 m, 750 m, and 1000 m perform similarly well and a choice
of 1000 m would be adequate to maximise coverage. How-
ever, when change is to be detected between 2020-08-21 and
2020-08-22, a flight at 1000 m only achieves an F1-score of
≈0.45, while a maximum of ≈0.62 can be achieved for flights
at 500 m and 750 m, respectively. At this point in time, a choice
of 750 m flight altitude would be appropriate. Additionally, the
time series allowed us to reduce noise in the input data, which
would otherwise have led to a larger Level of Detection for the
reference data.

6. CONCLUSIONS

Laser scanning simulations allow to quickly assess acquisition
plans for their fitness for purpose. In the presented example of a
topographic time series, stakeholders may select change forms
in a high-resolution dataset, e.g., obtained from terrestrial laser
scanning, and transfer them to a different area of interest. Using
a real dataset as a template has compelling advantages: a more
detailed physical description of the underlying geomorphic pro-
cess or the surface effects of the originally observed change
is not required. However, measurement and alignment errors
limit the usability of single high-resolution datasets. By apply-
ing spatial and temporal smoothing using M3C2-EP and a Kal-
man filter, we obtain change data with minimised noise levels.
From these data, singular snapshots can easily be extracted and
used in simulations of change detection using other acquisition
strategies in other geographic settings.

In contrast to a pure estimation of point density for different
flying altitudes, our approach enables accurate representations
of the change forms and magnitudes that are interpretable for
each scenario. Furthermore, the laser scanning simulation al-
lows considering occlusion effects unique to each platform and
each change form. These occlusion effects can further change
over time if the surface geometry is subject to change (e.g., Wil-
liams et al., 2021). The increased ranging error resulting from
larger footprints and oblique incidence angles is also represen-
ted in the simulated point cloud due to the sub-ray approach in
HELIOS++.

Figure 10. Points detected as significant for two epochs (a and
b), coloured by the maximum altitude where they were detected.

For example, green points were detected as significant change
for altitudes of 1500 m and below, but not for higher altitudes.

Note that this plot is turned counterclockwise by 90 degrees with
respect to the other plots in this paper to allow for a larger

display area.

Though an analysis of real data, e.g. UAV-based acquisitions,
would allow for an even better estimation of detectability at dif-
ferent altitudes, such data is typically not available as dense
time series. Reasons include the high cost and logistical as well
as legal constraints with permanent monitoring using airborne
sensors. Even if a dense time series is recorded, this is typically
done at a single altitude. In contrast, we simulated point clouds
acquired from 9 different altitudes.

The presented method may, e.g., be utilised in disaster response
settings, where a trade-off between data quality and spatial cov-
erage has to be considered in post-event acquisitions. For such
cases, our approach provides the required insights to quickly
make informed decisions, and avoid unnecessary costs for data
acquisitions at less suitable parameter settings. The use case of
the erosion and accumulation patterns showed that the choice
of flight altitude should not only be related to targeted spatial
resolution and production rate, but it rather also requires con-
sideration of the surface change magnitudes and change forms.

Finally, our approach can be extended to include other meth-
ods of 4D change analysis. We could then consider different
methods for deriving change in the selection of an optimal sur-
vey configuration. As such, the presented method can also be
used to compare the detectability of change phenomena across
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different methods, for different altitudes or other survey para-
meter settings.
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