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ABSTRACT:

Four degrees of freedom (4DoF) registration is a class of point cloud registration problems for finding a rigid transformation
to align two point clouds under the constraint that the rigid transformation is composed of a three-dimensional (3D) translation
and 1D rotation. This constraint is suitable to align scan pairs acquired using modern terrestrial Light Detection and Ranging
(LiDAR) scanners, the scans of which can share the direction of gravity as the Z-axis due to such scanners using tripods or internal
inclinometers. We propose a fast convergence method for global optimal 4DoF registration. The proposed method consists of (i)
our newly developed 4DoF registration model formulated as an optimization problem involving the cylindrical norm to measure the
distance between two points, and (ii) a fast convergence algorithm to find a global optimal solution of the model. We experimentally
demonstrated that the proposed method reduced the number of iterations to convergence and computation time compared with a
current 4DoF registration method, especially when the given scan pairs are similar but cannot be aligned, which often appears in
registration of multiple point clouds.

1. INTRODUCTION

Terrestrial LiDAR scanners to reproduce the real world in a 3D
digital space as-is has become widely used in many engineering
fields, such as building information modeling (BIM), construc-
tion information modeling (CIM), facility management, and the
equipment delivery planning. To reproduce a 3D model of an
entire target architecture, multiple scans acquired at different
scan points must be aligned because every scan captures only
a part of the architecture visible from a scan point. Therefore,
point cloud registration, which is a technique to align multiple
LiDAR scans, is necessary.

This paper focuses on pairwise registration methods for align-
ing two point clouds by applying a rigid transformation to one
side because many point cloud registration methods for multiple
point clouds has been developed on the basis of the execution
of pairwise registration (Theiler et al., 2015). When using pair-
wise registration as a sub-process of registration for multiple
scans, it is not guaranteed that the two input point clouds can
be aligned. Therefore, pairwise registration should be achieved
quickly even when input scan pairs cannot be aligned.

One of the most common pairwise registration methods is the
iterative closest point (ICP) method (Besl and McKay, 1992),
which achieves highly accurate registration. However, it finds a
locally optimal solution, which requires a good initial solution
to obtain a correct result. Methods for finding a good initial
solution to make such a method accurate are called coarse re-
gistration methods.

We propose a fast convergence method with the following three
main features:

• global optimality: The proposed method consists of a
4DoF registration model written as an optimization prob-
lem (see Problem 1) and its global optimization algorithm
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(see Algorithm 1). The global optimality guarantees that
the proposed method gives the best transformation to
achieve the highest objective value regardless of the ini-
tial pose of input point clouds.

• 4DoF registration: This concept was originally introduced
by Cai et al. into global optimal registration (Cai et al.,
2019). Since modern terrestrial LiDARs are equipped with
tripods or internal inclinometers, registration methods only
needs to search for 3D translation and 1D rotation, not
3D rotation. This concept enables global optimal regis-
tration within a practical computation time. Problem 1 is
our newly developed 4DoF registration model, which in-
volves the cylindrical norm (see Figure 1) instead of the
standard Euclidean norm.

• faster convergence: Compared with the current global
optimal 4DoF registration method (Cai et al., 2019),
called branch-and-bound algorithm with fast match prun-
ing (FMP+BnB), the proposed method converges faster.
As shown later, the proposed method enables faster con-
vergence, especially when input scan pairs cannot be
aligned.

The cylindrical norm is the key factor to achieve the faster con-
vergence property. By adapting the cylindrical norm, as shown
in Figure 3, two of the four parameters in 4DoF registration
can be simultaneously optimized via the computation geometry
problem which searches the most overlapped region of multiple
rectangles and can be solved in polynomial time. We demon-
strate the computation efficiency of the proposed method in ex-
periments.

1.1 Related work

Researchers have proposed various methods for coarse regis-
tration. However, with many of these methods, the possibil-
ity of successful registration depends on the random sample
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consensus (RANSAC) strategy (Chen et al., 1999) or appro-
priate parameter tunings for every input point cloud pair on the
basis of their overwrap ratio (Aiger et al., 2008). These fea-
tures are inconvenient for practical use, such as difficulty for
users to identify whether the success factors of registration is
in the LiDAR locations or algorithm settings. Certain studies
used specific structures in a point cloud, such as lines (Jaw and
Chuang, 2008) or ground planes (Li et al., 2021). However, de-
pendence on such structure are inconvenient due to their limited
applicability.

To avoid these inconveniences, certain coarse registration meth-
ods, e.g., (Yang et al., 2016), have been developed on the basis
of global optimization techniques, which can clearly describe
the results as an exact solution of a certain objective function
for evaluating the quality of rigid transformations. In the con-
text of global optimal registration, it has been challenging to
exactly solve optimization problems within a practical compu-
tation time.

To tackle this challenge, (Cai et al., 2019) introduced the
concept of 4DoF registration and proposed the global optimal
registration method, called FMP+BnB, which enables coarse
registration for large real-world point clouds within a practical
computation time. However, from our observations discussed in
Section 4.2, FMP+BnB often consumes a large amount of time,
especially when the input point clouds are similar but cannot be
aligned, which often appears when using pairwise registration
as a sub-process of registration for multiple point clouds.

1.2 Notation

Let R, R+, and R++ be the sets of real numbers, non-negative
real numbers, and positive real numbers, respectively. For α ∈
R, |α| ∈ R+ denotes the absolute value of α. For β ∈ R++, we
use the indicator function

ιβ : R+ → {0,1} : x 7→

{
1, (x ≤ β),

0, (otherwise).
(1)

Bold lowercase letters express vectors, and the superscript (·)>
denotes transpose. For a vector x := [x1, x2, · · · , xn]> ∈ Rn,
we use the Euclidean norm ‖x‖2 := (

∑n
i=1 |xi|

2)
1/2. For a

3D point p := [px, py, pz]
> ∈ R3, [p]xy := [px, py]> ∈ R2 and

[p]z := pz ∈ R represent for the horizontal and vertical com-
ponents, respectively. For a finite set S, |S| denotes the number
of elements of S.

2. CYLINDRICAL-NORM BASED 4DOF
REGISTRATION MODEL

For two given point clouds, i.e., the source point cloud P ⊂ R3

and target point cloudQ ⊂ R3, the goal with 4DoF registration
is to find a rigid transformation f : R3 → R3 which aligns P to
Q, under the constraint that f is formulated as

f(p;θ, t) := R(θ)p+ t, (2)

R(θ) :=

cosθ − sinθ 0
sinθ cosθ 0

0 0 1

 ∈ R3×3, (3)

with a rotation angle θ ∈ [0,2π) and translation vector t ∈ R3.

To achieve this goal, we first generate 3D keypoint matches
C := (pi,qi)i∈I between P and Q, where I is the finite in-
dex set. Note that using C for registration is common, and we

follow the standard procedure for generating such matches (see
Section 4 for the procedure used in our experiments).

In general, the C contain many false correspondences for reas-
ons such as the two given point clouds only partially overwrap.
Therefore, we designed our 4DoF registration model in a man-
ner similar to robust estimation techniques. Concretely, the
model is written as a problem to find an f in (2) which max-
imizes the number of correspondences in C closer than a certain
constant distance, called an inlier threshold. Problem 1 formu-
lates the model.

Problem 1 (Our 4DoF registration model). Let R(θ) ∈ R3×3

for θ ∈ [0,2π) be defined in (3). For given source point cloud
P ⊂ R3, target point cloud Q ⊂ R3, C := (pi,qi)i∈I between
P andQwith a finite index set I, and inlier threshold (ε1, ε2) ∈
R++×R++,

find (θ?, t?) ∈ arg max
(θ,t)∈[0,2π)×R3

E(θ, t;I), (4)

E(θ, t;I) :=
∑
i∈I

ι1
(
‖R(θ)pi + t− qi‖(ε1,ε2)

)
, (5)

where the norm ‖ · ‖(ε1,ε2) : R3 → R+ is defined as

‖v‖(ε1,ε2) := max

(
‖[v]xy‖2

ε1
,
|[v]z|
ε2

)
. (6)

We call the norm defined in (6) in Problem 1 cylindrical norm
because of the shape of its unit ball, i.e., the set {v ∈ R3 |
‖v‖(ε1,ε2) ≤ 1}. Figure 1 illustrates the unit ball of the cyl-
indrical norm in (6). The unit ball forms a cylinder with the
base radius of ε1 and height of 2ε2, centered at the origin and
having the Z-axis as its vertical axis.

Figure 1. Unit ball of cylindrical norm ‖ · ‖(ε1,ε2) in (6)

Note that our model in Problem 1 is different from the current
4DoF registration model used with FMP+BnB (Cai et al., 2019)
in terms of the norm to measure the distance between matched
keypoints. While the current model use the standard Euclidean
norm, our model uses the cylindrical norm.

To show the benefit of the cylindrical norm, we rewrite the ob-
jective function E in Problem 1 in accordance with the defini-
tion of the cylindrical norm in (6) as follows:

E(θ, t;I) =
∑
i∈I

Ixy(θ, t)Iz(t), (7)

Ixy(θ, t) := ιε1 (‖[R(θ)pi + t− qi]xy‖2) ∈ {0,1}, (8)
Iz(t) := ιε2 (|[pi + t− qi]z|) ∈ {0,1}. (9)

Intuitively, (7)–(9) indicate thatE in Problem 1 counts the num-
ber of correspondences in C that satisfies the following two con-
ditions:

(i) [Horizontal condition]: The horizontal distance between
R(θ)pi + t and qi is up to ε1.
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(ii) [Vertical condition]: The vertical distance between pi + t
and qi is up to ε2.

The vertical condition does not depend on the rotation angle θ
because the rotation matrix R(θ) in (3) has no effect on the Z-
coordinate of a point. The horizontal condition does not depend
on [t]z which is the translation along the Z-axis. In other words,
θ and [t]z affect different conditions. We emphasize that θ and
[t]z play an important role in achieving fast convergence with
the proposed method. As shown later in Section 3.3, θ and [t]z
can be efficiently optimized simultaneously for a fixed [t]xy.

In Section 3, we describe finding a global optimal solution
(θ?, t?) with our 4DoF registration model.

3. GLOBAL OPTIMIZATION ALGORITHM

Algorithm 1 shows the algorithm for finding a global optimal
solution to Problem 1. The algorithm consists of the following
two steps:

(i) [Pruning]: To lighten the burden of the subsequent optim-
ization step, this step reduces given I to a smaller subset
I′ under the constraint that I′ preserves the global optimal
solution (θ?, t?) of Problem 1. See Section 3.1 for details
of this pruning step.

(ii) [Optimization]: This step searches for a global optimal
solution (θ?, t?) of Problem 1 on I′ by using a custom
branch-and-bound (BnB) algorithm. See Sections 3.2–3.3
for details of this optimization step.

Algorithm 1 for Problem 1.
Prune I into a smaller subset I′ (Algorithm 2).
Find a solution (θ?, t?) of Problem 1 on I′ (Algorithm 3).
return (θ?, t?).

3.1 Prune indices

The pruning step is a preprocess to reduce I in Problem 1 to I′
such that a global optimal solution is preserved in I′, i.e.,

arg max
(θ,t)∈[0,2π)×R3

E(θ, t;I′) = arg max
(θ,t)∈[0,2π)×R3

E(θ, t;I). (10)

Proposition 1 states a sufficient condition for global optimal
solutions to be preserved when an index k ∈ I is removed from
I.

Proposition 1 (A sufficient condition for removable index). In
Problem 1, let k ∈ I and define (p

(k)
i ,q

(k)
i ) := (pi−pk,qi−

qk) for every i ∈ I. Suppose that there exists (θ0, t0) ∈
[0,2π)×R3 satisfying

Ēk < E(θ0, t0;I), (11)

where

Ēk := max
θ∈[0,2π)

∑
i∈Ik

ι2ε1

(
‖[R(θ)p

(k)
i − q

(k)
i ]xy‖2

)
, (12)

Ik :=
{
i ∈ I

∣∣∣ |[p(k)
i − q

(k)
i ]z| ≤ 2ε2

}
. (13)

Then the index k is removable, i.e.,

arg max
(θ,t)∈[0,2π)×R3

E(θ, t;I \ {k}) = arg max
(θ,t)∈[0,2π)×R3

E(θ, t;I).

(14)

Proof. See Appendix A.

In accordance with Proposition 2, we can find removable in-
dices in I and generate I′. The Ēk in (12) is calculated by
solving an optimization problem for θ, called the max-stabbing
problem (Cai et al., 2019), which can be solved in a computa-
tional complexity of O(|Ik| log |Ik|).

Algorithm 2 shows the process of the pruning step.

Algorithm 2 for the pruning step.
Set I′ ← I, E ← 0.
For k ∈ I do

Compute Ik in (13) on I′.
Compute Ek in (12) and obtain corresponding θ.
If Ek < E then I′ ← I′ \ {k}.
else

Set (θ0, t0)← (θ,R(θ)pk + qk).
Update E ← E(θ0, t0;I′).

Remove indices k ∈ I′ satisfying Ek < E.
return I′.

3.2 Overview of optimization step

In Sections 3.2–3.4, we describe the optimization algorithm to
solve Problem 1. This algorithm is directly applicable to the
optimization step by replacing I in Problem 1 with the pruned
I′ computed in Section 3.1.

To derive an optimization algorithm for Problem 1, we first re-
write the optimization problem in (4) as follows:

maximize
[t]xy∈R2

U([t]xy; ε1, ε2,I), (15)

U([t]xy; ε1, ε2,I) := max
(θ,[t]z)∈[0,2π)×R

E(θ, t;I). (16)

The purpose of the translation to (15)–(16) is as follows:
• As we see in Section 3.3, we can efficiently solve the inner

optimization problem in (16), i.e., the problem simultan-
eously optimizing θ and [t]z for a fixed [t]xy, by computa-
tion complexity of O(|I| log |I|).

• As we see in Section 3.4, we can find a global optimal
solution [t]z of the outer optimization problem in (15) by
using a custom BnB algorithm which searches for the solu-
tion on a 2D space.

Note that the optimization algorithm of the proposed method is
designed in a way similar to the algorithm of FMP+BnB (Cai
et al., 2019) which also solves their 4DoF registration model by
decomposing into an inner and outer optimization problems.
Table 1 shows a comparison between FMP+BnB’s algorithm
and our algorithm in terms of computational cost. The inner
optimization problem can be solved in O(|I| logI) with both
FMP+BnB’ and our algorithms. However, the BnB algorithm
for the outer optimization searches on only a 2D space at our
algorithm, while it searches on a 3D space at the algorithm
of FMP+BnB. This difference suggests that our algorithm can
converge faster than that of FMP+BnB.

Algorithm of OursFMP+BnB
Computational complexity O(|I| log |I|) O(|I| log |I|)of inner optimization
Search space of R3 R2

outer optimization

Table 1. Computation-cost comparison between algorithm of
FMP+BnB’s and our algorithm
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3.3 Evaluate U in (16) for a fixed [t]xy

In accordance with the definition of E in (5), (16) can be re-
written as

U([t]xy; ε1, ε2,I) = max
θ∈[0,2π),
[t]z∈R

∑
i∈I

Fi(θ, [t]z; [t]xy), (17)

Fi(θ, [t]z; [t]xy) := ι1
(
‖p̃i(θ, [t]z)− q̃i‖(ε1,ε2)

)
, (18)

p̃i(θ, [t]z) := R(θ)pi + [0,0, [t]z]
> ∈ R3, (19)

q̃i := qi− [[t]>xy,0] ∈ R3. (20)

Figure 2(a) illustrates the region of θ and [t]z, which satisfy
F (θ, [t]z; [t]xy) = 1 in (18), as thin red lines.

From (18)–(20) and the definition of the cylindrical norm in (6),
the following condition can be derived:

Fi(θ, [t]z; [t]xy) = 1⇔ (θ, [t]z) ∈ Θi×Ti, (21)
Θi := {φ ∈ [0,2π) | ‖[R(φ)pi− q̃i]xy‖2 ≤ ε1} , (22)
Ti := {tz ∈ R | |[pi]z + tz − [qi]z| ≤ ε2} . (23)

The Θi in (22) consists of at most two intervals of [0,2π), and
the Ti in (23) consists of an interval of R. Therefore, the con-
dition in (21) shows that, as shown in Figure 2(b), the region of
the parameter (θ, [t]z) satisfying F (θ, [t]z; [t]xy) = 1 forms (at
most two) rectanglesMi in the parameters space.

(a)

(b)

Figure 2. (a) Region (θ, [t]z) satisfying Fi(θ, [t]z; [t]xy) = 1 can
be reviewed as (b) rectangle regions on 2D space.

As shown in Figure 3, the optimization problem for (θ, [t]z)
in (17) can be translated into a computation geometry problem
called the rectangle-intersection problem (Choi et al., 2012),
which searches a point in the region where the given multiple
rectangles overlap the most. The rectangle-intersection prob-
lem can be solved in O(N logN) for given N rectangles (Imai
and Asano, 1983). In our problem, the number of rectangles is
at most 2|I|. See Figure 3 and Appendix B for our version of
the algorithm to solve the rectangle-intersection problem.

We can now find an optimal solution (θ, [t]z) of the optimiza-
tion problem in (16) and evaluate U([t]xy; ε1, ε2,I) for a fixed
[t]xy with O(|I| log |I|).

Figure 3. Optimal parameter (θ, [t]z), which is on most
overlapped region for multiple rectangles (slashed-red region),
can be found as pair of (θi, tj), where θi and tj are a vertex of

rectangles.

3.4 Optimize U in (15) by using BnB algorithm

We now discuss to finding a global solution of an optimization
problem for [t]xy in (15) by using a custom BnB algorithm that
uses the computation of U in (16) with a fixed [t]xy mentioned
in Section 3.3. The BnB algorithm finds a global optimal solu-
tion of non-convex problems, which splits the original maxim-
ization problem into multiple smaller sub-problems (branches)
then searches only branches with an upper bound exceeding the
highest objective value found with the algorithm. The BnB
iterations stop when all upper bounds of branches that have
not yet been explored are less than or equal to the current
highest objective value because there is no better solution in
such branches.

In the context of solving (15), the custom BnB algorithm ini-
tializes the search space with a square S0 ⊂ R2 that contains
the optimal solution [t?]xy, then splits S0 into four smaller con-
gruent squares with edges parallel to the X-axis or Y-axis. For
each smaller square S ⊂ S0, let [tS ]xy ∈ R2 be the center point
of S. If [tS ]xy gives a higher objective value than the current
best estimate [t̂]xy, [t̂]xy is updated to [tS ]xy. Divide S into
the four smaller congruent squares then, as we describe later,
compute an upper bound U of each square and keep squares
with U exceeding the current highest objective value U([t̂]xy)
as branches, which will be explored later in the custom BnB
algorithm.

Algorithm 3 shows the custom BnB algorithm described above.
Note that while Algorithm 3 appears to find only an optimal
horizontal translation [t?]xy via the optimization problem in
(15), it simultaneously finds the optimal residual parameters
(θ?, [t?]z) in Problem 1. Once Algorithm 3 gives an optimal
solution [t?]xy, the residual parameters (θ?, [t?]z) in Problem 1
can be obtained by evaluating U for fixed [t?]xy.

To run Algorithm 3, we need to compute U(S) which is an
upper bound of U on a given S ⊂ R2. Proposition 2 shows the
computation of U(S) such an upper bound.
Proposition 2 (An upper bound of U ). In Problem 1, define U
as (16). Let S ⊂ R2 be a bounded square, s0 be the center of
S, and dS be the radius of S. Then,

U(S) := U(s0; ε1 + dS , ε2,I) ≥ max
s∈S

U(s; ε1, ε2,I). (24)

Proof. See Appendix C.

The inequality in (24) shows that U(S) is an upper bound of U
on a S. U(S) can be computed by evaluating U for fixed s0.
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Algorithm 3 for solving (15).
Set initial matches C and inlier threshold (ε1, ε2).
Set S0, [t̂]xy ← [tS0 ]xy and an empty priority queue w.
Compute U(S0; ε1, ε2,I).
Insert (S0,U(S0; ε1, ε2,I)) into w.
While w is not empty

Pull the cube S with the highest U from w.
Compute U([tS ]xy).
If U([tS ]xy) = U(S; ε1, ε2,I) then break.
If U([tS ]xy) > U([t̂]xy) then [t̂]xy ← [tS ]xy.
Divide S into 4 sub-cubes {Sk}4k=1.
Compute U(Sk) for all Sk.
IfU(Sk) > U([t̂]xy) then insert (Sk,U(Sk)) intow.

return [t̂]xy.

4. EXPERIMENTS

We conducted experiments to demonstrate (i) the applicability
of the proposed method to coarse registration (Section 4.1) and
(ii) its computation efficiency (Section 4.2) by using the real-
world datasets Arch and Trees1. The Arch dataset consists of
five scans acquired with low overlap (30–40%), and the Trees
dataset consists of six scans acquired in a forest with a large
amount of underwood.

To demonstrate registration performance in a scenario in which
point cloud pairs can and cannot be aligned, we prepared regu-
lar and irregular pairs of both Arch and Trees datasets.

• regular pairs: point cloud pairs that are assumed can be
aligned with the dataset. We list all the regular pairs in
Table 2 for the Arch dataset and in Table 3 for the Trees
dataset.

• irregular pairs: all pairs of different point clouds. The X
and Y coordinates were swapped in the source point cloud
for all irregular pairs. Since the swapping is not a rigid
transformation, all irregular pairs cannot be aligned.

The matches C in Problem 1 was generated by the following
procedure:

1. The voxel grid down-sampling at 10cm in length and
the intrinsic shape signatures (ISS) keypoint extraction
(Zhong, 2009).

2. The fast point feature histograms (FPFH) feature (Rusu et
al., 2009) computation. Matching keypoints on the basis
of the distance between their FPFH features. Concretely,
the correspondence (pi,qi) is included in C if their FPFH
features are one of the ten nearest neighbors to each other.

The inlier threshold (ε1, ε2) in Problem 1 was set to (0.4,0.4).
All experiments were implemented in C++ and executed on an
Intel Xeon 3.20GHz CPU.

4.1 Validity of proposed method for coarse registration

We first evaluated the applicability of the proposed method to
coarse registration by using the regular pairs in the Arch and
Trees datasets.

For the Arch dataset, Table 2 represents the registration accur-
acy of the proposed method without and with the ICP method,

1 http://www.prs.igp.ethz.ch/research/completed_

projects/automatic_registration_of_point_clouds.html

which is a well-known fine registration method. The registra-
tion performance was measured on the basis of the rotation error
and translation error formulated as

Erot := ‖R(θ?)−Rgt‖F, Etrans := ‖t?− tgt‖2 (25)

where ‖ · ‖F means the Frobenius norm and (Rgt, tgt) ∈
R3×3×R3 is the ground truth of the rotation matrix and trans-
lation vector given by the dataset. The validity of the proposed
method was confirmed by determining whether the result sat-
isfies the following condition; both the rotation and translation
errors decreased by using the ICP method and the translation
error was sufficiently small (≤ 5 cm) after using this method,
which means that the proposed method gave a good initial solu-
tion for fine registration. As shown in Table 2, the proposed
method gave an initial solution for all regular pairs of the Arch
dataset, hence it is suitable for coarse registration.

proposed with ICP
pair Erot Etrans Erot Etrans success

(×10−3) (cm) (×10−3) (cm)
s1-s2 5.3 9.9 1.6 3.6 X
s3-s1 5.2 24.2 1.2 0.7 X
s3-s2 7.4 21.6 2.1 1.9 X
s3-s4 5.7 10.5 0.3 0.6 X
s2-s4 9.4 17.1 1.1 1.4 X
s2-s5 7.1 16.3 0.9 2.2 X
s4-s5 3.9 11.5 0.3 2.2 X
s5-s1 2.3 25.3 0.8 3.6 X

Table 2. Accuracy for Arch dataset

Figure 4 shows the results of the proposed method for the point
cloud pair s5-s1 in the Arch dataset. Note that pair s5-s1 is the
worst case in terms of the translation error in Table 2. As shown
in Figure 4, the source and target point clouds were aligned
successfully even if they scanned different planes on the arch.

Figure 4. Registration results for point cloud pair s5-s1 of Arch
dataset

We evaluated the results for the Trees dataset under the same
conditions as the Arch dataset. Table 3 shows the accuracy of
the proposed method for the regular pairs of the Trees dataset.
The proposed method was also suitable for coarse registration
for all pairs in the Trees dataset.

Figure 5 shows the results of the proposed method for the point
cloud pair s2-s5, which is the worst case in terms of the trans-
lation error in Table 3, in the Trees dataset.
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proposed with ICP
pair Erot Etrans Erot Etrans success

(×10−3) (cm) (×10−3) (cm)
s1-s2 11.8 11.4 2.3 0.6 X
s1-s3 7.1 18.2 3.4 0.7 X
s2-s3 5.8 8.0 0.9 0.3 X
s2-s4 5.7 29.1 1.1 1.1 X
s2-s5 6.9 37.3 0.8 1.4 X
s3-s4 0.6 26.1 0.3 1.2 X
s3-s5 4.6 16.1 0.8 1.7 X
s4-s5 8.5 16.9 0.9 0.6 X
s4-s6 1.5 26.8 0.4 0.9 X
s5-s6 5.4 18.3 1.0 1.0 X

Table 3. Accuracy for Trees dataset

Figure 5. Registration results for point cloud pair s2-s5 of Trees
dataset

4.2 Computation efficiency

We now discuss the computation efficiency of the proposed
method in terms of the computation time and convergence
speed for finding a global optimal solution. We compared the
proposed method with FMP+BnB, which also achieves global
optimal 4DoF registration.

Arch dataset:
Figure 6 shows the computation times for the regular and irreg-
ular pairs in the Arch dataset. The proposed method reduced
the worst computation time to 51% compared with FMP+BnB.
The computation time of the proposed method was more stable
than that of FMP+BnB, especially for the irregular pairs. Nu-
merically, the instability of the computation time defined as

instability :=
maximum time−minimium time

minimum time
(26)

was calculated; instability was 3.95 for FMP+BnB and 1.82 for
the proposed method.

(a) (b)

Figure 6. Computation-time comparison between FMP+BnB
and proposed method (a) for regular pairs in Arch dataset, (b)

irregular pairs in Arch dataset

Table 4 shows the details of the computation-time comparison.
Every value in Table 4 was computed as the ratio of the compu-
tation time of the proposed method to that of FMP+BnB for
a given pair. The proposed method was more efficient than
FMP+BnB for all irregular pairs. The harmonic mean of all
ratios was 0.77.

target
s1 s2 s3 s4 s5

s1 .91 .93 .88 .94
s2 .95 .90 .91 .45

source s3 .96 .95 .73 .90
s4 .87 .86 .66 .85
s5 .97 .32 .90 .86

Table 4. Ratios of computation-times of proposed method to
those of FMP+BnB for all irregular pairs in Arch dataset

Figure 7 shows the comparison of the number of iterations, i.e.,
the number of branches executed using the BnB algorithm, re-
garding convergence speed. The proposed method effectively
reduced the number of iterations to 14% in the worst case. In
other words, the maximum number of iterations was 7.1 times
less with the proposed method than with FMP+BnB. This is the
main aim of introducing the cylindrical norm and limiting the
search dimension of the BnB algorithm into a 2D plane.

Figure 7. Number of iterations for Arch dataset

Trees dataset:
We also evaluated the results for the Trees dataset under the
same conditions as the Arch dataset. As shown in Figure 8, the
proposed method reduced the worst computation time to 51%
compared with FMP+BnB. Instability was also reduced; 3.64
with FMP+BnB and 1.64 with the proposed method.

(a) (b)

Figure 8. Computation-time comparison between FMP+BnB
and proposed method (a) for regular pairs in Trees dataset, and

(b) for irregular pairs in Trees dataset

Table 5 shows the computation-time ratios. The proposed
method was more efficient than FMP+BnB for all pairs except
s1-s2. The harmonic mean of all ratios was 0.68.
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target
s1 s2 s3 s4 s5 s6

s1 1.1 .90 .68 .87 .82
s2 .99 .76 .71 .52 .64

source s3 .86 .73 .42 .84 .51
s4 .53 .65 .42 .89 .69
s5 .86 .52 .85 .88 .90
s6 .72 .57 .43 .69 .86

Table 5. Time comparison for Trees dataset

Figure 9 shows the comparison of the number of iterations re-
garding convergence speed. The proposed method reduced the
number of iterations to 15% in the worst case. In other words,
the maximum number of iterations was 6.7 times less than with
FMP+BnB.

Figure 9. Number of iterations for Trees dataset

5. CONCLUSIONS

We proposed a fast convergence method for global optimal
4DoF registration. The proposed method consists of our newly
developed 4DoF registration model (Problem 1), which in-
cludes the cylindrical norm in (6), and its global optimiza-
tion algorithm (Algorithm 1). Since two parameters ([t]z, θ) in
Problem 1 can be simultaneously optimized in polynomial time
O(|I| log |I|) via the rectangle intersection problem (Figure 3),
the cutom BnB algorithm of the proposed algorithm searches
only a 2D space (Table 1) and can converge faster than that of
FMP+BnB.

We conducted experiments to demonstrate the (i) applicability
of the proposed method to coarse registration and (ii) its com-
putation efficiency by using datasets for terrestrial LiDAR point
cloud registration. Compared with FMP+BnB, the proposed
method was 6.7 times faster in terms of the maximum number
of iterations and 2.0 times faster in terms of the worst compu-
tation time.
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APPENDIX A. PROOF OF PROPOSITION 1

Define a problem P[k] as a sub-problem of the original Prob-
lem 1, which is a constraint in which the k-th match must be
aligned, i.e.,

find (θ?k, t
?
k) ∈ arg max

(θ,t)∈[0,2π)×R3

E(θ, t;I), (27)

s.t. ‖R(θ)pk + t− qk‖(ε1,ε2) ≤ 1. (28)

According to the similar discussion in (Cai et al., 2019,
Lemma 2), it is sufficient to show E∗k ≤ Ēk < E, where E∗k :=
E(θ?k, t

?
k;I) and E := E(θ0, t0;I). The latter inequality, i.e.,

Ēk < E, is satisfied from the assumption. Therefore, we prove
E∗k ≤ Ēk.

Define t?k
′ := qk −R(θ?k)pk − t?k, then the constraint (28) can
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be rewritten as ‖t?k′‖(ε1,ε2) ≤ 1. Therefore,

E∗k =
∑
i∈I

ι1
(
‖R(θ?k)pi + t?k − qi‖(ε1,ε2)

)
(29)

=
∑
i∈I

ι1
(
‖R(θ?k)p

(k)
i − q

(k)
i − t?k

′‖(ε1,ε2)
)

(30)

=
∑
i∈I

ιε1

(
‖[R(θ?k)p

(k)
i − q

(k)
i ]xy − [t?k

′
]xy‖2

)
×

ιε2

(
|[p(k)

i − q
(k)
i ]z− [t?k

′
]z|
)

(31)

≤
∑
i∈I

ι(ε1+‖[t?k
′]xy‖2)

(
‖[R(θ?k)p

(k)
i − q

(k)
i ]xy‖

)
×

ι(ε2+|[t?k
′]z|)

(
|[p(k)

i − q
(k)
i ]z|

)
(32)

≤
∑
i∈I

ι2ε1

(
‖[R(θ?k)p

(k)
i − q

(k)
i ]xy‖

)
ι2ε2

(
|[p(k)

i − q
(k)
i ]z|

)
(33)

=
∑
i∈Ik

ι2ε1

(
‖[R(θ?k)p

(k)
i − q

(k)
i ]xy‖2

)
≤ Ēk. (34)

APPENDIX B. SOLVING RECTANGLE
INTERSECTION PROBLEM

We describe an algorithm to solve the rectangle-intersection
problem shown in Figure 3 by computation complexity
O(N logN) for N rectangles. To store the information about
rectangle sides, the algorithm uses the segment tree with lazy
propagation (STLP) (Laaksonen, 2017, Sec. 15.2.1), which is
a tree-data structure storing information about intervals. The
STLP can compute the following range updates and queries by
O(logN).

• ADDn2
n1

(x): add x ∈ R to every element in [n1, n2).

• MAXn2
n1

(): obtain the index i ∈ [n1, n2), which gives the
maximum value in [n1, n2). We denote MAXall() as
MAXN

0 (), which obtains the index that gives a maximum
value in all elements.

By using the STLP, we can solve the rectangle-intersection
problem. In Algorithm 4, we denote the vertices of the i-th rect-
angle as {(θ(i)low, t

(i)
low), (θ

(i)
low, t

(i)
high), (θ

(i)
high, t

(i)
low), (θ

(i)
high, t

(i)
high)},

where θ(i)low < θ
(i)
high and t(i)low < t

(i)
high.

Algorithm 4 for the rectangle intersection problem.
Set array Θ[ ]← ascending sort(

⋃N−1
i=0 {θ

(i)
low, θ

(i)
high}).

Set array T [ ]← ascending sort(
⋃N−1
i=0 {t

(i)
low, t

(i)
high}).

Build STLP with size 2N as S.
Initialize score and solutions (s, θ∗, t∗)← (0,0,0).
For i = 0, . . . ,2N − 1 do

If T [i] is t(k)low for a k then
S.ADDn2

n1
(1) for Θ[n1] = θ

(k)
low and Θ[n2] = θ

(k)
high.

Compute (j, s̃)← S.MAXall().
If s̃ > s then (s, θ∗, t∗)← (s̃,Θ[n1], T [i]).

Else
S.ADDn2

n1
(−1) for Θ[n1] = θ

(k)
low and Θ[n2] = θ

(k)
high.

return θ∗, t∗

The sort operators in Algorithm 4 are computed by
O(N logN). Each loop for i is are executed by O(logN);
hence, the overall computation complexity is O(N logN).

APPENDIX C. PROOF OF PROPOSITION 2

Define ri(θ, t) := R(θ)pi + t− qi for every i ∈ I. For

(θ?S , t
?
S) ∈ arg max

(θ,[t]xy,[t]z)∈[0,2π)×S×R
E(θ, t;I), (35)

let r?i := ri(θ
?
S , t

?
S) for every i ∈ I, then

max
[t]xy∈S

U([t]xy; ε1, ε2,I) = E(θ?S , t
?
S ;I) (36)

=
∑
i∈I

ιε1 (‖[(r?i − t?S + s0) + (t?S − s0)]xy‖2) ιε2 (|[r?i ]z|)

(37)

≤
∑
i∈I

ι(ε1+dS) (‖[r?i − t?S + s0]xy‖2) ιε2 (|[r?i ]z|) (38)

≤ max
(θ,tz)∈[0,2π)×R

∑
i∈I

ι1
(
‖ri(θ, [s0, tz]

>)‖(ε1+dS ,ε2)
)

(39)

= U(s0; ε1 + dS , ε2,I). (40)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-87-2022 | © Author(s) 2022. CC BY 4.0 License.

 
94




