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ABSTRACT:

We study in this paper models to mitigate effect of a windshield-related refraction on imaging systems. The literature shows that the
distortions introduced by this curved surface are non-linear in their effect and reduce the performance of image-based analyses and
depth estiamtion algorithms. We show that using geometric optics and local approximation of the windshield’s surface to a spherical
one, a direct analytical refractive forward projection (RFP) form of a 3-space point onto the image plane can be derived. Howevere,
an exact form requires solving a 22-degree polynomial which may become numerically unstable. To stabilize the solution, we
demonstrate how the introduction of valid local assumptions on the interface allows reducing the polynomial degree down to 8 and
4. Utilizing these forms we then show that the RFP can be used to jointly estimate the camera pose and the windshield’s surface
parameters through minimization of the reprojection error. The proposed models are tested on simulated data and validated on
real-world observations. Results show stability and a sub-millimeter level of reconstruction accurecy, alluding to the validity and
quality of our representations.

1. INTRODUCTION

The calibration of imaging systems has been the subject of ex-
tensive research as it sets the foundations of a variety of ap-
plications, including image-based scene analysis, multi-view 3-
D reconstruction, structure-from-motion, visual odometry, and
robotic navigation, to name only a few (Weilong and Lizuo,
2022). For autonomous driving applications, proper calibra-
tion of the imaging system is vital as it facilitates the local-
ization, mapping, and estimation of distances and relative ve-
locities of the surrounding traffic. In contrast with prototype
versions of autonomous self-driving vehicles, where the cam-
eras are mounted on the car roof, their placement in commer-
cial vehicles has to be both functional and aesthetically pleas-
ing, often being positioned behind the windshield (Hanel and
Stilla, 2019). Handling refraction introduced by the windshield
needs to address the non-linear ray trajectory and the surface
model of the interface. The literature shows that while imag-
ing through a flat refractive surface was researched extensively
(Chadebecq et al., 2020), little can be found regarding the ef-
fect of curved surfaces, in general, and windshields, in partic-
ular (Hanel and Stilla, 2019). It has been demonstrated how
distortions introduced by a windshield significantly affect the
estimation of depth (Verbiest et al., 2020), and it has also been
established that the refraction of the ray translates into non-
linear aberrations that are depth-dependent and are difficult to
compensate for by direct image correction methods (Telem and
Filin, 2010). In addition, Krebs et al. (2021), who analyzed the
impact of these geometrical aberrations on classification tasks
performed using state-of-the-art convolutional neural networks,
demonstrated how the prediction accuracy was lowered by up
to ten percent.

An explicit formulation of the refraction effect based on Snell’s
law was proposed by Chari and Sturm (2009), who analyzed
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the multi-view relations when the scene contained a single
refractive planar surface that separated two different media.
Telem and Filin (2010) introduced an axial modification to the
imaging system by developing a varifocal adaptation to handle
the depth-dependent distortions introduced by refraction. This
modified form was integrated into the collinearity equations and
allowed the pose and system parameters to be estimated simul-
taneously. Agrawal et al. (2012) investigated the multi-layered
flat-refractive geometry and demonstrated that such imaging
systems correspond to an axial form. Elnashef and Filin (2022)
developed a two-view flat-refractive model and proposed an
orthogonality constraint that separates the rotational, and trans-
lational system-related components. In reference to non-planar
interfaces, Kunz and Singh (2008) studied the effect of a mis-
alignment between the camera and port centers when imaging
through hemispherical housing ports in an underwater envi-
ronment. They showed that the non-linearity of the ray’s path
requires an iterative nonlinear minimization to project a point
from object-space onto the image. ? explicitly modeled the
refraction through a curved surface. The authors approximated
the refractive medium as a thick cone slice, where the inner and
outer cones have the same aperture and the centers are such
that the medium thickness is constant. To estimate the surface
parameters, they used an elaborate minimization cost function,
which was based on a backward-projection ray-casting model.
In a later work, ? approximated the windshield surface by an
ellipsoidal form. A similar minimization was used but the re-
sults were of numerical simulations only. Yoon et al. (2020)
studied stereo-imaging through a refractive interface with an
arbitrary surface form and derived a refraction-aware triangula-
tion model for depth estimation. In order to estimate the surface
parameters, targets were set on the inner refractive interface.
Experimental results were compared to a baseline method that
attempted to mitigate the refraction effect using lens distortions
model. A clear improvement when using the refraction-aware
triangulation model was reported. Verbiest et al. (2020) who
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studied the effect of imaging through a windshield, demon-
strated that the refraction effect leads to severe reconstruction
errors when neglected. To reduce the complexity involved in
modeling an arbitrary curved surface form, the authors used a
local spherical surface approximation and applied a ray-tracing
formulation to model rays trajectory through the system. They
derived a polynomial solution as a function of the viewing
angle, but no actual information on its degree, robustness, or
performance was provided. An elaborate four-step procedure
was proposed to estimate the system parameters, involving a
non-linear minimization, which was followed by a refinement
step using a local spline-based interpolation to accommodate
for deviations from an ideal spherical shape. ? identified the
axial nature of the imaging through hemispherical ports. An
evaluation of the non-linear distortions was provided whose
source was related to the camera displacement from the sphere
center and the interface thickness. The authors developed a
varifocal representation that followed the flat-refractive system
modeling by Telem and Filin (2010). They then estimated the
pose parameters and the decentering of their system.

As the literature shows, imaging through refractive surfaces
introduces severe nonlinear distortions, and as the ray’s path
through the system becomes non-linear it also necessitates an
iterative minimization procedure to project a point from object
space onto the image plane (Verbiest et al., 2020). Considering
the non-parametric geometric form of the windshield, modeling
its consequent effect on the ray path and the pose parameters
becomes involved, even when simplifying its shape. To allevi-
ate these modeling-related complexities, we propose an alterna-
tive formulation of the refraction-related effect on the system.
We show that even when modeling the surface by a simplified
spherical form, a direct ray tracing formulation would translate
to a 22-degree polynomial in terms of the image coordinates.
This complex form is prohibitive for solving and has led many
researchers to adopt complex optimization schemes. Instead,
we show that with local approximations that have little effect
on the outcome, the non-linear imaging system can translate
into 8- or 4-degree polynomials for the forward projection. Our
modeling facilitates an efficient and direct system calibration
solution where all parameters can be estimated with high ac-
curacy. Evaluations of our model demonstrate high levels of
accuracy in the estimation of both pose and system parameters,
robustness to high levels of noise, and a sub-millimeter level of
accuracy in 3-D reconstruction.

2. THEORY

We consider an imaging system consisting of a camera mounted
behind a thick windshield. The imaging system is of a three-
layered air-glass-air form, where µ is the index of refraction
of the windshield material. Without loss of generality, we set
the index of refraction of the air to 1. Following Verbiest et
al. (2020), we locally approximate the windshield surface to a
spherical form. We define the axis between the camera and the
sphere centers as the unit vector a = [0, 0,−1]T and the dis-
tance between them as d (Fig. 1). Thus, the sphere and camera
centers are set to o = [0, 0, 0]T , and c = o + da, respectively.
When d = 0 the camera projection center and sphere center co-
incide and no refraction occurs. Defining the sphere thickness
by ds, the inner and outer radii become r and r + ds, respec-
tively. The image plane coordinates x = [x, y]T , are given in
a calibrated camera frame so that an image ray would have the
form of v = [x, y, f ]T , and be measured in reference to the prin-
cipal point, also the following correction to the lens distortion

effects. The angular offset between the optical axis and system
frame can be expressed by two rotations, off and about the op-
tical axis M = Mz(τ)My(η). However, the rotation about the
z-axis is strongly correlated with the camera rotation parame-
ters (Telem and Filin, 2010), reducing the transformation to a
single rotation, v0 = My(η)v. Following this transformation,
the image ray in the system frame is given by v0 = Mv. The ray
sequence v0, v1, v2 from the camera center to an object-space
point describes the light traversal through the system (Fig. 1),
where q1 and q2 are the points of refraction on the inner and
outer spheres, respectively. For each refraction, the intersection
on the interface can be determined by a ray-sphere intersection.
We define QSU = diag{1, 1, 1,−1} as a unit sphere where all
points, q, lying on it fulfill the quadratic form qT QSUq = 0.
The inner and outer spheres QSi and QSo, can be regarded as a
transformed version of QSU by:

QSi = T−T
i QSUT−1

i (1)
QSo = T−T

o QSUT−1
o (2)

where

Ti = diag (r, r, r,−1) (3)
To = diag (r + ds, r + ds, r + ds,−1) (4)

and where both spheres are centered at the origin oi = oo =
[0, 0, 0]T . To characterize a ray passing through that system we
first seek the position on q1. Defining an image ray by q1 =
c + λv0, we wish to find its intersection point, q1, by solving
the quadratic form:

qT
1 QSiq1 = 0 → λi+,i− (5)

as a function of λ. We select λi+, the positive root, as the scene
is defined in our system to lie in front of the camera. With the
choice of λi+ the first intersection point, q1, is directly derived.
In addition, as the center of the sphere coincides with the system
origin, the normal to the sphere at q1, is given by ni = q1/∥q1∥.
As the ray propagates through the medium, it refracts. To com-
pute the new direction, v1, we use the vector form of Snell’s
law of refraction:

v1 = ξv0 + δ1ni (6)

where ξ = 1/µ, and:

δ1 = −ξvT
0 ni −

√
ξ2 (vT

0 ni)
2
+ (1− ξ2) vT

0 v0 (7)

We compute q2 using the intersection of v1 and QSo, by first
solving for λo+ for qT

2 QSoq2 = 0, where q2 = q1 + λo+v1.
In addition, we have no = q2/r+ds. Finally, the direction of the
object-space ray, v2, is given by:

v2 = µv1 + δ2no (8)

where

δ2 = −ξvT
1 no −

√
ξ2 (vT

1 no)
2
+ (1− µ2) vT

1 v1 (9)

We have traced the ray trajectory from image-space to object-
space, and if the distance to the object-space point is known, its
coordinates can be fully reconstructed.
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Figure 1: Refraction through a spherical surface where all refractions take place in the plane of refraction.

2.1 Ray-tracing based system calibration by iterative for-
ward projection (IFP)

The ray-tracing form sets the foundation for defining the cost
function in reference to the camera pose and the system param-
eters. To begin, a set of N corresponding points {xi → Pi},
∀i = 1, . . . , N is given and our objective is to calibrate the
system parameters and solve the camera pose, namely π =
{R, t, d, r, ds, η} as the unknowns to solve for. The objective
is to estimate them optimally by minimizing the reprojection
error. A problem that arises in the way of realizing this is the
unknown path of the forward projection from an object-space
point to its image-space location. This is a well-known iterative
procedure, in which the ray is first linearly traced to the image
plane. The ray is then backward traced to object-space using
our ray-tracing solution and by using the depth of the object-
space point. This iterative procedure continues until conver-
gence is reached. Essentially minimizing

x̂ = argmin
x

∥∥∥P − P̂
∥∥∥2

(10)

where P̂ is the back-projected 3-D coordinates of the object-
space point, and x̂ is the corresponding image-space point.
Next, given a set of N corresponding points, a calibration
step commences, as a function of the image-space reprojection
error:

{R, t, d, r, ds, η}∗ = argmin
{R,t,a,d,r,ds}

N∑
i=1

∥xi − x̂i∥2 (11)

In each iteration, all N 3-D points are first iteratively being pro-
jected to the image plane by using Eq. (10) and the estimated
values of π. Then, Eq. (11) is used to estimate a correction to
π. This nested minimization form has proven to limit the accu-
racy of the estimated parameters, introduce instabilities, and is
also inefficient. It is common to find algorithms that fix some
of the parameters as a means to stabilize the solution and secure
convergence. Alternatively, we propose here an efficient solu-
tion to project 3-D points directly onto the image plane, thus,
eliminating the need for minimization in Eq. (10).

2.2 Forward projection through refractive quadratic sur-
faces

Our objective is to alleviate the need for the iterative ray-
tracing-based forward projection phase in the solution. To de-

Algorithm 1: Polynomial forward-projection

Input: Object-space 3-D coordinate P = [X,Y, Z]T

Output: Forward-projected image-space point x = [x, y]T .
Data: Pose (R, t) and system parameters (a, r, d, ds, µ)

1 nP = a×P
∥a×P∥ // Plane of refraction normal

/* Define [x̂, ẑ], the coordinate system on the plane

of refraction */

2 ẑ2 = N (a)
3 ẑ1 = nP × ẑ2
4 p = RP + t // Transform an object-space point into

the camera frame.

/* Project p into the plane of refraction, (u, v).
*/

5 v = ẑT2 p
6 u = ẑT1 p
7 Compute the polynomial M coefficients, k1, . . . , kM+1

and the roots of the polynomial {x1, . . . , xM}.
8 {x1, . . . , xM} = roots (k1, . . . , kM+1)
/* From the acquired six solutions, choose the m

real ones {x1, . . . , xm}. Loop over all the real
xi values for i = {1, . . . ,m} and choose the
solution that abides to Snell’s law of
refraction. */

9 for i:=1, m do
10 zi =

√
r2 − x2

i

11 q1i = [xi, zi]
T

12 v0i = q1i − c // c = [0, d]T defines the camera

center of projection.

13 ni = −N (q1i)
14 v1i = ξv0 + δni // Compute the refracted ray

direction.

15 vT
1iQSovi1 = 0 → λ+o

16 q2i = q1i + λo+v1

17 no = −N (q2i)
18 v2i = µv1 + δ2ino // Compute the refracted ray

direction.

19 v̄2i = [u, v]T − q2i

20 ε = v2i×v̄2i
∥v2i×v̄2i∥

/* If v2i and v̄2i are parallel then */

21 if ε < 1e− 6 then
22 v0 = xiẑ1 + (zi − d)ẑ2 // Compute the image

ray, v0 in 3-D sapce

/* v0 = [vx0 , v
y
0 , v

z
0 ] */

23 x = [vx0/v
z
0 , v

y
0/v

z
0 ]

T
// x = vx0 /v

z
0 ; y = vy0/v

z
0
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rive a direct form, observe that the surface normal at the point
of refraction, the incident ray, and the axis defined by the sphere
and camera centers form a coplanar triad that defines the plane
of refraction (POR). In addition, all planes of refraction form a
pencil of planes about an axis that passes through the camera
and sphere centers, a, and we use this axis to define the system
frame (Fig. 1). For convenience, we develop our model within
the POR and for that define a planar reference frame within
it. Consider the camera center to be positioned at a distance
d from the center of the sphere and let ẑ2 = N (a) define the
system axis, where N is a normalization operator. The orthog-
onal direction to ẑ2 can be defined by ẑ1 = N (ẑ2 × (ẑ2 × v0)).
Within this plane, the origin is at the sphere center, o = [0, 0]T ,
suggesting that the camera center coordinates are c = [0, d]T .
The rays, v1, and v2 along the light path can be represented
by 2-D vectors vpi = [ẑT1 vi, ẑT2 vi]

T , i = {1, 2} in the POR.
At the inner interface, we set q1 = [x, z]T , as the point of
intersection with the sphere. This allows us to express vp0 and
n at q1 by vp0 = q1 − c = [x, y − d]T and ni = N (q1). To
compute q2 and no the intersection between the ray vp1 and
the outer sphere needs to be computed, from which the values
of noi and then vp2 follow. Defining p = RP + t as an object-
space point transformed to the camera system frame, where R,
t = [tx, ty, tz]

T as the rotation matrix and translation vector,
and p̄ = [ẑT1 p, ẑT2 p] we can write the constraint

vp2 × (p̄ − q2) = 0 (12)

where × denotes the cross product. As q1 is a point on the
inner circle with radius r, we can write z =

√
r2 − x2. Sub-

stituting this form into Eq. (12) transforms the constraint into a
function of only x. Assuming that the pose and system param-
eters are known, one can project a point P by solving a single
variable constraint. However, because of the complex trajec-
tory, this constraint contains a cascade of root terms, observable
from the root terms in Snell’s law of refraction, (Eqs. 7 & 9)
and the two quadratic equations when computing the points q1

and q2 (Eq. 5). Agrawal et al. (2012) demonstrated that a solu-
tion for the flat-refractive system can be reached by removing
the square-root terms through mathematical manipulation lead-
ing to root-free constraint with one unknown. The authors then
demonstrated that for a 3-flat-layers system with two refrac-
tions, Eq. (12) correspondence to 12-degree polynomial. How-
ever, in our case and because of the higher dimensionality of the
surface compared to the simple planar case, Eq. (12) yields a
22-degree polynomial with the monomials

[
1, x, x2, . . . , x22

]
.

This form facilitates a forward projection of a point from object-
space onto the image directly for a noise-free system. However,
simulations show that this projection is unstable when noise is
introduced. To improve the stability of the polynomial, we pro-
pose two approximations to the ray-trajectory through the sys-
tem, which we demonstrate are negligible in effect, and then
validate their effect in our real-world experiments.

First, we observe that the change in the normal direction be-
tween ni and no results in a change between the directions of
the rays v0 and v2 which would be similar if ni = no. Analyti-
cally, from Fig. (1), it can be shown that the angle between the
two normals is given by:

φ =
ds

r + ds
tan θ1 (13)

where θ1 is the refraction angle formed between the normal ni

and v1. For a windshield, the radius would be much larger

than the glass thickness ( r >> ds ). For example, a stan-
dard 1 : 100 ratio would amount to ϕ ≈ 0.01 tan θ1 and for
a camera with a 45◦ filed-of-view, the offset angle will not be
greater than ϕ ≈ [−0.01◦, 0.01◦]. Hence, setting ni = no is
a reasonable approximation with a byproduct of v0 = v2. The
effect on Eq. (12) is vast, as the polynomial form of the for-
ward projection reduces to the degree 8 with the monomials[
1, x, x2, x3, x4, x5, x6, x7, x8

]
. This form is stable and facili-

tates application for the system parameters estimation. Details
on the polynomial coefficient can be found in Appendix (A.1).

Another viable simplification (see e.g., Yoon et al., 2020) is to
consider the two interfaces to be locally parallel. Computing
q2 entails solving a quadratic equation of the intersection be-
tween v1 and the outer sphere, QSo. For a windshield, these
computations can be approximated by computing the distance
to a parallel interface at a distance ds as follows:

λapprox
+o =

ds

cos θ1
(14)

Hence,

qapprox
2 = q1 + λapprox

+o v1 (15)

With both approximations, Eq. (12) is further simplified, lead-
ing to a 4-degree polynomial, with the monomials

[
1, x, x2, x3, x4

]
.

This form is advantageous as it also allows computing the roots
linearly in a closed form by applying Ferrari’s solution (e.g.,
Kurosh, 1980). Details on the polynomial coefficient can be
found in Appendix (A.2). Using both approximations trans-
lates to a local flat-refractive approximation with ni as the
flat-surface normal. Furthermore, if the windshield surface
is smooth and has sufficiently low curvature, the approxima-
tion errors are practically negligible, regardless of whether the
medium is thick or thin. When the medium is sufficiently
thin, the error caused by the parallel assumption is also neg-
ligible, also confirmed by our experiments. Given a known
set of camera pose and system parameters, a point P can be
forward-projected onto the image, x, directly and linearly using
either the 8- or 4-degree polynomials, respectively. The correct
solution (root) is the one that best abides by Snell’s law refrac-
tion. Algorithm (1) details the polynomial forward-projection
procedure.

Calibrations Calibrating the system would require minimiz-
ing the function in Eq. (11). However, because of the large
number of unknowns, the minimization may prove to be hard to
solve. Instead of solving the entire set of parameters, which in-
cludes the camera pose and system parameters it was shown by
Elnashef and Filin (2019) that the problem can be separated into
two parts, refraction dependent and refraction independent pa-
rameters in a flat-refractive system. This model can be extended
to the refraction through curved surfaces, as it is a coplanar con-
straint on rays within the POR. Harnessing this, we can solve
R, tx, ty linearly and independently from refraction and system
parameters with as little as five coplanar points (e.g., checker-
board target). Thus, reducing the parameters to solve for to only
six, including tz, r, ds, d, µ, η.

3. EXPERIMENTS

To test the performance of our proposed calibration solution,
experiments were carried out via simulated experiments and
validated using real-world data. For the simulations, the gener-
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Figure 2: 3-D model for or the windshield surface we used
a publicly available open-source 3-D model of a Mazda MX-
5 Miata, 2002 form https://grabcad.com/library/mazda-miata-
windshield-2002.

ated data followed similar settings as the ones used in the real-
world experiments. A Canon PowerShot G9 X camera model
was used, with a 5472×3648 pixels frame, and a 2.41µm pixel
size, while the principal distance was set to 32 mm. The index
of refraction was set to µ = 1.5 for the glass-made windshield.
All image points were perturbed by a random Gaussian noise
with a standard deviation ranging from 0 to 2 pixels, and for
each noise level, 100 trials were performed. As for the num-
ber of images used in each trial, though a single image suffices
to estimate all of the system- and pose-parameters, for redun-
dancy, ten images of a 2-D gridded target were used. The target
comprised of 48 points forming a grid of 6×8 spaced by 2.5 cm
with a total size of 17.5 × 22.5 cm. This was simulated while
positioning at depths ranging between 0.5 and 5 m in front of
the camera and rotating randomly by up to 20◦ in each test. We
randomly placed the camera at a distance dw from the wind-
shield, at a predefined range [2, 30] cm along the a, while off-
axis deviations were randomly set up to 5◦ off a. To gener-
ate simulated data, independent of our model, the ray-tracing
model described in Kunz and Singh (2008) was used. For the
windshield surface, we used a publicly available open-source
3-D model of the Mazda MX-5 Miata, 2002 (Fig. 2).1

Validation metrics: We used the following metrics to eval-
uate our results: the positional error was defined as the rel-
ative difference between the known and estimated pose εt =
∥ttrue − testimated∥/∥ttrue∥, and the rotational error is mea-
sured by the minimal rotation angle required to go from the
estimated rotation matrix to the actual one. For its computa-
tion, we note that for the 3-D rotation group SO(3) there is
an intrinsic notion of distance, which we present here in a ma-
trix form (Trefethen and Bau, 1997). Let R and R̂ be the true
and estimated rotation matrices, respectively. The difference-
rotation-matrix is defined by: δR ≜ RR̂T , and the angle of the
difference rotation can be retrieved by the trace of δR such that:
εϕ = cos−1 ((1−trace(δR))/2).

Pose estimation Plots of the estimation accuracy of the al-
gebraic and reprojection-error minimizations are presented in
Fig. (3). As shown, for a noise level ±0.5 pixels and using a
2-D target, the positional error is as low as 0.075%, and the an-
gular error is 43.2′′ (arc seconds). Applying the optimal form
improved the results to 0.018% and 10.8′′ for the positional-
and angular error, respectively. The quality of these results
is comparable to the ones obtained in an in-air imaging setup.
Additionally, the reprojection error exhibits a linear trend as a
function of the noise level increase, an indication of the stability
of both the linear and non-linear forms.

Calibration In the calibration process, the estimated pose pa-
rameters were fixed and we only solved the remaining system

1https://grabcad.com/library/mazda-miata-windshield-2002

parameters. To evaluate our proposed polynomial-based cal-
ibration, the 4- and 8-degree forward projection (FP) forms
were compared to the iterative FP (IFP) counterpart (Sec. 2.1).
Fig. (4) plots the results of estimating the system parameters as
a function of Gaussian noise. Results show that using our so-
lutions the errors of all the system parameter estimates are on
a low fraction of a percent in reference to their actual values.
This is while the IFP solution error increases sharply as more
noise is added to the system, reaching more than 2% error in
the estimation of the camera distance from the sphere center,
the windshield thickness, and index of refraction, d, ds, and
µ, respectively. For example, while using a 2-D target and a
±0.5 pixel noise, an error of 0.016%, 0.009% and 0.625% for
d were recorded using 4-, 8-degree FP, and the IFP solutions,
respectively. Similarly, and for the same level of noise, an error
of 0.015%, 0.021%, and 0.33% for ds was recorded. In both
d and ds, an improvement by an order of magnitude or more
was recorded when compared to the IFP solution. The refrac-
tion index, µ for the same noise level was estimated with an
error of 0.021%, 0.022%, and 0.691%. When estimating the
reprojection error, a linear trend was observed through the dif-
ferent levels of added noise, which indicates the stability of the
estimation model (Fig. 5). Note that when comparing both 4-
and 8-degree FP forms comparable results were reached with
the 4-degree FP being more efficient.

3.1 Real-world experiments

Real-world experiments were performed as a two-step calibra-
tion procedure. First, the camera was calibrated outside of the
car and the intrinsic calibration parameters were estimated and
corrected. Next, the camera was set in the car and in front of
the windshield, and images of the checkerboard target were cap-
tured through the refractive surface (Fig. 6). To validate these
results, a reconstruction experiment followed where our abil-
ity to restore intrinsic geometric properties within the scene
was evaluated. For that, all 48 corners of the 2.5 cm-spaced,
17.5 × 22.5 cm, grid were measured (Fig. 6). Our intrinsic
measures included the coplanarity of the points, collineation,
parallelism, and orthogonality, where the measured grid lines
facilitated our analyses. External metric measures of the grid
dimensions provided a means to evaluate the metric accuracy.
In this experiment, the images that were used for calibration
were not used for the reconstruction. The working distance for
the reconstruction was also different from that used for the cal-
ibration. The first test evaluated the coplanarity of the mapped
points, and a plane that was fitted to them yielded a 0.08 mm
deviation using our 4-degree FP model compared to 3.94 mm
using the IFP solution. The collinearity test for points lying
along straight lines, and as a consequence the removal of the
refraction effect that bends them, yielded a mean deviation of
0.18 mm and a maximal deviation of 0.31 mm from collinear-
ity compared to a mean deviation of 2.88 mm and a maximal
deviation of 4.95 mm. Computation of the angles between par-
allel and orthogonal lines of our solution shows a mean abso-
lute error of 12′′ and 15′′ in parallelism and orthogonality, re-
spectively, whereas the application of IFP solution was of much
lower quality, with 263′′ and 347′′. Finally, the dimensions of
the target were computed by measuring the distance between
edge points along the width and height of the target. The er-
rors were 0.48 mm (0.27% of 175mm), and 0.79 mm (0.35% of
225 mm) with respect to the actual dimensions in our solution,
again showing significant improvement compared to the IFP-
based solution with 2.31 mm (1.32% of 175mm), and 3.29 mm
(1.46% of 225 mm).
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Figure 3: Pose estimation error, using the refraction-invariant model by Elnashef and Filin (2019) with 2-D targets, as a function
of increasing Gaussian noise. Normalized positional error (left); Angular difference between the estimated and true rotation matrix
(center); Reprojection error (right).

Figure 4: Quality of estimation of system parameters as a function of increasing Gaussian noise with a 2-D calibration target. All
evaluations are done for the proposed 4th and 8th degree polynomials and compared to the backward-projection model.

Figure 5: Evaluation of the calibration reprojection error es-
timation as a function of increasing Gaussian noise with a 2-
D calibration target. All evaluations are done for the pro-
posed 4- and 8-degree polynomials and compared to the iter-
ative forward-projection solution.

Figure 6: Setups for the real-world experiments.

4. CONCLUSIONS

The literature has shown that refraction through a curved non-
parametric interface surface introduces non-linear distortions.
Attempts to model it has largely been based on the iterative for-
ward projection ray-tracing model. This leads to an inaccurate
system and pose parameter estimations, and even divergence in
cases where all parameters are estimated simultaneously. In-
stead, we developed here a direct forward projection represen-
tation through a refractive spherical interface that yielded a 22-
degree polynomial form. However, with slight relaxation on
the ray propagation model, this form was reduced to 4- and 8-
degree forms. Our experiments have demonstrated that these
relaxations have little to no effect on the quality of the pose and
system parameters. Also, the reconstruction accuracy was on
a sub-millimeter level. This suggests that our simplified form
offers a viable calibration and modeling framework for automo-
tive applications.
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A. POLYNOMIALS

Manipulating Eq. (12) to eliminate the square-root terms,
we arrive at a 22-degree polynomial with the monomials[
1, x, x2, . . . , x22

]
. Although the solution is direct simula-

tions showed that its unstable when noise are introduced to the
system. To improve the stability of the polynomial, we propose
two approximations to the ray-trajectory through the system.

A.1 Eight degree polynomial

When the windshield is modeled as a sphere, the radius is
much larger than the interface thickness ( r >> ds ). Setting
ni = no is a reasonable approximation with the byproduct
of similar direction of both v0 and v2. Given this, Eq. (12)
can be simplified to a 8-degree polynomial with the mono-
mials [1, x, x2, x3, x4, x5, x6, x7, x8]. The coefficients of the
polynomial are given by,

k0 = 4r2A2
4 −A2

5

k1 = 2A5A6 − 8r2A2A4

k2 = 4r2(2A3A4 +A2
2)− 2A1A5 − 4A2

4 −A2
6

k3 = 2A1A6 + 8A2A4 + 2A5A7 − 4r2(2A2A3 + 4d2uvA4)

k4 = 4r2(A2
3 + 4d2uvA2)− 8A4A3 − 4A2

2 − 2A6A7 −A2
1

k5 = 8A2A3 + 2A7A1 + 16d2uvA4 − 16d2r2uvA3

k6 = 16d4r2u2v2 − 16A2
7 − 16d2uvA2 − 4A2

3

k7 = 16d2uvA3

k8 = −16d4u2v2

where

A1 = r2(d2u2 − d2v2) + u2A8 + v2A8 +A2
10 +A2

11 + 2duA9

A2 = A10A11 − uvA8 + dvA9

A3 = dvA10 − du2A13 + dv2A13 + duA11

A4 = A9A11 + dr2u2A13

A5 = A2
9 − r2(u2A8 +A11)

A6 = 2A9A10 − r2(2dvA11 −A12)

A7 = 2duA10 + 2dvA11 −A12

A8 = d2mu2 + d2r2 − d2 +mu2r2 + r4 − r2

A9 = −dur2 + du

A10 = vr2 + d− v

A11 = −ur2 + u

A12 = 4duvA13

A13 = µ2 + r2 − 1

Solving the polynomial leads to eight solutions, four which are
real. To choose the actual one, we examine which of the solu-
tions is physically correct and abide to Snell’s law of refraction,
leading to the minimal cost function.

A.2 Four degree polynomial

Given a thin windshield the position of q2 can approximated
by computing the distance to a parallel interface at a distance
ds (windshield thickness) as follows. In addition to the ni =
no assumption, Eq. (12) is simplified further leading to a 4-
degree polynomial with the monomials

[
1, x, x2, x3, x4

]
. The

coefficients of the polynomial are given by,

k0 =
d2r3u

r
k1 = d2A5 +A2 +A3

k3 = −d3r3u

r
− d2r5u

r
−A4 −A1

k4 = −r2 (A2 +A3)−A5A6 − ddsr
3

k5 = r2 (A1 +A4) +
dr3uA6

r
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where

A1 = 2ud2µ2r4

A2 = d2dsr

A3 = 2dµ2r2A5

A4 = r2uA6

A5 = dr2 − vr2 + ddsrA6 = d2µ2r2 + µ2r4
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