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ABSTRACT:

The commonly used level-set models have been proven efficient in delineating and detecting objects in a variety of image processing
applications. Such models do not require training or labelling, need little prior information as to existing objects, and want little
adaptation between scenes. Despite their great potential, their utility for point cloud processing has been limited to 2D space.
In this paper, we introduce a novel level-set-based approach which extracts entities directly from the point cloud while retaining
their three-dimensional point form. To do so, we adapt the level-set scheme to 2D smooth manifolds represented by unstructured
points in 3D space. Surface derivatives are then computed using a local surface parametrization based on a weighted least squares
approximation. This alleviates the need for a triangulated mesh and facilitates the level-set evolution within the point cloud. As
a driving force, we utilise visual saliency to focus on pertinent regions. As the saliency estimation is performed pointwise, the
proposed model is completely point-based, resulting in three-dimensional entities extracted by their original points. We apply the
proposed method to extract geomorphological entities in two fundamentally different scenes. Such entities present a challenge to
existing extraction schemes, as they are embedded within their surrounding and they do not conform to closed parametric forms. The
proposed approach enables the detection of various entities simultaneously, without prior knowledge of the scene, and regardless of
their position. This promotes flexibility of form and provides new ways to quantitatively describe morphological phenomena and
characterise their shape.

1. INTRODUCTION

Level-set based models are widely used as a detection and de-
lineation framework in various image processing applications
(e.g., Yang et al., 2020a; Wang et al., 2020a; Yu et al., 2021).
Unlike the traditional multistep approaches, which are com-
posed of consecutive steps to achieve specific tasks, level-set
approaches formulate the detection as a minimisation problem
under an explicit set of assumptions. Therefore, they allow de-
tection without training or labelling data, and only little ad-
aptation is required for different sets of data. Such flexibility
is even more pronounced with the effortless addition of con-
straints, phases, and a-priori information to the cost function
(Wang et al., 2020b; Biswas and Hazra, 2021). Additionally,
level-set methods are especially efficient in delineating complex
topologies’ boundaries. This is achieved simultaneously for the
entire image, without the need for prior information as to the
number of entities in the scene (Wang et al., 2020b; Biswas and
Hazra, 2021). For these reasons, utilisation of such framework
in 3D point cloud analysis will undoubtedly enable efficient and
flexible detection applications. Adapted to point clouds, point-
based application will facilitate detection of complex 3D en-
tities without being limited to a specific plane. Furthermore,
extracting the points that compose the entities instead of their
modelled version will enable their characterisation without in-
troducing biases. Being controlled by geometry, such an ap-
proach will allow detection regardless of the acquisition tech-
nique or the size of the entity.

Despite its great potential, only a few works utilised level-set
methods for the extraction of entities in point clouds. Kim
∗ Corresponding author

and Shan (2011) extracted roof boundaries using the multiphase
region-based Chan-Vese model (Vese and Chan, 2002). The
authors used each element of the normal vector as a differ-
ent phase in the cost function. Minimisation was defined so
as to reach homogeneity of each phase inside and outside the
curve. In order to segment a noisy point cloud, Awadallah et al.
(2014) projected the 3D point cloud onto a 2D plane and applied
the edge-based geometric active contours (GAC, Caselles et al.,
1997) to delineate the existing objects. Arav and Filin (2016)
proposed to use GAC with gradient vector flow (GVF, Xu and
Prince, 1998) to detect sinkhole rims. In a later work, the au-
thors proposed a region-based model to delineate geomorpholo-
gical entities (Arav and Filin, 2021). Instead of using low level
features, such as curvature or normal, the authors suggested a
saliency measure to assess the distinctness of a point. Seeking
for homogeneity in saliency values inside and outside the curve,
the level-set function evolved based on a rasterized map of the
computed saliency. In these approaches, however, the detected
objects were still limited to the 2D domain, described by their
planar boundaries.

Studies that have sought to extract 3D entities from point clouds
still used two-dimensional slices of the data according to which
the level-set function was developed. Tang et al. (2012) sliced
the point cloud at different heights and detected the boundaries
of trees at each slice using the Chan-Vese model. The detec-
ted curves were then connected to establish a 3D segmentation.
Similarly, Khattak et al. (2013) extracted the three-dimensional
shape of complex buildings from depth maps created from the
point cloud. To that end, the authors built a series of depth
maps from which a sequence of contours per slice was extrac-
ted. The contours were then connected to a 3D mesh. These
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practices follow the commonly used approach in level-set-based
MRI segmentation (e.g., Ramudu and Babu, 2018; Khalil et al.,
2020; Yang et al., 2020b). Thus, they do not capitalise on the
advantages of the minute sampling of the surface, nor do they
consider characteristic features of the point cloud, such as oc-
clusions or varying resolutions within the data. Additionally,
the resulting entities are meshes, which may introduce distor-
tion to the extracted shape.

In this paper, we present a region-based level-set approach to
extract entities in their 3D point form directly from the point
cloud. Taking advantage of the variational form of the level-set
model, the proposed method can be readily applied to extract
multiple types of entities, in various scenes, regardless of the
point cloud acquisition technology. The detection framework
is materialised by adapting the level-set method to 2D smooth
manifolds represented by unstructured points in 3D space. Sur-
face derivatives are then computed using a local surface para-
metrization, based on a weighted least squares approximation.
This alleviates the need for a triangulated mesh to compute the
derivatives and facilitates the evolution within the point cloud.
By this we transfer the level-set method from the continuous
domain to point clouds. To reduce computational overhead, we
employ a narrow-band approach. This way, the computational
complexity scales with the number and size of the entities rather
than the total size of the point cloud. The proposed method re-
quires no specific initialisation or starting points, but is driven
by visual saliency that is estimated pointwise. The extracted
entities are formed by the original points that describe them.
Thus, no new artefacts are introduced to the data.

We test the application of the proposed method on two demon-
strative examples. The first example depicts a complex cave
scanned by a terrestrial laser scanner. Being complete three-
dimensional scene, we show that standard methods cannot be
easily applied, let alone level-set based, but require a thorough
adaptation. The second dataset demonstrates a terrain disturbed
by gullies and sinkholes. This dataset was scanned by airborne
laser scanner and is approximately flat. We show that the pro-
posed model successfully enables the extraction of important
entities in both scenarios, without the need of any special ma-
nipulation to such data.

2. METHODS

2.1 Detection framework

In the standard 2D form of the level-set detection framework,
the zero-level-set of the function φ : Ω→ IR defines a curve

C := {x ∈ Ω | φ(x) = 0} (1)

on a connected subset Ω ⊂ IR2 of the 2D Cartesian plane. The
level-set function φ serves only as a tool to extract the curve,
its non-zero values are generally not of interest. Therefore,
it is customary to choose φ as the signed distance function to
the curve. The zero-level-set then delineates inside and outside
parts of Ω

Ω = Ωin ∪ Ωout,

Ωin := {x ∈ Ω | φ(x) ≥ 0},
Ωout := {x ∈ Ω | φ(x) < 0}.

(2)

In this context, the level-set method can be seen as an approx-
imation method for computing the curve that minimises a cer-

tain energy functional. Starting from an initial curve, the level-
set function, and thus the curve, evolves in time according to
a Euler-Lagrange equation for the energy functional. Being
less sensitive to noise and to the initial curve, we follow the
region-based scheme proposed by Chan and Vese (2001). In
this approach, we seek for boundaries around regions that share
a certain similarity, which can be represented by quantifiable
cues (discussed further in Sec. 2.4). Let ξ̄in and ξ̄out denote the
mean value of the cue of each region and |C| the length of the
curve C. The energy functional is expressed by

E(C, ξ̄in, ξ̄out) = µ1

∫
Ωin

∣∣ξ(x)− ξ̄in
∣∣2 dx

+ µ2

∫
Ωout

∣∣ξ(x)− ξ̄out
∣∣2 dx

+ ν0 · |C|

(3)

where ν0, µ1, µ2 are constant non-negative weighting scal-
ars. This functional formulates the conditions for the curve
we seek by means of a level-set function. The value of the
energy E(C, ξ̄in, ξ̄out) depends on the curve, and its min-
imum is achieved when the curve is optimal. The data terms∣∣ξ(x)− ξ̄in

∣∣2 and
∣∣ξ(x)− ξ̄out

∣∣2 ensure the approximation to
the cues map, while the regularisation term, |C|, guarantees that
the boundary between the regions has a minimal length. The
statistic nature of this formulation, in the form of minimum
variance, implies that no preliminary smoothing is needed. In
essence, it also translates into little dependence on the curve
initialisation (Chan and Vese, 2001).

Solving this minimisation problem through a level-set formula-
tion requires defining the curve C as a function of φ. We utilise
the Heaviside function and Dirac delta

H(x) =

{
1, x ≥ 0,

0, x < 0,
δ(x) =

{
1, x = 0,

0, else,
(4)

to recover Ωin,Ωout, and C from the level-set function φ. The
energy equation then becomes

E(φ, ξ̄in, ξ̄out) = µ1

∫
Ω

∣∣ξ(x)− ξ̄in
∣∣2 H(φ(x))dx

+ µ2

∫
Ω

∣∣ξ(x)− ξ̄out
∣∣2 (1−H(φ(x)) dx

+ ν0

∫
Ω

δ(φ(x))|∇φ(x)|dx.

(5)

This functional is similar to Eq. (3), with the distinction that
the energy is computed over the entire domain while the Heav-
iside function controls the influence of the “inside” and “out-
side” terms. The definition of the Heaviside function readily
enables the computation of the mean cue values inside and out-
side the curve

ξ̄in =

∫
Ωin

ξ(x)dx =

∫
Ω
ξ(x)H(φ)dx∫
Ω
H(φ)dx

,

ξ̄out =

∫
Ωout

ξ(x)dx =

∫
Ω
ξ(x) (1−H(φ)) dx∫
Ω

(1−H(φ)) dx
.

(6)

Practically, regions where both the Heaviside function and the
Dirac delta are zero will result in zero-motion, and will not
propagate from the initial function. Instead, it is common to
utilise an approximate, smooth form, of both the Heaviside
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function and the Dirac delta, defined by

Hε(x) :=


1
2

(
1 + x

ε
+ 1

π
sin
(
πx
ε

))
, |x| ≤ ε

1, x > ε

0, x < −ε,
(7)

δε(x) := H ′ε(x) =

{
1
2ε

(
1 + cos

(
πx
ε

))
, |x| ≤ ε

0, |x| > ε.
(8)

Keeping ξ̄in, ξ̄out fixed and minimising Eq. (5) with respect to
φ, we obtain the time-dependent Euler-Lagrange equation:

φt = δε(φ)
[
−µ1

[
ξ(x)− ξ̄in

]2
+ µ2

[
ξ(x)− ξ̄out

]2
+ ν0∇ ·

∇φ
|∇φ|

]
,

(9)

where φt denotes the time derivative. Eq. (9) defines the evolu-
tion of the level-set function towards optimum; it is discretised
by an explicit Euler scheme

φi+1 = φi + ∆t φt, (10)

where i is the iteration index and ∆t the temporal step-size.

One sees that Eq. (9) is of a region competition form: if the local
cue ξ(x) at point x is more similar to the average of the interior,
then x is assigned to the interior (the curve moves outwards)
and vice versa. The solution is reached by the curves that are
formed at the minimum when φt = 0.

2.2 Adaptation to 3D point clouds

The evolution of the level-set (Eq. 9) requires the computa-
tion of derivatives of φ at each iteration. In the standard case,
where Ω ⊂ IR2 is assumed as a planar surface, it can be dis-
cretised by a uniform Cartesian grid. This enables the use of
finite differences to numerically compute the required deriv-
atives. We now consider a two-dimensional smooth manifold
Ω ⊂ IR3 embedded in 3D space, i.e., an arbitrary surface.
Derivatives on this manifold can be estimated by finite differ-
ence approximations defined on a triangulated mesh (Sethian
and Vladimirsky, 2000). Here, we aim to avoid triangulation
and the associated introduction of artefacts as well as the com-
putational overhead. Instead, we use a moving least squares
approach (similar to Ho et al. (2005)), that allows defining sur-
faces in 3D space by the points that lie on them rather than by
triangulation. Specifically, the surface Ω is represented by a
point cloud X := {xi ∈ Ω, i = 1, . . . , n}. In order for this to
be an adequate representation of the surface, we assume that the
surface is sufficiently covered with points. Formally, we require
that

max
y∈X
|x− y| < hmax, ∀x ∈ Ω. (11)

The cues ξ(x) are given for all x ∈ X . The level-set function
φ however need not be computed for all points, but rather only
for those points within a certain distance from the zero-level-
set, similar to classical narrow-band methods. Practically, this
means that only points near a zero crossing are updated:

{x ∈ X | ∃y ∈ X : |x− y| < hmax ∧ φ(x)φ(y) ≤ 0} (12)

This observation is essential, as otherwise processing large
point clouds would be computationally infeasible.

To obtain a discretisation of the surface derivatives occurring
in Eq. (9), we employ weighted least-squares approximations.
For an arbitrary function f : Ω → IR, the projection of f onto
the two-dimensional tangent plane spanned by ti1 and ti2 at a
point xi is approximated by a 2D quadratic polynomial

f(x) ≈ f̃i(x) :=
∑
j

ajpij(x) = pi(x) · ai, (13)

where
pi ≡ (1, ui, vi, uivi, u

2
i , v

2
i ) (14)

and ui, vi are functions of x given by

ui(x) := ti1 · (x− xi), vi(x) := ti2 · (x− xi).

The coefficients ai are determined via weighted least-squares
fit of neighbouring points

ai = argmin
b∈IR6

∑
j

wh(|xj − xi|) (pi(xj)b− f(xj))
2 , (15)

where wh : IR+
0 → IR+

0 is the Wendland weighting function

wh(d) =

{(
1− d

ε

)4 (
4 d
h

+ 1
)
, d < h,

0, d ≥ h.
(16)

Since wh vanishes outside of the interval [0, h], it suffices to
consider a neighbourhood of radius h for each point. We will
use h = ε.

Note that f̃i : IR3 → IR can be interpreted as a 3D extension
of f at xi which is constant along the normal direction. This is
used to define an approximate gradient operator ∇̃ by

∇̃fi := ∇f̃i, so that ∇f(xi) ≈ ∇̃fi(xi). (17)

The gradient of the polynomial f̃i can be calculated analytically.

2.3 Distance regularisation

To avoid numerical errors or instability, classical level-set meth-
ods require redistancing to keep the level-set function φ as an
approximate signed distance function. For surfaces, redistan-
cing involves computing the shortest path (i.e., the geodesic)
between points and the zero-level-set (Kimmel and Sethian,
1998). Various methods exist for that task, such as the widely
used fast marching algorithm (Sethian, 1996). Instead of em-
ploying an explicit redistancing step, Li et al. (2010) proposed
to include a distance regularisation term directly in the level-set
evolution equation. Adapting this method for the 3D case, the
full level-set evolution equation is then given by

φt = δε(φ)
[
−µ1

[
ξ(x)− ξ̄in

]2
+ µ2

[
ξ(x)− ξ̄out

]2
+ ν0∇̃ ·

∇̃φ
|∇̃φ|

]
+λ∇̃ · (d(|∇̃φ|)∇̃φ),

(18)

where d(x) : IR→ IR is defined as

d(x) =

{
sin(2πx)

2πx
, x < 1,

x−1
x
, x ≥ 1.

(19)
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In Eq. (18), µ1, µ2 control the smoothness of the curve and ν0

constrains its length, measured in dataset units. The strength of
the regularisation is determined by λ. We use µ1 = µ2 = 1 and
ν0 > 0, λ > 0 in all our computations.

2.4 Cues for detection

We expect good geometric cues to highlight interesting regions
within a point cloud of a terrain. Such areas are characterised
by a change in the surface. More specifically, the distinctness of
a point or a region is estimated by measuring the deviations in
both normal and curvature of a wider surround from a narrower
centre (Arav and Filin, 2020):

dni =
1

K

K∑
j=1

Wij · (ni − nj)

dκi =
1

K

K∑
j=1

Wij · (κi − κj)

(20)

withK the neighbourhood size, ni and κi the estimated normal
and curvature at point i, respectively, and Wij the weighting
function

Wij(xi − xj) =
1

σ
√

2π
e
− 1

2

(
||xi−xj ||2−ρ

σ

)2

. (21)

This scheme is based on a Normal distribution whose centre
is at ρ, and σ defines the size of the surrounding. This way,
a centre-surround operator is established, so that the surround-
ings at distance ρ are intensified, while the weights of close
and far regions are lowered. Eventually, dn and dκ express
the weighted mean difference between the point x and the sur-
rounding surface for both normal and curvature, respectively.
The saliency is given by:

ξ(x) = 2− [exp (−dn(q)) + exp (−dκ(q))] (22)

where the exponents act as a normalisation operator. The result-
ing saliency-based cues at each point are then used for evolving
the level-set function (Eq. 18).

3. RESULTS AND DISCUSSION

We show the utilisation of the proposed method to extract dif-
ferent types of geomorphological entities. The use of three-
dimensional point clouds for the documentation and study of
geomorphological processes is gaining popularity in recent
years. This has to do with the growing understanding that land-
forms are better studied in their natural 3D form and with the
growing availability of 3D point cloud acquisition platforms
(Sofia, 2020). The variety of geomorphological entities, forms,
scenes, and sizes presents however a challenge to existing ex-
traction schemes. Therefore, common approaches usually tar-
get specific landforms in heuristic and localised ways, and re-
quire the development of designated models for each scene and
object (e.g., Xu et al., 2017; Wu et al., 2018; Dong et al., 2020).
Here we show that the proposed method allows a more general-
ised detection. We begin with the extraction of morphological
features in a terrestrially scanned cave and then move to the ex-
traction of large-scale entities from an airborne laser scan. Each
dataset represents a different aspect of the proposed method.
The first displays an example to the three-dimensionality of
the model; while the second presents a comparable dataset, as

it was previously analysed (Arav and Filin, 2021). By show-
ing the various scenes, features, and acquisition techniques, we
demonstrate the flexibility of the proposed method.

In all our computations, simple knn neighbourhoods with k =
12 were used to compute the normals and tangent planes. The
weighting parameters for the level-set evolution (Eq. 18) were
set to µ1 = µ2 = 1.0, λ = 0.001 throughout. The parameters
h and ν0 depended on the dataset. Note that the step size ∆t
in Eq. (10) was chosen based on the Courant-Friedrichs-Lewy
(CFL) condition (Li et al., 2010). That is to say, the higher the
spatial resolution is, the smaller the time-step. The initial level-
set function was chosen as simple voxelization of a given size d
with the zero-level-set lying at the voxel borders, i.e.,

φ0(x) =

{
4h if

(
bx1
d
c+ bx2

d
c+ bx3

d
c
)

mod 2 = 0,

−4h else.
(23)

Our quantitative evaluations of the extraction were performed in
reference to manually delineated entities. These were extracted
by a user not associated with the research to assess the entities
extracted in Arav and Filin (2021). Two main measures were
used:

precision =
TP

TP + FP
, (24)

recall =
TP

TP + FN
(25)

with TP refers to true-positive, FP false-positive, and FN false-
negative.

The model was implemented in Python 3.8, using Ubuntu
20.04 operating system on an 11th Gen Intel®CoreTM i7
CPU@2.80GHz, with 16GB RAM.

3.1 Pockets, niches and blocks in a cave

The first dataset features a point cloud acquired by a ter-
restrial laser scanner (Riegl VZ2000) in the Untere Traisen-
bacher Höhle, a small cave located on the steep northern slope
of Ebenberg, Austria (lat. 47◦57′, long. 15◦42′, Fig. 1). Fig. (1)
shows shaded representations of the cave, as acquired by a
single scanning position. It can be seen that the dataset includes
occlusions (marked as red rectangles). These are characteristic
to terrestrial laser scanning in general, and in cave measure-
ments in particular, adding complexity to the analysis of the
data. Mapping and characterising the morphological features
on the cave surface normally would require isolating the indi-
vidual planes and rasterizing each one of them. Fig. (2) presents
the projection of the right wall of the cave onto the yz-plane (a)
and its rasterization using the nearest neighbour interpolation at
1 mm grid size (b). Since the wall is not rectangular and has
occluded regions, the rasterization requires interpolation over
large areas. Note that due to the 2D projection, the floor, ceil-
ing, and the other walls cannot be represented in the rasterized
version.

To allow a 2D level set extraction, we define the cues by visual
saliency. Fig. (3) shows the results when applying the Fine
Grain (Wang and Dudek, 2014) approach on the rasterized wall.
Here we used the implementation of openCV (OpenCV, 2015).
It shows that salient regions are mostly at the edges of the wall
or at occluded regions. Therefore, application of the level-
set method on this saliency map will delineate the interpolated
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Figure 1. Shaded representation of the cave point cloud: a look inside (left) and from the outside (right). The red rectangles represent
occluded regions.

Figure 2. A slice cut from the cave dataset of the right wall: a)
point cloud representation; b) raster representation.

areas, rather than the morphological entities in the wall (e.g.,
pockets and niches). Moreover, this procedure will have to be
repeated for the ceiling, floor, left, and rear walls and then the
results should combined in a suitable manner to describe the
cave. Instead, we propose to characterize the entire cave at

Figure 3. Saliency estimation on the raster, using Wang and
Dudek (2014) method. The salient regions refer mostly to

occluded areas that were interpolated in order to create the raster.

once, without the need to divide it into sections.

We set the minimal object size (ρ) to 0.3 m, being the average
size of the larger blocks on the ground. Fig. (4) presents the
estimated saliency map. It can be seen that on the floor of the
cave, blocks that are larger than 0.3 m were marked as salient.
Also, pockets and niches on the walls and ceiling were detected.

Since the saliency here is computed point-wise, no interpolation
was needed, contrary to the rasterized approach. Moreover, as
the estimation is carried out according to available neighbour-
hood. Therefore, occluded regions have little to no effect on the
saliency estimation (Fig. 5).

Figure 4. Estimated saliency in the cave dataset. The entire cave
is analysed at once.

Next, we apply the proposed method for the extraction of the
entities. The level-set function was initialized to a voxel grid
of d = 0.1 m. The timestep was set to ∆t = 0.05, based
on the spatial resolution. The majority of the development is
achieved within the first 50 iterations. Then, convergence slows
down and only small modifications are fine tuning the extrac-
tion. Fig. (6) present extracted pocket and niche from the right
wall. These allow morphological characterisation of elements
that otherwise would be difficult to obtain. Note that the en-
tities were extracted from the entire cave, regardless of their
location within it, i.e., they can be part of the ceiling, floor, or
walls. This is carried out in a single process, with an arbitrary
initialization. Moreover, even in occluded regions a full extrac-
tion was materialised, since some point were recorded on the
surface, satisfying Eq. (11).

3.2 Gullies and sinkholes in flat terrain

The second dataset features an airborne laser scan acquired
over the Ze’elim alluvial fan in the Dead Sea, Israel (lat.
31◦22′, long. 35◦24′ ). The featured point cloud spans over
480×375 m2 at point density of 8 pts/m2. Fig. (7a) presents the
analysed region. Two main gullies dissect the mudflat. These
gullies fork several times and create smaller and shallower gul-
lies. Therefore, they vary in both width (between 5-9 m) and
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Figure 5. Point-based saliency estimation of the right wall of the
cave. Occlusions do not affect the estimation. Details 1 and 2

are later extracted and are shown in Fig. (6)

depth (2-6 m). Sixty-six sinkholes are scattered along the fan,
also in varying sizes, with perimeters between 5 m and 40 m.
We aim to extract points that describe gullies and sinkholes
from the point cloud. Note that common approaches target one
feature per detection model, and even then do not focus on the
points but rather on polygons or polylines (e.g., Hofierka et al.,
2018; Wu et al., 2018). We use 2 m minimal object size (ρ)
to estimate the saliency which is presented in Fig. (7b). It can
be seen that even relatively shallow sinkholes and gullies are
marked as salient.

Fig. (8) shows the development of the level-set function, which
was initialized with a voxel grid of d = 10 m. Though the
current dataset inherently differs from the previous one, both
by acquisition technique and resolution, only three parameters
required adaptation: h, which is given by the point cloud resolu-
tion, is set to 1.5. The parameter ν0 constrains the curve length
and is set to 0.025 to better fit the expected characteristics of
the entities of interest. Lastly, the step size ∆t was changed to
10. It should be noted that the initialisation has little bearing on
the final result. Nonetheless, it affects the number of iterations
required for convergence.

The final extraction is presented in Fig. (9). It can be seen that
both gullies and sinkholes were extracted in full. Quantitative
analysis shows 91% precision and 89% recall. The lower re-
call is due to the missing points on sinkholes walls, which cre-
ated discontinuity of the surface Ω and violate the assumption
in Eq. (11). Additionally, sinkholes that are smaller than 3 m
were not detected. This is probably as a result of the interval
size of the Wendland weighting function (Eq. 15).

A comparative analysis between the results of the proposed
method and the approach proposed in Arav and Filin (2021),
shows similar detection precision (92% vs. 91% in the current
work). It can be seen that instead of delineation, the proposed
method extracts the entities themselves rather than just a de-
lineation (Fig. 9 vs. Fig. 10). This allows an in depth mor-
phological characterisation of the entire entity, rather than their
contours.

4. CONCLUSIONS

In this paper we presented a 3D point-based level-set approach
to extract entities from point clouds. In the proposed method,
we used a region-based model and a moving least squares ap-
proach to reconstruct the local surface and for numerical dif-
ferentiation. This allowed the extraction of the original points
that belong to salient entities. To the best of our knowledge, a
definition of a level-set model over a 3D point cloud has never
been introduced let alone used as an extraction approach in such
datasets. The pointwise nature of the model and result suggests
that no new artefacts are being introduced and no preprocessing
is required. Moreover, as the detection is driven by visual sali-
ency, the entities are found simultaneously without the need for
training or labelling data, and by using an arbitrary initialisa-
tion.

We demonstrated the application of the proposed methodology
by extracting geomorphological entities in a complex cave and
in open terrain. The proposed method allowed the extraction of
various geomorphological entities in both scenes, regardless of
their form, size, or position. This was done with little adapta-
tion between datasets and had reached high precision and recall
rates.

It should be noted, however, that as the proposed method as-
sumes continuous surfaces, it may still be sensitive to occlu-
sions. Such regions are common in point cloud data, and there-
fore should be further investigated. In this regard, a better defin-
ition of a point neighbourhood rather than the simple kNN-
neighbourhood may better define the surface, and thus allow
an improved solution. The proposed extraction method is inde-
pendent of the saliency, and can use other cues. These can be
computed either by machine-learning tools, or with the intro-
duction of non-geometric information (e.g., radiometric).
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