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ABSTRACT: 

 

Knowledge on the spatial-temporal variation of soil moisture is essential to many hydrometeorology applications. In this study, we 

proposed a new soil moisture index (SMI) from passive microwave observations, aiming to capture the soil moisture variability. The 

new SMI is developed based on the underlying physical basis that vegetation and surface roughness exert similar effects on the 

variation of land surface emissivity and microwave polarization difference radio (MPDI), but they act in an opposite way compared 

with soil moisture. Hence, we can obtain the SMI value in a two-dimensional space by combining use of land surface emissivity and 

MPDI to isolate the contribution of soil moisture and that of vegetation and surface roughness. We calculated the SMI by using the 

L-band SMAP Level-3 datasets and validated it with five well calibrated and dense soil moisture networks and also compared it with 

SMAP and ESA CCI soil moisture products. The results show the SMI exhibits the highest R (0.87) and lowest RMSE (0.028 m3 m-3) 

value after removing the systematic bias by using the cumulative distribution function (CDF) matching technique among the satellite 

products during the whole study period, thus demonstrating its good capability of tracking the temporal variation of soil moisture 

and its potential usage in various hydrometeorology applications. 
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1. INTRODUCTION 

Soil moisture is a key state variable that controls land surface 

evapotranspiration and energy and carbon transfer between the 

soil and atmosphere (Seneviratne et al., 2010). In situ 

measurements are believed to provide the most accurate soil 

moisture information. However, it is well known that soil 

moisture exerts large heterogeneity over both space and time 

since it is affected by many environmental factors (e.g., 

precipitation, vegetation, soil texture, and topography, etc.), and 

thus the limited in situ measurements cannot be the 

representative of soil moisture at large scales (Zeng et al., 

2015a). 

Microwave remote sensing, especially the passive radiometers 

have been proved to be a promising and effective avenue to 

monitor soil moisture at global scales both temporally and 

spatially. Over the last few decades, various operational passive 

microwave-based soil moisture algorithms, such as the single 

channel algorithm (SCA), the dual channel algorithm (DCA), 

the land parameter retrieval model (LPRM), and the multi-

temporal dual channel algorithm (MT-DCA) (Jackson, 1993; 

Owe et al., 2008; Konings et al., 2016) have been developed, 

and the corresponding soil moisture products have been 

produced and released to the public. These products are derived 

from a variety of passive microwave satellites/sensors, including 

the C/X-band Advanced Microwave Scanning Radiometer-

Earth Observing System (AMSR-E) and its successor AMSR2, 

the Windsat, and the Fengyun-3 (FY3), and the more recently 

soil moisture dedicated mission, i.e., the Soil Moisture and 

Ocean Salinity (SMOS) and Soil Moisture Active Passive 

(SMAP) operating at L-band (Wigneron et al., 2017; Cui et al., 

2018). Extensive validation work for various satellite soil 

moisture products have been carried out in recent years (Brocca 

et al., 2011; Zeng et al., 2015a, 2016; Al-Yaari et al., 2019; Ma 

et al., 2019). The results demonstrated that though the products 

are becoming mature, their performance varies over time and 

space, and there are still many uncertainties in the satellite soil 

moisture products. The two main perturbing factors which 

degrade the accuracy of soil moisture retrievals are vegetation 

and surface roughness (Wigneron et al., 2017). Since vegetation 

and surface roughness vary with time and space, auxiliary data 

are usually required to correct their effects in the soil moisture 

retrieval algorithms. The optical vegetation indices, such as 

normalized difference vegetation index (NDVI) or leaf area 

index (LAI) are often adopted to characterize the effects of 

vegetation. However, the optical derived vegetation water 

content (VWC) is not in accordance with the true VWC seen by 

microwave. This is because that the optical wavelength is much 

smaller than the microwave which can only represent the 

information of a very thin layer of the vegetation canopy, 

whereas the microwave (e.g., L-band) is able to penetrate 

vegetation with low to moderate coverage easily and thus 

denotes the information of vegetation stem and branches. 

Moreover, it is well known that the optical vegetation indices 

also easily get saturated in densely vegetated areas. Compared 

with vegetation, it is much more difficult to characterize the 

temporal dynamic of surface roughness. Since the surface 

roughness measurements are very scarce especially at a global 

scale, global or land-specific constant values are usually set for 

surface roughness in the soil moisture retrieval algorithms 

(Zeng et al., 2016). However, the constant value sets are not in 

line with the actual surface, and thus inevitably brings errors in 
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the soil moisture retrievals. Therefore, how to decouple the 

influence of soil moisture and those of vegetation and surface 

roughness poses a technical challenge. 

On the other hand, there is an increasing interest to obtain the 

temporal variability of soil moisture since many previous 

studies have reported that for most applications (e.g., data 

assimilation), it is more important that the relative dynamics of 

soil moisture are reproduced rather than their absolute values 

(Reichle and Koster, 2004; Drusch et al., 2005). For instance, 

Koster et al. (2009) reported that the true information content of 

soil moisture data lies not necessarily in their absolute 

magnitudes but in their time variability. Under such background, 

the new European space agency climate change initiative (ESA 

CCI) soil moisture product was developed which aims to 

capture the temporal variations and trends of soil moisture by 

fusing both active and passive soil moisture products (Dorigo et 

al., 2017). 

The purpose of this paper includes three aspects: 1) to develop a 

new passive microwave-based soil moisture index (SMI) which 

aims to reproduce the temporal variations of soil moisture; 2) to 

use the newest L-band SMAP brightness temperature to 

calculate SMI since L-band is less influenced by vegetation and 

surface roughness compared with C/X-bands; 3) to decouple the 

effects of soil moisture and those of vegetation and surface 

roughness independent of auxiliary data as much as possible. 

Finally, we validated the new developed SMI with ground soil 

moisture measurements collected from five densely-

instrumented networks covering a wide range of ground 

conditions and also compared with the SMAP passive official 

soil moisture product and ESA CCI product. 

 

2. SOIL MOISTURE INDEX 

In passive microwave remote sensing of soil moisture, the three 

foremost perturbing factors are vegetation, surface roughness 

and surface temperature. For L-band SMAP and SMOS, the 

surface temperature is obtained from model simulations, such as 

Goddard Earth Observing System (GEOS)-5 model and the 

European Centre for Medium-Range-Weather Forecasts 

(ECMWF) model; while for multi-band sensors such as AMSR-

E/AMSR2, the surface temperature is usually retrieved from 

high frequency band (e.g., the v-pol Ka-band) (Owe et al., 2008; 

Zeng et al., 2015b; Cui et al., 2018). Previous study found that 

though these surface temperature inputs have different bias in 

different regions, their overall accuracy is acceptable, 

particularly for the model simulations (Ma et al., 2019). 

Compared with surface temperature, it is much more difficult to 

characterize the effects of vegetation and surface roughness, and 

they are usually ignored or assumed as unchanged in previous 

soil moisture indices. Additionally, previous studies have found 

that vegetation optical depth (τ) and surface roughness (h 

parameter) affect the microwave emission similarly, and they 

can be grouped into one factor (e.g., exp(−2τ−h) in the τ-ω 

model) to reduce the unknown parameters (Zeng et al., 2015b). 

On one hand, surface roughness is considered to generally 

increase soil emissivity due to the increase in the surface area of 

the emitting surface (Wigneron et al., 2017). That is, the soil 

emissivity increases as the soil surface becomes rougher. 

Similarly, vegetation emits radiation itself though it attenuates 

and scatters the emission from soil surfaces, and thus enlarges 

the overall land surface emissivity (Mo et al., 1982). However, 

according to the Fresnel equations, soil reflectivity increases 

monotonically as soil moisture increases, and therefore the soil 

emissivity (1-soil reflectivity) decreases with the increase of soil 

moisture. On the other hand, it is found that microwave 

emission from a smooth flat surface at an incidence angle far 

from nadir is different at two polarizations (h-pol and v-pol), 

while the presence of surface roughness leads to the reduction 

of the polarization difference (Paloscia et al., 2018). Likewise, 

it is well documented that the polarization difference exhibits a 

decreasing trend as vegetation biomass increases, independently 

of the vegetation type (Santi et al., 2017; Paloscia et al., 2018). 

Consequently, the microwave polarization difference ratio 

(MPDI) is usually adopted to estimate the vegetation biomass in 

previous studies (e.g., Santi et al., 2017). Nevertheless, soil 

moisture significantly enlarges the polarization difference. That 

is the difference between v-pol and h-pol emissivity increases as 

soil moisture increases (Chen et al., 2018). In summary, 

vegetation and surface roughness have similar effects on the 

variation of both land surface emissivity and polarization 

difference ratio, but they act in an opposite direction compared 

with soil moisture, and thus make decoupling the effects of soil 

moisture from vegetation and surface roughness possible. 

Based on the theoretical background, we proposed a new SMI 

by combining use of land surface emissivity and MPDI from 

passive microwave observations, which aims to decouple the 

effects of soil moisture and those of vegetation and surface 

roughness to capture the temporal variation of soil moisture. 

Figure 1 shows the conceptual sketch of SMI, which is 

proposed based on two physical phenomena: 1) the MPDI 

exhibits a decreasing trend as vegetation and surface roughness 

increases (i.e., they both exert a depolarizing influence on 

microwave emission), while soil moisture enhances the 

polarization difference (see the y-axis); 2) vegetation and 

roughness generally impose positive effects on surface 

emissivity, while soil moisture and emissivity are negatively 

correlated (see the x-axis). Hence, we can use both MPDI and 

land surface emissivity in a two-dimensional space to isolate the 

contribution of vegetation and surface roughness. Another 

advantage of using MPDI and land surface emissivity is that the 

effects of land surface temperature are minimized. It is known 

that previous optical or microwave indices such as NDVI, radar 

vegetation index (RVI) or soil wetness index (SWI) are all 

ratio-based indices. In contrast, our proposed SMI is a distance-

based index, calculated from emissivity and MPDI. The 

distance originated from ep(max) point on the x-axis to the 

scatters in Figure 1 denotes the SMI value. We see visually that 

larger distance means larger SMI value corresponding to higher 

soil moisture. Hence, the following mathematical formula was 

proposed to calculate SMI as: 

2 2( ) ( (max) ( )) ( )ori p pSMI i e e i MPDI i        (1) 

where the subscript p is the polarization (h or v), i denotes the 

original SMI value for a specific satellite pixel at ith day, ep(i) 

and MPDI(i) represent the corresponding emissivity and 

microwave polarization difference index at day i, respectively, 

ep(max) denotes the multiyear maximum value of ep(i) for a 

special satellite pixel. 

However, the original MPDI and emissivity have different 

scales (in land surface, the MPDI generally ranges from 0 to 0.1, 

while emissivity is in the range of 0 to 1). Therefore, we 

normalized the original emissivity and MPDI to a comparable 

scale from 0 to 1 as: 

( ) (min)
( )

(max) (min)
p p

p nor
p p

e i e
e i

e e
                    (2) 

( ) (min)
( )

(max) (min)nor
MPDI i MPDI

MPDI i
MPDI MPDI

           (3) 

where max and min denote the maximum and minimum values 

for ep and MPDI at a specific pixel for the entire study period. 
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Finally, we need a constant value C to normalize the final SMI 

in the range of 0 to 1, where 0 denotes the driest soil and 1 

denotes the wettest soil as: 

2 2( (max) ( ) ) ( )
( ) p nor p nor nor
f in

e e i MPDI i
SMI i

C
     (4) 

where ( )fSMI i
 
represents the final expression of SMI, and the 

subscript nor denotes the normalized parameters. Let’s see the 

first term of equation (4) on the right side, i.e., 

2( (max) ( ) )p nor p nore e i , the SMI can be calculated by using 

emissivity at a single polarization (h-pol or v-pol, i.e., 

2( (max) ( ) )h nor h nore e i  or 2( (max) ( ) )v nor v nore e i ) or their 

combinations 

2( (max) (max) ( ) ( ) )h nor v nor h nor v nore e e i e i . Simply 

speaking, if SMI is calculated by using a single polarization, C 

equals to 2  since the maximum SMI approaches to 2 , and 

if SMI is calculated by using the combinations of h and v-

polarizations, C equals to 5  since theoretically the maximum 

SMI approaches to 5  in this case. 
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Figure 1. Conceptual diagram of the new developed SMI. The 

distance originated from ep(max) point on the x-axis to the 

scatter denotes the SMI value. The slanting yellow line denotes 

a small SMI indicating that SM is low, while the slanting blue 

line denotes a large SMI indicating that SM is high. 

 

3. DATA 

3.1 Ground observations 

Ground soil moisture measurements from five densely-

instrumented networks covering a wide range of ground 

conditions were used for the validation of SMI and other 

satellite soil moisture products in this study. These networks 

include the Little Washita watershed (LWW) network (20 sites) 

in the United States, the REMEDHUS network (20 sites) in 

Spain, the real-time in situ monitoring for agriculture (RISMA) 

network (23 sites) in Canada, and the Naqu (56 sites) and Pali 

networks (25 sites) in the Tibetan Plateau, China (Chen et al., 

2017; Cui et al., 2018; Ma et al., 2019). Table 1 summaries the 

main information of the five networks. Due to the large dynamic 

range of soil moisture and various land cover and climate 

conditions in these regions, it is believed to be robust to 

evaluate the performance of SMI by using the five networks in 

the study. 

 

Networks Sites 
Depths used 

(cm) 

Time step 

(min) 
Country Land cover Climate Data Period 

LWW 20 5 5 America Grasslands Temperate 2015.4.1-2016.12.31 

REMEDHUS 20 0~5 60 Spain Croplands Temperate 2015.4.1-2016.12.31 

RISMA 23 0~5 60 Canada Croplands Cold 2015.4.1-2016.11.30 

Naqu 56 0~5 30 China Grasslands Polar 2015.4.1-2016.6.30 

Pali 25 0~5 30 China Grasslands Polar 2015.7.1-2016.6.30 

Table 1. Main information of the five networks used in the study 

 

. 

3.2 Satellite data sets 

In this study, we applied the SMI to the L-band SMAP 

radiometer at a grid resolution of 36 km. The SMAP L3 

radiometer global daily 36 km EASE-Grid soil moisture product 

(SPL3SMP, V5) was adopted, which is available from the 

National Snow and Ice Data Center (NSIDC) 

(https://nsidc.org/data/SMAP/SMAP-data.html). In this product, 

the SMAP brightness temperature at two polarizations (h-pol 

and v-pol), effective soil temperature, and soil moisture (by 

using the SCA-V algorithm) were provided. Due to increased 

thermal equilibrium conditions of land surface during morning 

time, we used the h-pol and v-pol brightness temperature as 

well as the effective soil temperature (to calculate the land 

surface emissivity from brightness temperature) at SMAP 

descending pass (6 A.M. local solar time) to obtain the SMI 

values. We also adopted two widely used satellite-based soil 

moisture products for inter-comparison purpose. One is the 

SMAP official passive soil moisture products (36 km) retrieved 

by using the SCA-V algorithm, and the other is the ESA CCI 

soil moisture (V04.2) product which is a global daily soil 

moisture product with a spatial resolution of 0.25°. The ESA 

CCI datasets consists of three datasets, including the active, 

passive, and combined active and passive soil moisture products. 

In this study, the combined soil moisture product was used 

since it blends the advantage of both active and passive soil 

moisture products. For a consistent and fair comparison, we 

used the nearest interpolation method to resample the ESA CCI 

to a grid resolution of 36 km to be consistent with that of 

SMAP passive products. 

  

4.  RESULTS AND DISCUSSION 

4.1 Optimal polarization for SMI calculation 

In equation (4), it is seen that SMI can be calculated by using 

the emissivity at a single polarization (h-pol or v-pol) or their 

combinations. To find the optimal polarization for SMI 

calculation, we compared the correlation coefficient (i.e., R) 

between the station-averaged ground observations from the five 

networks and SMI calculated by h-pol emissivity, v-pol 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-125-2020 | © Authors 2020. CC BY 4.0 License.

 
127



 

emissivity, and their combinations, shown in Figure 2. It is seen 

that the three SMI values all correlate well with ground 

observations in the five networks with an averaged R value 

large than 0.8. Generally, SMI calculated by combining use of 

h-pol and v-pol emissivities exhibits marginally better 

performance than the SMI calculated by a single polarization. 

Accordingly, we adopted the SMI values calculated by 

combination of both h-pol and v-pol emissivities. 
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Figure 2. Correlation coefficient (p-value < 0.05) between in 

situ soil moisture and SMI calculated by h-pol emissivity, i.e., 

SMI (h), by v-pol emissivity, i.e., SMI(v), and by combination 

of h-pol and v-pol emissivities i.e., SMI (h + v). 

 

4.2 Validation of original SMI 

We calculated the time-series SMI by using the SMAP 

brightness temperature and effective soil temperature. Figure 3 

shows the temporal pattern of SMI and station-averaged soil 

moisture measurements from the five networks. We see the SMI 

well tracks the temporal evolution of soil moisture in all 

network regions which cover different land surface and climate 

conditions. Due to frequent rainfall, the soil moisture at the five 

network regions has a large dynamic range during the entire 

study period. Particularly, the precipitation concentrated in 

summer in the Tibetan Plateau, and thus we see the soil 

moisture increases markedly at the beginning of June and 

decreases steeply at the end of September in Naqu and Pali 

networks. It is observed that the SMI well capture this transition 

from wet to dry as well as from dry to wet. Table 2 lists the 

correlation coefficient of SMI as well as SMAP and ESA CCI 

soil moisture products with ground soil moisture observations 

in the five network regions. We see all the three datasets 

correlate well with in situ measurements, indicating that they 

can capture the temporal variability of soil moisture. The SMI 

exhibits the highest R value ranging from 0.71 to 0.97 with an 

overall averaged value of 0.87, followed by SMAP (0.80) and 

ESA CCI (0.69). The gray shadows displayed in Figure 3 

indicate the soil frozen days. It is known that compared with the 

work in unfrozen soils, inferring soil moisture (more precisely, 

the soil liquid water content) from satellites during the frozen 

season remains largely unexplored. The liquid and frozen water 

can co-exist in the soil matrix up to several degrees below 

freezing point which depends on soil type, temperature and 

water content, and the in situ sensors are still sensitive to the 

liquid water in frozen soils (Wang et al., 2016). Some previous 

studies have confirmed the possibility of satellites to detect the 

soil liquid water content during frozen seasons (Wang et al., 

2016; Zheng et al., 2019). It is seen that during the frozen 

period, the soil liquid water content is stable in Naqu and Pali 

networks since there was nearly no rain during this period in the 

Tibetan Plateau (Zeng et al., 2015a), and the SMI capture this 

phenomenon. To further illustrate the improved capability of 

SMI to capture soil liquid water content in frozen period, we 

calculated the correlation coefficient of SMI and MPDI which 

was also often used to detect soil moisture variation in previous 

studies (Chen et al., 2018) with soil liquid water content 

measured by in situ sensors during the frozen seasons at Naqu 

and Pali networks, shown in Figure 4. The R value for SMI is 

0.70 and 0.83 in Naqu and Pali networks receptively, which is 

much higher than that of MPDI (0.27 and 0.51 in Naqu and Pali 

networks respectively), demonstrating the superiority of SMI 

over MPDI to capture soil liquid water content in frozen 

seasons. Nevertheless, it should be mentioned that due to the 

uncertainty of in situ measurements in frozen soils, the 

capability of SMI to detect soil liquid water content in frozen 

seasons should be further investigated and validated before 

drawing a solid conclusion. In addition, it is noticed that SMI 

and satellite soil moisture products show poorer performance in 

RISMA network, and the possible reasons may be that: 1) the 

land cover of RISMA is cropland, and previous studies found 

that satellite soil moisture products often showed higher 

accuracy in grassland region than in cropland region which may 

be due to the complexities of the cropland, e.g., the periodic 

row structure, diversity of crop types and the temporal changes 

in surface roughness and vegetation water content (Colliander et 

al., 2017); 2) the RISMA network has a cold climate, and a 

recent study has observed worse performance for SMAP soil 

moisture product in cold regions than in arid regions (Ma et al. 

2017); 3) the layout of the in situ sites in RISMA is not as 

uniform as that in other four networks (not shown here), which 

may cause larger uncertainties from the ground measurements. 
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(d)                                                                     (e)  

Figure 3. Temporal behavior of station-averaged soil moisture and proposed SMI calculated for (a) LWW, (b) REMEDHUS, (c) 

RISMA, (d) Naqu, and (e) Pali. Soil frozen days are marked by gray shadows. 
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(a)                                         (b)                                       (c)                                          (d) 

Figure 4. Scatterplot comparison of station-averaged soil moisture with SMI for (a) Naqu and (c) Pali and normalized MPDI for (b) 

Naqu and (d) Pali calculated by using SMAP passive observations at 36 km during the frozen period. 

 

Networks 

R N 

SMI SMAP 
ESA 

CCI 
SMI SMAP 

ESA 

CCI 

LWW 0.85 0.88 0.76 313 312 557 

REMEDHUS 0.84 0.84 0.82 342 342 517 

RISMA 0.71 0.59 0.39 309 296 405 

Naqu 0.97 0.88 0.80 170 130 178 

Pali 0.96 0.83 0.68 119 88 173 

Average 0.87 0.80 0.69 248 233 366 

Table 2. Correlation coefficient (R, p-value < 0.05) of SMI, 

SMAP and ESA CCI with ground observations from the five 

networks. N is the number of samples 

 

4.3 Validation of bias-corrected SMI 

In section 4.2, we calculated the correlation coefficient between 

the original SMI and satellite soil moisture products with in situ 

measurements. Here, we used the cumulative distribution 

function (CDF) matching technique to further illustrate the 

effectiveness of the proposed SMI. The CDF matching 

approach is considered as an enhanced nonlinear technique for 

removing systematic differences between two data sets, and it 

has been demonstrated with various satellite soil moisture 

products (in unit m3 m-3), and soil moisture indices (unitless 

ranging between 0 to 1 similar as our proposed SMI) (e.g., 

Brocca et al., 2011; Matgen et al., 2012). Thus, it was employed 

in our study to make a fair absolute comparison of SMI and 

satellite soil moisture products with in situ measurements. This 

is because systematic differences between satellite-derived soil 

moisture products/indices and in situ observations may exist 

and prevent absolute agreement between the time series of these 

data sets. There are several explanations for the observed 

systematic bias, and the most noteworthy ones are as follows 

(Owe et al., 2008; Zeng et al., 2015a): 1) different spatial 

observation scales between in situ points and satellite pixels, 

and 2) a mismatch between in situ soil moisture measuring 

depth and the microwave penetration depth. Figure 5 shows the 

temporal behavior of station-averaged soil moisture and bias-

corrected SMI (i.e., SMI-CDF) by using the CDF matching 

technique during the entire study period, and table 3 lists the 

root mean square error (RMSE) and R value of the SMI, SMAP, 

ESA CCI (all are bias-corrected) with ground measurements 

from the five networks. We see that the R values of the bias-

corrected SMI and satellite soil moisture products are nearly the 

same as those of original datasets, which is consistent with 

expectations since the CDF matching approach only eliminate 

the systematic bias between remote sensing derived and in situ 

data, while the temporal trends and dynamic of the satellite 

datasets are well preserved. The SMI-CDF agrees very well 

with in situ measurements with an average RMSE of 0.028 m3 

m-3, lower than that of SMAP-CDF (0.039 m3 m-3), and ESA 

CCI-CDF (0.052 m3 m-3). The results demonstrate that the bias 

between two datasets can be easily corrected if they are well 

correlated with each other. This further highlights the 

importance for capturing the temporal variation of soil moisture 

which is the foremost purpose of SMI. 
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(d)                                                                    (e) 

Figure 5. Similar to Figure 3 but with bias-corrected SMI (i.e., SMI-CDF) by using the CDF matching technique. 

 

Networks 

RMSE (m3 m−3) R 

SMI SMAP 
ESA 

CCI 
SMI SMAP  

ESA 

CCI 
LWW 0.031 0.027 0.036 0.85 0.88 0.80 

REMEDHUS 0.026 0.026 0.026 0.83 0.83 0.83 

RISMA 0.050 0.058 0.068 0.73 0.60 0.38 

Naqu 0.021 0.047 0.086 0.96 0.88 0.75 

Pali 0.012 0.035 0.044 0.97 0.80 0.74 

Average 0.028 0.039 0.052 0.87 0.80 0.70 

Table 3. Root mean square error (RMSE, in m3 m−3) and 

correlation coefficient (R, p-value < 0.05) of SMI, SMAP and 

ESA CCI with ground observations from the five networks 

during the whole study period. The cumulative distribution 

function (CDF) of all these products is rescaled to that of in situ 

soil moisture. 

 

5. CONCLUSION 

Capturing the temporal variation of soil moisture from passive 

microwave measurements has attracted increasing attention in 

recent years since many applications require information of soil 

moisture dynamics rather than the absolute value. In this study, 

we proposed a new physically-based SMI from passive 

microwave observations to capture the temporal variation of 

soil moisture. It decouples the effects of soil moisture from 

vegetation and surface roughness in a two-dimensional space by 

combining use of MPDI and land surface emissivity. The 

underling physical basis is that the vegetation and surface 

roughness exert similar effect on MPDI and emissivity, but they 

act in an opposite direction compared with soil moisture. It 

considers the temporal dynamic of vegetation and surface 

roughness which are often unreasonably assumed to be 

unchanged in other algorithms or indices. Furthermore, 

previous (soil moisture or vegetation) indices such as optical-

based NDVI, active microwave-based RVI, or passive 

microwave-based MPDI are all ratio-based indices (i.e., 

calculated by ratio), while the proposed SMI is an index based 

on distance calculation. To the best of our knowledge, this is the 

first distance-based index developed from passive microwave 

remote sensing, which may provide a new way to design indices 

for other applications. 

To demonstrate the effectiveness of the proposed SMI, we 

validated the SMI by using extensive in situ measurements from 

five dense networks covering diverse land surface conditions, 

and also compared with SMAP and ESA CCI soil moisture 

products. The results demonstrate that the SMI correlates the 

best with in situ soil moisture with an averaged R of 0.87 and 

has the lowest RMSE value of 0.028 m3 m-3 during the whole 

study period after removing the systematic difference by using 

the CDF matching approach. In this study, we successfully 

applied SMI to the L-band SMAP radiometer, in the near future, 

we will continue this work to apply SMI to SMOS and AMSR2 

to investigate the dependence of SMI on incident angle and 

frequency and its applicability to other satellites/sensors. 
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