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ABSTRACT:

In the past two decades persistent scatterer interferometry (PSI) has become a well understood and powerful method to monitor the
deformations of man-made structures. PSI can derive displacement histories of thousands of scattered points on a single building
with accuracy of a few millimetre per year, by analysing space-borne SAR data. In this paper, we present a method to cluster PS
points on a single building into segments which show the same deformation behavior. The spatial distribution of those clusters gives
an insight into the structural behavior of a building. We use dimensionality reduction to visualize the clusters in the deformation
space. The comparison of our extracted displacement patterns with ground truth data from precise levelling and 3D tachymetry
confirms the plausibility of our remote sensing method.

1. INTRODUCTION

Large subterranean civil engineering projects, such as tunnel
constructions require careful planning and monitoring of expec-
ted deformations of the terrain above and next to the construc-
tion site, especially when executed under dense urban areas.
Typically a risk analysis is performed, considering the geolo-
gical situations and professional experience from similar pro-
jects. After localizing potentially endangered areas evidence
measurements are carried out before the beginning of construc-
tion activities and are repeated throughout the whole building
period. Such measurements include precise levelling, continu-
ous total station measurements, the installation of water level
devices and other in-situ monitoring instrumentations.

Beside ground based techniques, remote sensing applications
such as space-borne synthetic aperture radar (SAR) has de-
veloped to an acknowledged way to augment and prove ter-
restrial monitoring. Its ability to capture a wide area makes
SAR a unique and valuable technique for urban building mon-
itoring. Differential interferometric SAR (DInSAR) analysis of
high resolution X-Band data such as the TerraSAR-X satellite’s
is hereby able to measure deformations in the millimetre scale
(Hanssen, 2001; Maccabiani et al., 2017). As Crosetto et al.
(2016) conclude nicely, particularly the persistent scatterer in-
terferometry (PSI) approach has developed to be a reliable and
well understood method in urban deformation monitoring and is
implemented in several software bundles. By analysing a time
series of coherent SAR images, PSI is able to derive the 3D po-
sition of persistent scatterers and their over time deformation,
projected on the satellite’s radial line-of-sight (LOS). In urban
environments, these persistent scatterers (PS) are mainly caused
by man-made structures since trihedral corners and metal parts
are fostering the backscatter of radar signals. As Schunert et
al. (2012) have shown, depending on the type of the façade,
buildings in high resolution X-Band data can often have more
than 1 PS per m2 which leads to hundreds of points on small
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houses and can easily surmount thousands on large office build-
ings. The interpretation and visualization of such high number
of points can be challenging. One often needs civil engineer-
ing experts to interpret the deformation patterns and link them
to the actual construction process, therefore a simple represent-
ation and pre-analysis of those big numbers of time-series is
necessary.

In this paper, we propose a new technique to interpret the res-
ult of PSI. We combine Open Street Map (OSM) with DInSAR
analysis to separate single buildings in order to find substruc-
tures in those instances. Identifying such substructure may help
to understand the physical movement of a building and can
point out rigid structures which, in case of a monitoring, need
to be measured individually. The analysis of substructure mo-
tions on a single building can help to detect potentially risky
deformation patterns, i.e., if two adjoining parts of a building
are moving in opposite directions. We are evaluating our find-
ings with in-situ 3D tachymeter measurements and precise lev-
elling to compare the deformation time series we derived from
the satellite data. In our experiments, we are using TerraSAR-
X High Resolution Spotlight data acquired over Stuttgart, Ger-
many during a time span of almost 3 years. The ground truth
data are measured in the course of the ongoing construction of
a new underground main station in the city centre.

Similar work has been done by Zhu et al. (2018) and Costantini
et al. (2018), who suggest a clustering algorithm to find tem-
poral deformation patterns in COSMO-SkyMed DInSAR res-
ults. In their work they focused on extracting motion patterns
in PS pairs (PSP) (Costantini et al., 2014) clusters on build-
ings. Their proposed deformation model automatically separ-
ates linear processes from periodical annual patterns and helps
to find potentially dangerous movements. In contrast to Zhu et
al., we use ground truth deformation data as well as a 3D city
model to evaluate our findings. Furthermore, by mapping the
high dimensional deformation space onto a 2D one we are able
to find clusters in the deformation patterns more reliably, by
fine-tuning our clustering parameters and distance metrics.
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In Section 2 of this paper we firstly describe the SAR data
we are using. We will provide information about the spatial
and temporal sampling of the satellite images. Following, we
give an overview over the monitoring approach in a construc-
tion project, characterizing the current ground based monitoring
methods and their demands on accuracy. In Section 3, the PSI
algorithm is shortly explained with its strengths and limitations,
as well as the results one usually expects by this method. Our
clustering method is then shown in detail, explaining how we
define the PS points similarity and our hyper parameter estim-
ation approach. We briefly outline the used embedding method
to visualize the patterns in high dimensional space. In the res-
ults Section 4 we present the clusters found in the motion pat-
terns on a large office building. We compare the deformations
to our ground truth data and visualize the distribution of the
points on the façades. Finally, we are discussing on our find-
ings, point out possible applications of our technique and give
an outlook on our future work, towards a citywide, house-wise
risk analysis.

The central idea of our method is an automatic approach to find
and cluster PS points on rigid structures of buildings, so these
segments represent individual parts of a building. Therefore we
partition the deformation patterns of PS points on a building.
In difference to single points, such clusters can be considered
as redundant observations of the same deformation process and
can provide civil engineers valuable information about the static
relationships of large structures. This method could be a use-
ful tool in evaluation of previous, purely construction statical
based analysis. Due to the widespread characteristics of this
remote sensing technology, we are able to automatically derive
information about deformations and movements in a large area.
This might help to use ground based observation devices more
effectively and enables civil engineers to take countermeasures
to avoid damage of buildings.

2. DATABASE

2.1 SAR Images

The SAR data we are using has been acquired by the German
X-Band SAR satellite TerraSAR-X (TSX). The 88 ”HighRes
SpotLight 300 MHz” (Airbus, 2017) images were captured dur-
ing a 3 years time span (September 2016 - June 2019). The re-
peat orbit period for TSX is 11 days. The slant range - azimuth
resolution for HS300 images is 0.6 m × 1.1 m. The maximum
spatial baseline, relative to the master image in January 2018
does not exceed 400 m ( see Fig. 1). The scene, shown in Fig-
ure 2 covers the inner city of Stuttgart, Germany. The corres-
ponding OSM data contains about 38000 building instances in
this area.

2.2 Ground truth measurements

Before the start of a construction project, all buildings within a
predefined buffer around the construction site are observed us-
ing classical surveying methods. The measurement values play
a big role to understand the normal behaviour before any con-
struction influences take place. Moreover, when the construc-
tion activities begin, extensive surveying deformation measure-
ments are applied for these chosen buildings. The choice of
the type of instrumentation, the repetition rate of the measure-
ments is directly related to the objective of keeping the build-
ings safe and to continuously monitor the potential construction
influences and to control them step by step during construction.
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Figure 1. Temporal and spatial baselines for the N=88 SAR
scenes.

Figure 2. A sample of the geocoded ”HighRes SpotLight
300MHz” scene over Stuttgart, Germany (orbit cycle 119, spot
076). Overlayed with OSM building footprints. Each building
instance in a different colour. The original 10 km× 9 km wide
scene contains more than 38000 OSM building footprints.

The structure of the investigated building consists of an exten-
ded roof erected over two carrying pillars. This type of struc-
ture and the different construction activities in the vicinity of it
dictate extensive surveying observations including precise lev-
elling and tachymetry. Table 1 includes the measurement ac-
curacy of each type.

Measurement methodology Measurement accuracy

Precise levelling 0, 3 mm per 1 km
double levelling and invar bar

3D Tachymetry Distance: 1− 2 mm + 2 ppm
Angle: 1” (0,3 mgon)

Table 1. Comparison of the measurement accuracy of devices
used for gathering the ground truth deformation data on the test
building (Burland et al., 2001).

All measurement points of the above-mentioned systems are
located on the side of the building facing the construction site.
On the lower part the precise levelling points are installed while
prisms for the 3D tachymetry are located on higher positions
(see Fig. 5). It is important to point out that the temperature
values show a direct correlation with the measurement values.
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The results of the ground-based measurements are further used
as ground truth for the PSI data.

3. METHODOLOGY

In the following section, we are giving an overview of our ap-
proach. The workflow in Figure 3 describes the sequential pro-
cedure. After deriving the displacement history for all points
in the SAR scene via PSI, we use OSM building footprints
to analyse these time series on single building instances with
DBSCAN, using a correlation based distance definition. After-
wards we visualize these clusters by reducing the dimension-
ality via t-SNE and evaluate the plausibility by fusing airborne
laser-scanning (ALS) data with the clusters. Finally we com-
pare the results of ground based monitoring systems to our res-
ults.

PSI (X,Y, Z, dn(t))

Building footprints from OSM

Find PSI on all buildings

Select building of interest
Find clusters in deformation

space via DBSCAN

Visualize clusters in 2D t-SNE
embedding of deformation space

If cluster separation is successful

Visualize clusters in RGB
pointcloud on building

Extract time series for each
cluster and scale by 1

cos(θ)

Compare time series
to ground truth

Ground truth from levelling and
3D tachymeter close to cluster center

No(adjust ε)

Y
es

Figure 3. Workflow of our approach. Dark grey: Input data, light
grey: Processing step. The decision loop allows to change the
clustering parameters if the DBSCAN and t-SNE results deviate
too much.

3.1 Persistent scatterer interferomety

Persistent scatterer interferometry (PSI) is an advanced InSAR
technique. The main idea of this approach is the detection of
temporal coherent pixels in a stack of co-registered SAR im-
ages. By analysing the phases of such pixels in each image of
the stack, relative to a master image, the line-of-sight (LOS)
movement history and a 3D position of this scatterer can be
estimated (Ferretti et al., 2001, 2000). Crosetto et al. (2016)
give a very good overview over the history and the capabilities
of PSI algorithms and we highly recommend reading this art-
icle for more detailed insights. PSI works extremely well for
dense urban areas, since man-made structures especially loc-
ated at house façades and roofs act as a good reflectors. Even
though the PSI algorithm doesn’t need a precise DSM, it is able
to estimate the scatterers X-Y positions in the order of the pixel
size while the height component is typically a bit less accurate
(Chang and Hanssen, 2014).

It is worthwhile to mention that InSAR techniques are limited
by the LOS geometry (Pepe and Calò, 2017). As Figure 4 de-
scribes, the real movement of a scatterer is projected onto the

vector towards the satellites position. Therefore, the measured
displacement depends on the geometry between the real move-
ment and the observation angle. If a mostly vertical move-
ment is assumed the LOS values can be scaled depending on
the satellites incidence angle (Ketelaar, 2009).

Since PSI is analysing time series of multiple SAR images, one
of its results is the displacement history of each scatterer. For
every PSn point we obtain its relative deformation dn(tm) as a
time series with a measurement for each SAR acquisition (m ∈
N | 1 ≥ m ≤ 88) (see Eq.(1)). As Maccabiani et al. (2017)
stated, the accuracy for each measurement can be better than
2 mm.

The deformation time series represent the most advanced PSI
product and is the base for our clustering approach. As
Gernhardt et al. (2010) and Crosetto et al. (2015) have shown,
PSI time series, derived from high resolution TerraSAR-X data,
are able to grasp the annual movements of buildings. They con-
firm thermal expansion of buildings up to several millimetres
in amplitude. We exploit this fact for our clustering, under the
assumption, that each segments of a building shows a charac-
teristic movement behaviour.

θ

LOS

DLOS

DRE AL

Figure 4. The actual displacement DREAL gets projected on the
line-of-sight (LOS) towards the satellite. Depending on the
incidence angle θ, different movements are measured. In fact,
movements perpendicular to the LOS can not be detected. Note
that this is only an issue for non vertical movements. To
compare the deformation to levelling data, or if the DREAL is
assumed to be mostly vertical it can be obtained by scaling
DLOS with 1

cos(θ)
( see Eq. (3)).

3.2 DBSCAN with sample correlation distance and k-
nearest neighbour ε-estimation

Density-based spatial clustering of applications with noise (DB-
SCAN) is one of the most common data clustering algorithms
(Ester et al., 1996). Given a set of points in some space, it
groups points with many nearby Neighbors (dense areas) and
marks points in low-density areas as outliers. Its result vary on
two hyper parameters: ε specifies the maximum distance of one
point to a cluster to be part of it and minPts: sets the min-
imum number of points in one cluster. DBSCAN is able to find
an unknown number of arbitrary shaped clusters while ignoring
outliers and noise.

We are treating the deformation histories dn(t) as points in aM
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dimensional space. Each point dn ∈ RM is defined by its M
measurements.

dn =
[
dn1 dn2 . . . dnm−1 dnm

]
(1)

where m = measurement
n = individual index of the PS point

In general, there are several different metrics to define the
distance between two points. Especially in high dimensional
data, this is a big issue (Aggarwal et al., 2001). We are using
”1− the sample correlation” r of two time series (i.e. dx(t) and
dy(t)) as their distance metric:

dxdy = 1− rx,y = 1− sx,y
sx · sy

(2)

where sx, sy = sample standard deviations
sxy = sample covariance

We also experimented with other metrics (Euclidean and City
Block) but Equation (2) seemed to work best for this kind of
data, since this distance metric corresponds to the nature of the
time series. By being invariant against an amplitude scaling of
the deformation histories, it rates points on a uniformly moving
rigid structure as very close.

We face the problem of automatic ε-estimation similar to Liu
et al. (2007) by analysing the k-distance graph (k = 5). This
enables us to automatically run this analysis on all buildings
of interest. The fine-tuning of the minimum points per cluster
minPts and the ε parameters of DBSCAN was done by em-
bedding the deformation histories from this M dimensional
space RM into R2 using t-distributed stochastic neighbour em-
bedding (t-SNE). Figure 6 is an example of such an embedding
of the high-dimensional deformation space.

3.3 t-SNE visualization

We are using t-distributed stochastic neighbour embedding (t-
SNE) to visualize our clustering results (van der Maaten and
Hinton, 2008), this helps to fine-tune the DBSCAN parameters.
The t-SNE method gained a lot of attention, since this tech-
nique is well-suited for embedding high-dimensional data in a
low-dimensional space of two or three dimensions while pre-
serving its local structures. The main idea is to define a probab-
ility distribution over all points in the high dimensional space,
where similar objects have high probability to be picked as pairs
while dissimilar points are extremely unlikely to be picked as
pairs. Then t-SNE iteratively finds a representation in low di-
mensional space, which is having the same probability proper-
ties. To measure the minimization of the sum of difference of
conditional probability, t-SNE minimizes the sum of Kullback-
Leibler divergence of overall data points using a gradient des-
cent method. As a similarity metric we choose the sample cor-
relation as described in Equation (2).

Usually results of this embedding are preserving clusters and
local neighbourhoods much better than other dimensionality re-
duction methods (van der Maaten, 2009), therefore it can help
to judge the quality of the DBSCAN Cluster extraction (Fig-
ure 6). Clustering in the output of t-SNE was also considered

in the course of this work, but since the embedding is not pre-
serving bigger structures in the data and the low dimensional
space is not physical to interpreter (Wattenberg et al., 2016;
Linderman and Steinerberger, 2017) we decided to use conven-
tional clustering on the high-dimensional space as described in
Section 3.2.

3.4 Line-of-sight to vertical deformation

As illustrated in Figure 4 the displacement time series are rep-
resenting the projection of the real deformation onto the satel-
lite’s radial line-of-sight (LOS). Considering the fact that we
want to compare the deformation to the precise levelling results,
the assumption of a purely vertical movement is a suitable de-
formation model. Under these conditions the LOS deformation
time series dn(t) can transformed into the vertical deformations
∆dn(t) by a scaling it with the cosine of the incidence angle θ:

∆dn =
dn(t)

cos(θ)
(3)

(Sanabria et al., 2014).

To compare the 3D tachymeter measurements with the PSI de-
formation histories, the 3D deformation vector has to be projec-
ted onto the line-of-sight (Vollrath et al., 2017).

4. RESULTS

For our case study we chose a building close to the construction
site of a new underground train station in which, due to the con-
struction work, continuous precise levelling and 3D tachymeter
measurements are executed over several years. In Figure 5 we
show the PS point cloud next to the LIDAR representation of
the building and the positions of the levelling points and the 3D
tachymeter prism on the building.

The detected clusters in deformation space are visualized via a
t-SNE embedding in Figure 7, one can nicely see the difference
between embedded clusters and the results from DBSCAN. Fig-
ure 6 shows the position of the extracted clusters on the build-
ing. Even though no spatial information has been considered in
the clustering process, the clusters seem to plausible segment
the building in rigid structures. The choice of DBSCAN para-
meter ε seems to have a big impact on the segmentation results,
and has to be estimated for each building via the k-distance
graph. Figure 8 shows the corresponding time series of each
cluster, as well as a temperature profile on the building. The
single displacement histories show a clear correlation with the
temperature, but also linear trends and single change events can
be detected for some clusters. The clusters in Figures 6 and 7
correspond the to time series in Figure 8 and have to be regarded
in respect to each other.

In Figure 9 we compare the ground truth to the closest cluster to
the levelling points (Fig.8c). Both, the deformation history ex-
tracted from PSI and the measured deformation on the ground
seem to match very well. The difference in amplitude, espe-
cially of the fast movement in December 2018 could be ex-
plained by a non-vertical deformation direction.

In Figure 11, we show the 3D tachymeter results. The 3D de-
formation measurements have been projected from a local ref-
erence frame onto the line-of-sight (see Fig. 10). The resulting
deformation matches the cluster on the corresponding part of
the building.
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Figure 5. Left: 13000 PS Points on the building (Z-color-coded,
segmented from OSM footprint). Right: ALS point cloud of the
building. The levelling points are marked by ◦ and ∗, the
position of the 3D tachymeter prism is marked by ∆. The
corresponding time series are shown in Figure 9 and 11.

Figure 6. Distribution of clusters on a building. Each group and
colour indicates a different cluster. The related time series are
shown in Figure 8.

Figure 7. Clusters from DBSCAN in the 2D t-SNE embedding.
The related time series are shown in Figure 8. The distribution
on the building is shown in Figure 6.

Figure 8. Center points of the clusters in Figure 6 as time series
in colour, all members of the cluster in black. The temperature
on the building is shown in the bottom plot. Plot (c) is compared
to the precise levelling ground truth in Figure 9. Plot (d) is
compared to the LOS projection of the 3D tachymeter in
Figure 11.
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Figure 9. Top: Ground truth from two precise levelling points
underneath the building (see Fig. 5). Bottom: Deformation of
the (spatially) closest PSI cluster (c) to the levelling points.

Figure 10. Top view on the PS point cloud and the orientation of
the local reference frame used by the 3D tachymeter. LOS
indicates the direction of the satellite’s line-of-sight. The
corresponding measurements are shown in Figure 11.

5. CONCLUSION

The segmentation of PS points on a building into clusters,
which represent rigid bodies can help to understand the deform-
ation of a structure. We used the displacement histories ob-
tained by high resolution DInSAR to find clusters, respectively,
groups of points that show a similar displacement behaviour
over time. By visualizing these high dimensional clusters on in
a two dimensional t-SNE embedding, we can visualize the qual-
ity of our clustering approach. The position of the clusters on
the building seem to show plausible segments of a the building,
even though no spatial information has been considered in the
clustering process. The received displacement time series re-
veal the different movement behaviour of each cluster. By com-
paring the time series to ground truth measurement from tradi-
tional monitoring approaches, such as levelling and 3D tachy-
meter observations we could show, that our extracted clusters
are representing these displacements very well.

Especially the comparison to the 3D tachymeter data highlights
the limitations of single orbit DInSAR observations. The one

Figure 11. Deformation time series from the 3D tachymeter. The
location of the prism is shown in Figure 5. The direction cross
points towards the wall, along indicates horizontal movements
along the wall and vertical shows the down-up movement (see
Fig. 10). LOS-Projection shows the projection of this
displacement onto the satellite’s line-of-sight direction, it
matches the displacement history of the closest cluster (d).

dimensional line-of-sight observation can not represent a com-
plex 3D deformation.

Future work will explore the possibility to cluster in the t-SNE
embedding, to overcome the complexities which come with de-
fining distances and thresholds in high-dimensional spaces. By
choosing a high perplexity as t-SNE parameter, clusters are
clearly separated in the embedding so DBSCAN has a higher
chance to distinct noise from clusters. First experiments show
very promising results of this approach, but might need a good
strategy to deal with the non-preservation of bigger structures
in t-SNE embedding. Another interesting follow up to this
work will be a city wide analysis of all buildings. After finding
clusters on each house, we can analyse their relative movements
to find buildings with critical, potential damaging displacement
patterns.
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