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ABSTRACT: 
 
Evaluating soil movement related to precipitation is needed for geologic and hydrologic applications. In principle, the soil body swells 
and shrinks depending on soil type, precipitation rate, moisture content, and drainage rate. The precipitations are normally measured 
at weather stations. Measuring the soil movement by using ground-based sensors and hydrologic models across a large area is costly 
and time-consuming. Also the weather observations were not fully involved in modelling. A long-term monitoring using remote 
sensing is a cost-effective alternative. For this purpose, we developed a new approach in this study to model the transformation between 
precipitation and soil movement. The time-series soil movement over a large area is evaluated by ADInSAR at mm/yr level. As a result, 
the predictive model can compute the precipitation at a location from its ADInSAR-derived movement, and vice versa. Our test using 
Sentinel-1 images shows that the prediction accuracy for precipitation is 14 mm (mean error rate 12%) and it amounts 12 mm/yr for 
soil movement. The accuracies indicate that our modelling is relevant to the reality. We also discuss the influences of different 
parameters on the modelling. In the future, we will proceed with tests considering other areas of interest, time spans, and image sources. 
More target points will be analysed in detail. Last but not least, we will work on the applications related to geology and hydrology.  
 
 

1. INTRODUCTION 

Evaluating soil movement is needed for geologic and hydrologic 
applications, e.g., to understand ecological essence of moor. In 
principle, when the water infiltrates via, e.g., rainfall, and stay 
under the soil surface, the soil swell leads to heave movement. In 
contrast, subsidence occurs resulting from soil shrink as the 
moisture dries out. To measure this movement by using ground-
based sensors and hydrologic models across an extensive area is 
not cost-effective.  
 
Differential interferometric SAR (DInSAR) using a pair of 
spaceborne SAR images is an alternative to detect soil movement 
over a large area (Barrett et al., 2013). The approach evaluates 
the soil movement between two image acquisitions up to mm 
level. The other kinds of movement are usually excluded by 
assumption. Some previous works focused on exploring and 
modelling the transformation between soil moistures and 
interferometric values like phase and coherence (De Zan et al., 
2015; Zwieback et al., 2015a, 2015b, 2017). Their goal is to 
separate the component subject to soil moisture from the actual 
movement of interest such as mining-induced subsidence. One 
limitation is that only the soil movement between two image 
acquisitions is evaluated each time. So far a time-series 
monitoring was barely mentioned. Also the weather observations 
were not fully involved in modelling.  
 
In this study, we explore the mechanism between soil moisture 
and its movement (Grant and Aitchison, 1970). The observations 
associated with soil moisture are precipitations, which are hourly 
measured at weather stations of Deutscher Wetterdienst (DWD). 
The movement is evaluated via advanced DInSAR (ADInSAR) 
(Berardino et al., 2002; Ferretti et al., 2000, 2001, 2011; Lanari 
et al., 2004, 2007). By using multi-temporal SAR images, 
ADInSAR evaluates the long-term movement over an extensive 
area up to submillimetre level. We then model the transformation 
between precipitation and soil movement. As a result, the 
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predictive model can compute the precipitation at a location from 
its ADInSAR-derived movement, and vice versa.  
 
Our approach contributes to new applications for geology, 
hydrology and SAR interferometry. For geology and hydrology, 
although weather stations provide accurate precipitation 
measurements, they cannot be unlimitedly distributed in practice 
considering cost and logistic. Normally, an interpolation is 
applied to generate large-scale precipitation data. A comparable 
precipitation dataset derived from the soil movement can be 
combined to improve the accuracy. The improvement is effective 
particularly for extrapolated precipitations. One important use for 
SAR interferometry is to separate soil movement from actual 
movement. A predictive model is first created from a reference 
site, where the soil movement only regards moisture content. 
This model utilizes precipitations at the area of interest to 
compute the local moisture-induced movement. This component 
is then subtracted from the ADInSAR-derived movement to 
obtain the actual movement, if any.  
 
In this paper, we first describe our method in Section 2. Section 
3 illustrates our experiments at a moor area in Germany. We 
demonstrate how to generate a predictive model and evaluate the 
accuracy by using real data. The influences of different 
parameters on the modelling are statistically analysed. Finally, 
this study is concluded in Section 4.  
 
 

2. METHODOLOGY 

2.1 Mechanism of soil movement 

In view of geology and hydrology, soil movement is triggered 
and influenced by temperature and precipitation (Figure 1). 
When the precipitation infiltrates the soil, the moisture content is 
increased, which makes the soil body swell. Conversely, the soil 
body shrinks after the moisture content evaporates and drains. 
The evaporation is accelerated and decelerated as the temperature 
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rises and drops, respectively. The drainage speed and mass are 
subject to geologic characteristics. The interaction between swell 
and shrink of a soil body results in soil movement. This 
movement can be detected from the surface via SAR 
interferometry such as ADInSAR.  
 
 

 
Figure 1. Mechanism of soil movement influenced by geologic 
and hydrologic factors. 
 
2.2 ADInSAR 

ADInSAR operates as a long-term monitoring over a large-scale 
area up to submillimetre level. This technique processes a time 
series of SAR images to detect target points of interest. Each 
target point corresponds to a ground patch of a certain size 
depending on the image resolution. The signals are reflected back 
to the SAR antenna under a repeat cycle. Those signals 
characterized by high coherence are used to evaluate the local 
movements of different forms, e.g., cumulative time series or 
average velocity.  
 
In this study, we use the small baseline subset (SBAS) method 
(Berardino et al., 2002; Lanari et al., 2004, 2007, 2010; Pepe et 
al., 2015; Tizzani et al., 2007) to compute soil movement. From 
a SAR image set, SBAS generates interferograms characterized 
by limited spatial and temporal baselines. The so-called small 
baseline constraint mitigates scene coherence loss caused by 
temporal and geometric decorrelations. This advantage favours 
detection of target points on bare soil as well as the resultant 
movement precision.  
 
The basic SBAS processing is explained in the following. The 
interferogram sets are temporally connected by singular value 
decomposition (Golub and Van Loan, 1996). A pixel is selected 
as a target point if its ensemble coherence of interferograms 
fulfils a specified threshold. Afterwards, all of the target points 
are spatially connected by Delaunay triangulation to form a 
network of target points. The interferometric phases of the target 
points are unwrapped (Costantini and Rosen, 1999) and then used 
to interpolate the phases of the other non-target points. A 
transformation is modelled considering the unwrapped 
interferometric phases and the corresponding movements. The 
movements are evaluated via a least square algorithm (Teunissen, 
2000). The evaluation accuracy is further improved by iteration 
after removal of atmospheric phase screen (APS). For this 
purpose, the APS-like phases are derived by means of a low-pass 
spatial filtering and a high-pass temporal filtering. 
 
The selection of a coherence threshold leads to a trade-off 
between quality and quantity of target points. A complex 
coherence is commonly expressed as (Bamler and Hartl, 1998) 
 

𝛾𝛾 =
E�st1 ⋅ st2

* �

�E[|st1|2] ⋅ E[|st2|2]
                             (1) 

 
where st1 and st2 are complex radar signals acquired at different 
times. The magnitude |γ| [0 , 1] ∈ R  is customarily called 
coherence. In SBAS, the coherence of each point is extended to 
be an ensemble coherence, which is evaluated from all 
temporally-connected SAR images (Lanari et al., 2004). Given a 
high threshold, we anticipate a precise movement estimation 
while the number of target points is restrained. In case of a strict 
threshold, the clusters of sparse target points might not 
sufficiently cover the areas of interest. Simply speaking, there is 
no standard answer to an optimal threshold. We must consider 
actual situations to make an adequate decision. In our monitoring 
works, we will derive movement precisions from coherences as 
 

𝜎𝜎m=
λ

4π
�

1 − |𝛾𝛾|2

2⋅|𝛾𝛾|2                                 (2) 

 
where λ means wavelength. The unit applies to the metric, e.g., 
millimetre. This movement precision can be converted into the 
velocity precision as 
 

𝜎𝜎v=
λ

4π∙BT
�

1 − |𝛾𝛾|2

2⋅|𝛾𝛾|2                                 (3) 

where BT  is the time span of an image series. The metric is 
divided by a temporal interval, like millimetre per year.  
 
2.3 Modelling 

According to our experience, the influence of precipitation on 
soil movement prevails over temperature. This is also true due to 
the sensitivity limitation of the contemporary SAR sensors. We 
reform the mechanism of soil movement (Figure 1) into the new 
one (Figure 2) considering only precipitation. We have validated 
this assumption in our experiments (Section 3). 
 

 
Figure 2. Influence of precipitation on soil movement.  

 
The mechanism between precipitation and soil movement is 
assumed as follows. The precipitations infiltrate the soil surface 
and are retained in the soil body. The more moisture content, the 
larger the soil body swells. In contrast, the soil body shrinks due 
to drainage. The influences of soil type, precipitation rate, 
moisture content, and drainage rate on the soil movement are 
extended, progressive, and overlapping. Usually, they cannot be 
accurately defined. For example, a downpour lasting half an hour 
might not cause any detectable movement as the moisture content 
might drain quickly. In case of a heavy rainy season, the area 
heaves acceleratively until the rain eases.  
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Our goal is to invent a reasonable model, which can be 
mathematically solved in a simply way. Our observations include 
precipitation and soil movement. The precipitations are hourly 
measured at weather stations. The soil movement evaluated by 
SBAS is expressed as a discrete time series. In reality, the soil 
movement is a continuous course rather than a discrete 
displacement. We thus abstractly and physically convert the 
observations into a continuous form. The movement series is first 
modelled by a polynomial fitting to be a continuous form. The 
corresponding velocities can be derived by differentiation. Our 
model for a target point is expressed based on an n-order 
polynomial as 
 

VM=�𝑎𝑎(𝑘𝑘) ∙ PA
𝑘𝑘

𝑛𝑛

𝑘𝑘=0

                               (4) 

 
where VM  indicates an instantaneous movement velocity, 𝑎𝑎 
signifies coefficient, and PA  amounts an accumulated 
precipitation within a period. Our model signifies that the 
accumulated precipitation during a period causes the local 
movement. This local movement is expressed as the 
instantaneous movement velocity at the middle of this period.  
 
The model (4) is solved by a least square algorithm (Teunissen, 
2000). Afterwards, we can predict the soil movement of a target 
point from its precipitation, and vice versa. The key parameter is 
the resampling period, within which the precipitations 
accumulate and the corresponding velocity is set at the middle. 
An optimal period can be determined based on a goodness-of-fit 
principle. More details are referred to Section 3.5  (especially 
related to Figure 13). In general, a longer period would make the 
precipitation and velocity more linearly correlated. Thus the 
model-solving becomes more stable and precise. The reason is 
that the extended influence of the precipitation on the soil 
movement can be effectively reflected. Nevertheless, the 
downsampling also degrades the temporal resolution. One 
solution is to derive velocities at times of interest via 
interpolation or linear fitting assuming that soil ground moves 
smoothly. A similar operation can be applied to precipitation 
while the result is irrelevant in practice.  
 
 

3. EXPERIMENTS 

3.1 Test area and data 

Currently, the civil SAR satellites are operating mainly in X-, C-, 
and L-Band, for example, TerraSAR-X, Sentinel-1, and 
PALSAR-2, respectively. We chose Sentinel-1 images for our 
initial test considering the following four advantages. First, the 
use of C-Band leads to a compromise result between X- and L-
Bands. X-Band is able to measure small deformation while the 
results suffer from coherence lose (accuracy degradation) 
especially in vegetation areas. In contrast, L-Band is more robust 
against such a coherence loss; however, small deformation might 
not be detected. Mostly, C-Band satisfies the requirements for 
monitoring missions. Second, a standard image package contains 
a large area thanks to TOPSAR acquisition mode. Such a large 
coverage enables synchronous monitoring of areas of interest. 
Third, the shortest repeat cycle of 6 days empowers weekly 
monitoring. Last but not least, Sentinel-1 images are free of 
charge for both scientific and commercial purposes.  
 
We tested our approach at a moor area in a nature reserve called 
Tinner Dose-Sprakeler Heide in Germany (Figure 3). The main 
processing of our novel development was programmed using IDL. 

The moor movement is in particular sensitive to precipitation. 
Our precipitation data were measured hourly in 2017 at the 
weather station – Groß Berßen operated by DWD. The data can 
be downloaded from the DWD server free of charge. We used 57 
Sentinel-1 images (Figure 4) in SBAS to evaluate the moor 
movement. These 57 images were acquired under IW mode from 
January 11, 2017 to December 31, 2017 along an ascending orbit. 
The SBAS result is calibrated to the reference point, which is 
fixed on a building in Klein Berßen. 
 

 
Figure 3. Test moor area (yellow circle) in nature reserve – 
Tinner Dose-Sprakeler Heide, Germany. Target points 1 – 6 used 
for in-depth analysis. RP, Reference Point used in SBAS. WS, 
Weather Station (Groß Berßen) operated by DWD. Red rectangle, 
coverage of Sentinel-1 images (20 km × 20 km). Background 
downloaded from Google Earth. 
 

 
Figure 4. Normal and temporal baselines of connected image 
pairs in SBAS processing.  
 
3.2 Overview of soil movement and precipitation 

The cumulative vertical movements of the 6 target points (Figure 
3) are evaluated via a SBAS processing and illustrated in Figure 
5. The vertical movements are converted from the line-of-sight 
movements via Trigonometry. Before fitting, the vibration of the 
connected discrete movements (dots) implies the noise in the 
evaluations. The continuous cumulative vertical movements are 
generated after fitting (Figure 6). The noisy movements have 
been eliminated. We then derived the instantaneous vertical 
velocities (Figure 7) from their fitted movements. The velocity 
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precision approximates 2 mm/yr. We can see that the velocities 
are related to the precipitations (Figure 8).  
 

 
Figure 5. Cumulative vertical movement (mm) of target points 
(TP) 1 – 6 (Figure 3) in 2017 before fitting. Positive and negative, 
up and down movements, respectively. 
 

 
Figure 6. Cumulative vertical movement (mm) of target points 
(TP) 1 – 6 (Figure 3) in 2017 after fitting. Positive and negative, 
up and down movements, respectively. 
 
The precipitations (Figure 8) decreased gradually from January 
to April. Meanwhile, the velocities (Figure 7) were tending 
downwards as the moisture content drained. Since May the 
moisture content kept a high level because plenty of 
precipitations continued to infiltrate. The upward velocities 
indicate the soil was swelling. This phenomenon was reversed 
roughly after October as the precipitations were not accumulated 
as fast as earlier. Unlike others, target point 4 was uplifting since 
the beginning even the precipitations reduced. We infer that the 
soil of target point 4 can hold its groundwater to some extent for 
a long time. In conclusion, the courses of the precipitations and 
soil movements agree with our assumption in Section 2.3.  
 

 
Figure 7. Vertical velocity (mm/yr) of target points (TP) 1 – 6 
(Figure 3) in 2017. Velocity precision ≈ 2 mm/yr. Positive and 
negative, up and down movements, respectively. 
 

 
Figure 8. Daily precipitation (mm) measured at weather station – 
Groß Berßen (Figure 3) in 2017.  
 
3.3 Modelling of precipitation and soil movement 

Target point 6 was selected to demonstrate the modelling results 
(Figure 9). The daily precipitations (Figure 8) are resampled and 
accumulated every 45 days. We will discuss how to determine a 
resampling period in Section 3.5. Before modelling, the 
precipitations and SBAS velocities seem positively correlated 
(The Pearson correlation coefficient (PCC) is 0.95). The soil was 
moving upwards due to swell when more precipitations were 
accumulated. Modelling the precipitations and SBAS velocities 
results in a predictive model. The modelled velocities are 
computed from the precipitations via this model. The PCC ≈ 1.00 
indicates that the precipitations and modelled velocities precisely 
match. We evaluate the modelling precision by comparing the 
SBAS and modelled velocities (Figure 10). The mean absolute 
difference between them amounts 10 mm/yr. 
 

 
Figure 9. Comparison between precipitation and velocity for 
target point 6 (Figure 3). Measured precipitations are 
accumulated every 45 days from daily measurements (Figure 8).  
 

 
Figure 10. Comparison between SBAS and Modelled velocities 
for target point 6 (Figure 3).  
 
3.4 Predictive model 

We generated a predictive model of target point 6 (Figure 3) from 
the measured precipitations and the SBAS velocities in first half 
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of 2017 (Figure 11). The precipitations and velocities in second 
half of 2017 were predicted via this model. The measured 
precipitations and the SBAS velocities are treated as ground truth. 
We calculated the mean absolute difference between the 
predicted data and ground truth to estimate the prediction 
accuracy. The prediction accuracy for precipitation is 14 mm 
(mean error rate 12%). The prediction accuracy for velocity is 12 
mm/yr. The accuracies shall be acceptable considering that our 
modelling is a brainchild. Based on this, we believe that our 
modelling is relevant to the reality.  
 

 
Figure 11. Predicted precipitations and velocities (second half) 
from measured precipitations and SBAS velocities (first half) via 
predictive model. Measured precipitations are accumulated every 
45 days from daily measurements (Figure 8). 
 
3.5 Modelling parameters 

Our modelling approach is mainly influenced by three parameters. 
We will discuss them in the following using target point 6 as an 
example. First, a cumulative movement series generated by 
SBAS must be converted into a continuous form via polynomial. 
The best-fit polynomial order is determined if its chi-square 
goodness-of-fit (Press et al., 1988) is smallest. For example, the 
4th order is selected in our case (Figure 12). The lower orders 
result in underfitting; in contrast, the higher orders lead to 
overfitting.  
 

 
Figure 12. Chi-square goodness-of-fit regarding polynomial 
order to convert discrete cumulative movements (SBAS) into 
continuous form for target point 6 (Figure 3).  
 
The second parameter is a resampling period, within which the 
precipitations accumulate and the corresponding velocity is set at 
the middle. As expected, the longer the period is used, the better 
the modelling of precipitation and velocity fits (Figure 13). 
Simply speaking, selecting a period is a trade-off between 
goodness of fit and temporal detail. We suggest to set this 
parameter according to the need in practice. For instance, we can 
evaluate the modelling accuracies of different periods by 
comparing ground truth, if any. Based on this, the geologists and 
hydrologists will find a compromise for their uses. 
 

 
Figure 13. Chi-square goodness-of-fit regarding resampling 
period in modelling of precipitations and velocities for target 
point 6 (Figure 3).  
 
The last parameter is the polynomial order of a predictive model 
for precipitation and soil movement. The precipitations measured 
at weather stations are regarded as reliable observations. We 
suppose that the modelled velocities are positively correlated to 
the measured precipitations. Based on this, the polynomial order 
corresponding to the highest PCC is used in a modelling. Our test 
selected the 2nd order for target point 6 (Figure 14) as its PCC 
achieves ≈ 1.00 higher than other cases. The 1st order brings a 
meaningless result. The PCCs after the 2nd order decrease 
gradually. We infer that the overfitting occurs after the 7th order 
because the PCC begins to drop remarkably.   
 

 
Figure 14. PCC between precipitations and modelled velocities 
regarding polynomial order in modelling of precipitations and 
velocities for target point 6 (Figure 3).  
 
 

4. CONCLUSIONS 

In this study, we proposed a new method to model precipitations 
and soil movements. The precipitations are measured at weather 
stations. The soil movements are evaluated via ADInSAR. Our 
modelling considers a temporal resampling to make our model 
close to the reality. Within each period the precipitations are 
accumulated and the soil movements are converted into 
representative velocities. These resampled data simulate that an 
amount of cumulated precipitations cause the soil moves 
progressively. A predictive model is then created based on the 
resampled data. Afterwards, we can predict precipitations from 
soil movements, and vice versa.  
 
Our tests demonstrate reasonable and promising results. The 
prediction accuracy for precipitation is 14 mm (mean error rate 
12%). The prediction accuracy for velocity is 12 mm/yr. We 
consider that the accuracies are acceptable for our brainchild and 
our modelling is relevant to the reality. Still we will consult our 
qualified partners about the resultant accuracies and the future 
validation. The influences of different modelling parameters on 
the modelling are also analysed and discussed. The optimal 
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parameters are statistically determined based on PCC and 
goodness of fit. One important parameter is the resampling period, 
which is subject to a trade-off between goodness of fit and 
temporal detail. Alternatively, we should resort to acknowledged 
experts and set this parameter according to the need in practice.  
 
An accurate modelling relies on accurate observations. The 
precipitation measurement must be reliable. We must control the 
precision of soil movement evaluated via ADInSAR at certain 
level. For future work, we will test and improve the modelling 
robustness and guarantee its repeatability. For this purpose, we 
will continue more tests regarding different areas and time spans. 
Meanwhile, we will investigate more point-based examples. We 
are currently looking for applying our technique for geology and 
hydrology. The current model will then be improved and adapted. 
Except using only precipitation, other physical factors should be 
also considered, such as temperature, soil type, soil roughness, 
electrical properties of soil, and vegetation cover. 
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