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ABSTRACT:

In the past decade, hyperspectral imaging techniques have been widely used in various applications to acquire high spectral-spatial
resolution images from different objects and materials. Although hyperspectral images (HSIs) are useful tools to obtain valuable
information from different materials, the processing of such data is challenging due to several reasons such as the high dimension-
ality and redundancy of the feature space. Therefore, advanced machine learning algorithms have been developed to analyse HSIs.
Among the developed algorithms, unsupervised learning techniques have become popular since they are capable of processing HSIs
without having prior knowledge. Generally, unsupervised learning algorithms analyse HSIs based on spectral information. How-
ever, in many applications, spatial information plays an eminent role, in particular when the input data is of high spatial resolution.
In this study, we propose a new clustering approach by utilizing the sparse subspace-based concept within the hidden Markov ran-
dom field (HMRF) structure to process HSIs in an unsupervised manner. The qualitative analyses of the obtained clustering results
show that the proposed spectral-spatial clustering algorithm outperforms the sparse subspace-based clustering algorithm that only
uses spectral information.

1. INTRODUCTION

Recent advances in airborne hyperspectral imaging technology
allow users in different applications, to acquire very fine spectral-
spatial resolution data in a wide range of the spectrum. Usu-
ally, spectral channels (also known as bands) of hyperspectral
images (HSIs) cover a spectrum range from the VNIR ( 0.4 –
1 µm), SWIR ( 1 – 2.5 µm), to the LWIR ( 8 – 13 µm). Spec-
tral bands usually contain valuable information which can be
used to detect and track different objects that are being invest-
igated (Goetz et al., 1985, Ghamisi et al., 2017). However, the
analysis of hyperspectral data is a challenging task since such
data contain a high number of bands. Additionally, depend-
ing on the sensor’s characterization, the pixels of captured HSIs
can be highly mixed. Therefore, the analysis procedure of HSIs
tends to be more complicated (Iordache et al., 2011, Koirala et
al., 2019).

In order to overcome the aforementioned problems, several ma-
chine learning algorithms (e.g., supervised and unsupervised)
have been proposed to analyse the hyperspectral images. Among
the proposed algorithms, unsupervised learning techniques have
become a useful tool in particular when there is no training
data available in the analysis procedure (You et al., 2018). In
the computer vision field, subspace-based clustering algorithms
were designed to cope with the high dimensionality and mixture
problems of HSIs. In such algorithms, the high dimensional
data can be projected into a union of lower dimensional sub-
spaces. In this way, each data point of the hyperspectral images
is assigned to a specific subspace (cluster) (Elhamifar, Vidal,
2013).

One of the widely used subspace clustering algorithms is sparse
subspace clustering algorithm (SSC) (Zhang et al., 2016, You
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et al., 2018, Hinojosa et al., 2018, Shahi et al., 2019). Sparse
subspace clustering algorithm (SSC) was introduced in 2013
by Elhamifar and Vidal., (Elhamifar, Vidal, 2013). In SSC,
the above-mentioned problems (e.g., high dimensionality and
highly mixed pixels) can be addressed to some extent. The
main idea of SSC is to write down each data point as a lin-
ear combination of other data points from the same subspace
which is also known as the Self-expressiveness property of the
data. In SSC, the entire data is used to cluster the HS data
into meaningful groups. Nevertheless, using the entire data to
calculate the sparsest coefficients demands a complex compu-
tational process and can be extremely time-consuming. Since
2013, the concept of SSC has been explored in more details in
several studies (Elhamifar et al., 2015, Wu et al., 2015, You et
al., 2018). In (You et al., 2018), exemplar-based subspace clus-
tering algorithm (ESC) is proposed. ESC considerably reduces
the time and computational process by searching for a subset of
HS data and representing the whole data based on this subset.
Recently, the effect of spatial information on SSC was stud-
ied (Zhang et al., 2016, Hinojosa et al., 2018). In (Zhang et al.,
2016), the obtained results show that their proposed spectral-
spatial subspace clustering algorithm performs well compared
to the original SSC algorithm. Nonetheless, the proposed spatial-
spectral sparse subspace-based clustering algorithms use the en-
tire data points of hyperspectral images in order to calculate the
sparse representation matrix. In addition, to our knowledge, the
effect of spatial information in the ESC algorithm has not been
investigated so far.

There are several approaches to include spatial and contextual
information in segmentation and classification problems (Zhang
et al., 2001, Benediktsson et al., 2005, Dalla Mura et al., 2011,
Ghamisi et al., 2014, Khodadadzadeh et al., 2014, Benedikts-
son, Ghamisi, 2015, Ghamisi et al., 2018). One of the ap-
proaches, which has been successfully used in the literature, is
the hidden Markov random field (HMRF) (Zhang et al., 2001,
Ghamisi et al., 2014). In (Zhang et al., 2001), authors intro-
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duced HMRF as a probabilistic model to segment magnetic
resonance images by incorporating spatial information. The-
oretically, HMRF is a special case of Markov random fields
(MRFs). Based on MRFs’ idea, there is a higher chance that
a pixel has the same class label as of its neighbourhood pixels
compared to the other pixels in hyperspectral images (Li et al.,
2012, Ghamisi et al., 2014). However, an HMRF is different
from an MRF in which, an HMRF is defined based on a pair of
random variables (i.e., the clustering result, and HSIs), while an
MRF is merely defined based on the clustering result (Zhang et
al., 2001).

In this paper, we propose a new spectral-spatial subspace-based
clustering algorithm to analyse hyperspectral images. The pro-
posed algorithm consists of two phases; the first phase is util-
ized to capture spectral information using an advance sparse
subspace clustering algorithm (i.e., ESC). ESC is able to handle
high-dimensional and highly-mixed data in an efficient manner.
The second phase of the algorithm is based on the use of the
HMRF algorithm to capture the spatial information of hyper-
spectral images. In the HMRF, Maximum a posteriori (MAP)
and expectation-maximization (EM) algorithms are used to it-
eratively estimate class labels and set of parameters, respect-
ively. In addition, the edge-preserving step is employed to avoid
HMRF to over smoothing the clustering results.

The rest of the paper is organized as follows. In Section 2,
the proposed algorithm is elaborated in details. Afterwards, the
experimental results are presented and discussed in Section 3.
Section 4 is devoted to the conclusions and remarks.

2. METHODOLOGY

The following section is allocated to describe the proposed spectral-
spatial subspace clustering algorithm. In addition, the workflow
of the proposed algorithm is presented in Figure 1.

Figure 1. The flowchart of the proposed spectral-spatial
algorithm

2.1 Notation

Let us assume that the hyperspectral images can be presented
as X ≡ [x1,x2, ...,xN ] ∈ RF×N , where N is the number
of samples. Moreover, xi = [xi1, xi2, ..., xiF ]T represents a
spectral vector. F is the number of spectral channels in X,
and i ∈ {1, 2, ..., N} is the pixel indices of HSIs. We use

the first principle component for clustering which is written as
Z ≡ [z1, z2, ..., zN ] and the clustering result of HSIs can be
expressed as M = [m1,m2, ...,mN ], where mi ∈ L, and
L = [1, 2, 3, ..., l′] which L is the class label indices.

2.2 Sparse subspace-based clustering algorithms

In order to explain the sparse subspace clustering algorithm
(SSC), it is better to start with the sparse dictionary learning
concept. In which, we can formulate the dictionary learning
problem as follows

min ||C||1,
S.t., X = DC

(1)

where D ≡ [d1,d2, ...,dP] ∈ RF×P is the spectral diction-
ary, and P is the number of atoms. C = [c1, c2, ..., cN ] ∈
RP×N is the coefficient matrix that can represent a collection
of data points. In order to extract the coefficients, one can write
each data point of X as a linear combination of some points
from D. However, obtaining a spectral dictionary D is a chal-
lenging task in most applications. Therefore, self-expressiveness
property is introduced by Elhamifar et al.,, in (Elhamifar, Vidal,
2013). The aforementioned concept implying that each data
point can be presented as a linear combination of other data
points from the same subspace. The optimization problem in
equation (1) can be reformulated as below

min ||C||1,
S.t., X = XC, diag(C) = 0

(2)

where diag(C) = 0 is a constraint that prevents adding a data
point to its linear combination from the other data points in
the same subspace. Alternating direction method of multipli-
ers (ADMM) can be employed to solve the above-mentioned
minimization problem. For more details on ADMM solver, we
refer you to (Boyd et al., 2011, Benzi, Olshanskii, 2006). As a
next step, after the sparsest coefficient calculation, the similarity
graph needs to be computed through W = |C| + |C|T . Such
a symmetrisation on W shall be carried on, to assure that all
points from the same subspace are connected. In the end, spec-
tral clustering can be applied on W to cluster the data points.
However, SSC has difficulties to perform efficiently on the large
data sets (You et al., 2018).

2.3 Exemplar-based subspace representation (ESC)

In the ESC algorithm, a subset of samples is chosen as atoms
for a spectral dictionary. In ESC, a farthest first search (FFS)
algorithm is used to select atoms for the dictionary. The FFS is
designed to work based on minimizing the self-representation
cost. The first sample in the FFS is randomly chosen. Con-
sequently, the remaining samples in the subset are selected based
on the first random initialization (You et al., 2018). Also, the
number of atoms are predefined. Therefore, the optimization
problem in ESC can be written as

min ||C||1 +
λ

2
||X−X0C||2F (3)
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where X0 ≡ [x1,x2,x3...,xP ] ∈ RF×P is a subset of selected
samples from X. λ is a trade-off parameter between the pen-
alty and the fidelity term. Since X0 is used as the spectral dic-
tionary to solve the minimization problem in (3), the analysis
of hyperspectral images is significantly decreased. However,
in ESC, there is no spatial information included while in most
cases, spatial information can be used to improve the segment-
ation/clustering results.

2.4 Hidden Markov random field (HMRF)

One of the algorithms that incorporates spatial information in
the segmentation/clustering algorithm is the HMRF. HMRF is
applicable to 2D/3D images since it is based on hidden Markov
random models (HMMs). More specifically, in HMRF, the main
process is based on Markov random field rather than Markov
random chains which are constrained to 1D images. Therefore,
HMRF becomes a desirable segmentation method to retrieve
spatial information from images (Zhang et al., 2001). Basically,
HMRF is a modified version of finite mixture model (Ghamisi
et al., 2014). Therefore, to have a comprehensive understand-
ing of HMRF, we start with the finite mixture which can be
summarized in the following two steps:

1) Computing the joint probability of m and z depending on a
set of parameters Θ as follows

p(m, z|Θ) =

N∏
i=1

p(zi,mi|Θ)

=

N∏
i=1

f(zi, θmi).ωmi

(4)

where Θ = [θl, l ∈ L] is a set of parameters which needs to
be estimated. In equation 4, f(.) is a probability density func-
tion (pdf) with parameter θl = (µl, σ

2
l ), where µ and σ are,

respectively, the mean and standard deviation of xi with class
label l. In addition, ωmi = P (mi = l) is a conditional probab-
ility mass function (PMF) for the class label l that is assigned
to each pixel mi.

2) The marginal distribution of Zi = z depending on Θ can be
formulated as

p(z|Θ) =
∑
l∈L

p(l, z|Θ)

=
∑
l∈L

f(z, θl).ωl
(5)

The above-mentioned model is known as the finite mixture model
(FM). Although, FM is used in order to have exploratory statist-
ical analyses on data, it has a lack of including spatial inform-
ation in its model structure (Zhang et al., 2001). Therefore,
in (Zhang et al., 2001) HMRF is proposed by Zhang et al., to
capture the spatial structure of the data through including the
information of surrounding pixels of each pixel. In this paper, it
is assumed that each pixel can maximum have four neighbours
which are denoted by mNi . Thus one can rewrite the equation
(5) as

p(zi,mNi |Θ) =

N∑
i=1, l∈L

p(zi, l|mNi ,Θ)

=

N∑
i=1, l∈L

f(zi; θl)p(l,mNi)

(6)

where p(l,mNi) is the conditional PMF on the class label l.
However, to fitting the HMRF model, there are initial and iter-
ative estimation procedures which are needed to be taken into
account as below

1) The initial clustering labels M(0) and the initial set of para-
meters (Θ(0)) are needed to be estimated. Here, we propose
to use an advanced sparse subspace-based clustering algorithm
ESC to estimate the initial labels and parameters. Consequently,
two iterative procedures are run to simultaneously update the
class labels and the set of parameters using Maximum a posteri-
ori (MAP) and expectation-maximization (EM). MAP estima-
tion can be formulated as the following optimization problem:

m̂ = arg min
m∈M

[U(z|m), U(m)] (7)

where U(z|m) =
∑N
i=1[

(zi−µmi
)2

2σ2
mi

+
log σ2

mi
2

] which is the fit

term of the model, and U(m) =
∑
c∈C Vc(mi,mj) is the pen-

alty term to have the spatial information. In addition, Vc(mi,mj)
is known as clique potential, and C is the set of all possible
cliques. Vc(mi,mj) can be calculated as Vc(mi,mj) = 1

2
(1−

Imi,mj ) where

Imi,mj =

{
0 if mi is not equal to mj

1 if mi is equal to mj

(8)

2) The second initial and iterative procedure is to estimate the
parameter θ. The initial θ(0) is calculated based on the initial
clustering result M (0). To iterate the estimation procedure of θ,
we used an expectation-maximization (EM) algorithm as below

θ(k+1) = arg max
θ
Q(θ|θk) (9)

where k is the number of iterations, and the EM functional
can be defined as Q(θ|θk) = E[logp(m, z|Θ), z|θ(k)]. The
above-mentioned maximization problem is used to maximize
the EM functional. For more detailed explanation we refer you
to (Zhang et al., 2001).

As the last step, an edge detection algorithm is employed to pre-
serve the edges, and to prevent HMRF algorithm to over smooth
the clustering results. Principle component analysis (PCA) is
applied to transform the data. The first PC is used to extract the
edges, and for the edge detection technique, Canny edge de-
tection technique is applied (Canny, 1986). Therefore, one can
rewrite the MAP minimization problem as follows

m̂ = arg min
l∈L

[U(zi|l),
∑

j=Ni,bi=0

Vc(l,m
(k)
j )] (10)
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Figure 2. (1) RGB image, and (2) ground truth data points of the
first scene of the case study area where HSIs are captured using

UAV

where b ∈ B, B is the binary output of the edge-preserving
step. If bi = 0, it means that the ith pixel is not located at edge,
otherwise bi = 1.

3. EXPERIMENTAL RESULTS

3.1 Data acquisition

The hyperspectral image data set was acquired during a field
campaign on sites in central Finland during September 2018.
An unmanned aerial vehicle (UAV) was deployed to scan sur-
faces and obtain HSIs for mineral exploration. The used HSIs
for this study were acquired over an outcrop of the Archean
Siilinjärvi glimmerite-carbonatite complex, where is currently
mined for large apatite occurrences used in fertilizer produc-
tion (O’Brien et al., 2015). Here, the hyperspectral image scenes
were collected during two UAV flights over two rocky outcrops,
roughly 260 m apart. A hyperspectral frame-based camera (0.6
Mp Rikola Hyperspectral Imager) was deployed on a hexacopter
UAV (Aibotix Aibot X6v2) that flew over targets along with a
pre-programmed stop-scan-motion flight plan to capture a com-
plete set of HSIs for the subsequent image mosaicking. Flight
altitudes were 40 m (Scene No.1, 13.5 x 23.5 m) and 30 m
(Scene No.2, 10.5 x 16 m) for the two flights, both taken during
sunny and low-wind conditions. Surface samples with a hand-
held spectrometer and rock specimen were taken for ground val-
idation in parallel during the UAV flights. Additionally, ground

Figure 3. (1) RGB image, (2) ground truth data points of the
second scene of the case study area where HSIs are captured

using UAV

truth data for each scene are generated using the prior know-
ledge of the field areas, and getting the support of spectral in-
formation from acquired HSIs Figure 2-3.

3.2 Data description

Out of multiple HSI scenes, two scans encompassing a mix-
ture of surface features, such as different rocks types, water
and vegetation were selected. Scene No.1 and No.2 both fea-
ture 50 images bands, covering the electromagnetic spectrum
between 504-900 m, taken with image integration times of 1-2
s and final image pixel resolutions of 2.6 cm and 2.2 cm, re-
spectively. Pre-processing as well as geometric and radiomet-
ric data corrections were achieved with a Python-based toolbox
MEPHysTo (Jakob et al., 2017), using workflows tailored for
UAV-borne HSIs. For more details on pre-processing of ac-
quired hyperspectral data, we refer the readers to (Jakob et al.,
2017).

Calibration to reflectance was done with ground-based PVC
panels of white, grey and black shade and with known spec-
tral signature, using the empirical line method (Adão et al.,
2017, Poncet et al., 2019), which showed promising results for
UAV campaigns centring around geologic mapping (Jackisch et
al., 2019). The principal lithological surface composition of our
scenes are carbonatite veins that occur in glimmerite host-rock,
surrounded by clay, soil, low vegetation, small water ponds and
debris. The whole surface appears as rather dark and flat.
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Table 1. Quantitative assessment on the performances of the clustering algorithms applied to Scene No.1. The clustering performance
is evaluated using overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

Clusters/Clustering algorithm No. ground truth samples K-means ESC Our proposed algorithm
Cluster A 66 50.00 15.15 13.64
Cluster B 80 100.00 22.83 79.35
Cluster C 92 16.00 39.33 84.67
Cluster D 136 21.25 76.25 85.00
Cluster E 143 0.00 31.62 66.91
Cluster F 108 0.00 49.07 32.41
Cluster G 150 69.93 100 100

OA 34.32 50.32 70.45
AA 36.74 47.75 66.00

Kappa 0.24 0.41 0.65

Table 2. Quantitative assessment on the performances of the clustering algorithms applied to Scene No.2. The clustering performance
is evaluated using overall accuracy (OA), average accuracy (AA), and Kappa coefficient.

Clusters/Clustering algorithm No. ground truth samples K-means ESC Our proposed algorithm
Cluster A 123 0.00 63.41 70.73
Cluster B 76 78.95 89.47 98.68
Cluster C 164 43.29 61.59 84.76
Cluster D 82 37.80 64.63 100
Cluster E 119 10.08 31.93 59.66
Cluster F 114 46.49 43.86 73.68

OA 33.48 57.23 79.35
AA 36.10 59.15 81.25

Kappa 0.21 0.49 0.75

3.3 Qualitative analyses of clustering results

In order to evaluate the performance of the proposed spectral-
spatial clustering algorithm, K-means, ESC, and subspace-based
HMRF are applied on the two real hyperspectral image data
sets. The number of class labels l is defined by a geologist.
For the scene No.1, and scene No.2, seven and six number of
classes are defined respectively. In addition, we use the default
parameters that are proposed by You et al., and Ghamisi et al.,
for both ESC and HMRF respectively (You et al., 2018, Gham-
isi et al., 2014). However, in order to choose the number of
samples in ESC, we propose to use a close number of samples
to the mineral targets in each scene. As it can be observed from
the obtained clustering results in Figures 4-5, primary features
of interest are the centi-to-decimeter wide carbonatite veins in-
side the glimmerite bodies. With a vertical NS striking trend of
the veins, they follow the main direction of the regional carbon-
atite—glimmerite intrusion. Evidence of shearing and folding
of rock units can be visually identified on the RGB, as well as in
the classified scenes. The NS trend of the carbonatite is visible
in Figure 2, were a broad feature is observed, while the folding
of the carbonatite class is apparent in Figure 3. Improvement of
quality between ESC and subspace-based HMRF can be qualit-
atively evaluated by comparing both. Arguably, the water body
in the top of Scene No.1 is not completely captured by ESC, and
carbonatite is featured as thin veinlets, that not fully represent
this unit. Subspace-based HMRF, on the other hand, encloses
the carbonatite fully, but tends to over-estimated its occurrence
in Scene No.1, while in Scene No.2 clustering compares better
to the real geological structures.

3.4 Quantitative analyses of clustering results

In order to have a quantitative comparison between the per-
formance of the studied clustering algorithms, ground truth data
points are produced for each scene which are shown in Fig-
ures 2-3. The performance of each clustering algorithm is eval-
uated using overall accuracy (OA), average accuracy (AA), and

kappa coefficient. The obtained quantitative results on scene
No.1 is presented in Table 1. As can be seen in Table 1, our
proposed algorithm (OA: 70.45) significantly outperforms the
ESC (OA: 50.32) and K-means (OA: 34.32) algorithms. In
scene No.1, although K-means performs well to capture cluster
A and B, it is not capable of capturing cluster E and F at all.
ESC classifies cluster F and G better than K-means and our
proposed method. In the second scene, the proposed algorithm
(OA: 79.35) outperforms ESC (OA: 57.23) and K-means (OA:
33.48). The quantitative assessment on the second scene shows
that the proposed algorithm classifies all the clusters better than
its competitive clustering algorithms.

4. CONCLUSION AND REMARKS

In this paper, a new spectral-spatial subspace-based clustering
algorithm for hyperspectral image analysis was proposed. Due
to the presence of high dimensionality and highly mixed pixels
in hyperspectral data, an advanced sparse subspace clustering
algorithm, the so-called ESC, is used. However, ESC does
not consider spatial information, and it is more likely to hap-
pen that, surrounding pixels have the same class label as the
central pixel. Therefore, we proposed to fuse ESC with the
HMRF algorithm that extracts spatial information. The qualit-
ative and quantitative analyses of the obtained clustering results
show that the proposed subspace-based HMRF algorithm per-
forms well in terms of grouping the geological features com-
pared to ESC and K-means algorithms. As the future work,
we will investigate the influence of the optimization paramet-
ers in ESC and HMRF. Besides, the proposed framework will
be tested and compared with different subspace clustering al-
gorithms. Moreover, the proposed method will be applied on
different data sets.
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Figure 4. The clustering results obtained by (1) K-means, (2)
ESC, and (3) the proposed subspace-based HMRF algorithm on

Scene No.1 (No. clusters:7). Class labels can be geologically
interpreted as follows, which cluster A: water 1, cluster B: water

2, cluster C: Carbonatite, cluster D: vegetation and dark rock,
cluster E: shade and clay, cluster F: Glimmerite and soil, cluster

G: host rock

Figure 5. The clustering results obtained by (1) K-means, (2)
ESC, and (3) the proposed subspace-based HMRF algorithm on

Scene No.2 (No. clusters:6). Class labels can be geologically
interpreted as follows, which cluster A: dark soil 1, cluster B:
dark soil 2, cluster C: Carbonatite, cluster D: Glimmerite and

soil, cluster E: Glimmerite, cluster F: vegetation and soil
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