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ABSTRACT: 

 

The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial 

vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature 

extraction methods, that highly depend on user’s knowledge, the convolutional neural network (CNN)-based method can 

automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the 

data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in 

tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest 

area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample 

set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector 

machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when 

associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier 

outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM 

and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 

21% in OA when associated with a data augmentation and spatial features extracted from a CNN. 

 

 

1. INTRODUCTION 

Currently, one of the major challenges for conservation is to 

obtain reliable and accurate information at a large scale to 

monitor biodiversity, resources as well as the human impact on 

natural ecosystems (Wagner et al., 2019). Remote sensing is 

considered an effective means for this effort, not only because 

of the increased spatial and temporal resolutions of the datasets, 

which enable identifying elements of biodiversity, such as tree 

species, but also because of the increase in available data, the 

computational capacity to process such data, and the 

development of advanced classification methods (Ghosh et al., 

2014; He et al., 2015; Kwok, 2018). 

 

Small-format hyperspectral cameras on-board unmanned aerial 

vehicles (UAVs) provide both high spectral and very high 

spatial resolution data, markedly increasing the scope of remote 

sensing applications. UAV-borne sensors enable to collect data 

even under cloud cover conditions. Moreover, they are flexible 

regarding spatial and temporal resolution, what makes them a 

cost-effective and operational solution for tree species 

classification (Nevalainen et al., 2017; Tuominen et al., 2018; 

Sothe et al., 2019; Miyoshi et al., 2020).  

 

Nevertheless, a fact that must be considered when using high 

spatial resolution data for tree species classification is the 

differences in light conditions and spectral variability within the 

crowns, such as branches, presence of lianas, background and 

shadows, which can negatively affect the classification 

accuracies. To deal with this, many studies resort to textural 

features as a way to include spatial information in the 

classification process. The gray-level co-occurrence matrix 

(GLCM), for instance, is frequently applied for tree species 

classification (Franklin, Ahmed, 2017; Maschler et al., 2018; 

Ferreira et al., 2019; Sothe et al., 2019). However, such 

techniques commonly require predefined spatial filter and other 

parameters which are subjectively determined by the user 

according to his/her knowledge of the problem. Moreover, these 

spatial features are aim-specific ones, which means that only 

one specific type of objects can be detected by each parameter 

configuration, making it impossible to describe all types of 

objects by setting empirical parameters (Zhao, Du, 2016). 

 

Besides the data and feature extraction, a proper choice of the 

classification method is also decisive for a successful 

classification result. Machine learning algorithms, such as 

support vector machine (SVM) and random forest (RF), are 

considered robust and work well in the presence of a wide range 

of class distributions and with high dimensionality and 
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multisource data (Ghosh et al., 2014), but still depend on hand-

engineered features (Li et al., 2017). Recently, deep learning, a 

class of machine learning, has been introduced into remotely 

sensed images classification and hyperspectral images in 

particular. Deep learning methods are able to automatically 

extract high-level spatial features from hyperspectral data (Chen 

et al., 2016; Zhao, Du, 2016; Signoroni et al., 2019), showing 

great robustness and effectiveness in image classification (Chen 

et al., 2014; Li et al., 2017; Wagner et al., 2019). Among these 

methods, the convolutional neural network (CNN) algorithm is 

a supervised deep learning model that has been producing 

promising results in tree species classification (Pölönen et al., 

2018; Fricker et al. 2019; Hartling et al., 2019; Sothe et al., 

2019). However, few studies explored the CNN for tree species 

classification in (sub)tropical forests (e.g., Sothe et al., 2019) 

and the potential of deep features extracted from a CNN for this 

purpose remains unknown. 

 

A major challenge in the classification of tree species in tropical 

forests is the high number of species, some of them dominant 

and other rare. It results in an imbalanced sample set, with a 

small number of samples available for the less often found tree 

species (Mellor et al., 2015). In this case, sampling the natural 

abundance of species would lead to highly skewed sample sizes 

across classes, while increasing the sample sizes of rare species 

would be time-consuming and costly (Graves et al., 2016). The 

CNN requires a large number of training samples in order to 

capture the essential features of the data (Pasupa, Sunhem, 

2016; Yu et al., 2017), which can be an obstacle when used to 

classify a large number of tree species in tropical forests. To 

address this problem, a data augmentation step to increase and 

balance the number of training samples can be performed before 

the classification. Among the available data augmentation 

methods, flip, translation and rotation operations preserve the 

scene topologies of the data, which is especially important for 

consistent classifications, but enhance the intra-class data 

diversity and does not incur inter-class ambiguities (Yu et al., 

2017).  

 

In this study, a CNN method associated with a data 

augmentation step was tested and compared with conventional 

machine learning methods, SVM and RF, for the classification 

of 14 tree species in a subtropical forest area. The potential use 

of a data augmentation and deep spatial features extracted from 

a CNN and incorporated into the SVM and RF classifiers was 

also evaluated. 

 

 

2. MATERIAL AND METHODS 

2.1 Study area and samples collection 

The study area is located in the municipality of Curitibanos, 

Santa Catarina State, Southern Brazil (Figure 1). The area 

covers an extension of approximately 30 ha and belongs to the 

Atlantic Rain Forest biome and the Mixed Ombrophilous Forest 

phytophysiognomy, comprising both coniferous and 

broadleaves species. According to the Köppen–Geiger 

classification, the climate is Cfb, moist mesothermal with no 

clearly defined dry season, with a mean annual temperature of 

15 °C and a yearly rainfall of 1,616 mm (Peel et al., 2007). 

 

The sample collection was performed after the acquisition of the 

hyperspectral data, in which some crowns were selected in the 

images and surveyed in the field. Eighty individual tree crowns 

(ITC) representing 14 tree species were identified, 

corresponding approximately to 80% of the dominant tree 

species in the area (Table 1). 

 

 

 
Figure 1. Study area, samples location and ground control 

points. 

 
ID Species ITC Nº pixels 

a Luehea divaricata 5 23,624 

b Araucaria angustifolia 8 27,191 
c Mimosa scabrella 7 25,449 

d Lithraea brasiliensis 5 17,458 

e Campomanesia xanthocarpa 5 18,837 
f Cedrela fissilis 5 24,368 

g Cinnamodendron dinisii 5 6,927 

h Cupania vernalis 5 12,475 
i Matayba elaeagnoides 8 48,231 

j Nectandra megapotamica 8 11,247 

l Ocotea sp. 9 101,884 
m Podocarpus lambertii 6 12,387 

n Schinus terebethifolius (sp1) 2 4,491 

o Schinus lentiscifolius (sp2) 2 6,083 

 Total 80 340,652 

Table 1. Description of tree species, number of individual tree 

crowns (ITC) and pixel samples used in this study. 

 

2.2 Input data 

The flight was conducted in December 2017 using a quadcopter 

UAV (UX4 model) and a frame format hyperspectral camera 

based on a Fabry-Perot Interferometer (FPI), model 2015 (DT-

0011). The camera has two CMOSIS CMV400 sensors that by 

means of an adjustable air gap are flexible in selecting up to 25 

spectral bands ranging from 500 to 900 nm with the minimum 

bandwidth of 10 nm at the full width at half maximum (FWHM) 

(Honkavaara et al., 2013) (Table 2).  

 
Sensor CMOSIS CMV400 sensors 

Spectral bands 25 spectral bands ranging from 506 to 819 nm 

FWHM Ranging from 12.84 to 21.89 nm 

Focal length 8.6 mm 

Field of view (FOV) 37° 

Spatial resolution 11 cm 

Image dimensions 1,023 × 648 pixels 

Flight height 150 m 

Flight speed 4 m/s 

Table 2. Characteristics of the camera, flight and data. 

 

In the preprocessing stage, the images digital numbers were first 

transformed into radiance values with photon units of pixel−1 s−1 

using the Hyperspectral Imager, software developed by Rikola 

Ltd (2014) and supplied with the camera. The correction 
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parameters are available in ASCII files organized according to 

the sensor and respective data, the positioning of the FPI and the 

FWHM. Next, the dark signal correction was performed using 

black images collected prior to the data captured with covered 

lens. For the geometric processing, the camera geometry and the 

orientation of each band were reconstructed using the interior 

orientation parameters (IOPs) and the exterior orientation 

parameters (EOPs), estimated using the so-called on-the-job 

calibration, after a refinement of the initial values. Such initial 

values for the camera positions were assessed by the GNSS 

receiver and involved latitude, longitude, and altitude (flight 

height plus the average terrain elevation) data. In the sequence, 

the coordinates of six ground control points (GCPs) (Figure 1) 

were added to the project and measured in the corresponding 

reference images. According to Miyoshi et al. (2018), frame 

format cameras results in more stable imaging geometries and 

uses fewer GCPs than pushbroom sensors. After the bundle 

adjustment, the final errors of the GCPs (reprojection errors) 

were 0.03 pixels in the image and 0.003 m in the GCPs. 

 

Afterwards, the orthorectification was performed starting with 

the generation of a dense point cloud. At the last stage, the 

orthomosaics of all the bands were generated from the 

orthoimages of each hypercube band. The geometric processing 

and orthorectification were performed for each of the 25 

spectral bands, which automatically coregister them regarding 

the slight positioning difference among bands of the same 

image caused by the time sequential operating principle of the 

camera (Honkavaara et al., 2013; Miyoshi et al., 2018). The 

orthomosaics of the 25 spectral bands were stacked to compose 

the original (or raw) dataset.  

 

2.3 Classification 

For the SVM classification, the one-against-one multiclass 

strategy and the radial basis function (RBF) were adopted. A 5-

fold cross validation was carried out in the training samples set 

to tune the cost parameter, while the gamma value was set 

during the classification process with the function sigest of the 

kernlab package (Karatzoglou et al., 2004) in R programming (R 

Development Core Team, 2018). The RF classifier was 

performed using 500 trees. The default value for mtry parameter 

was kept, which corresponds to the square root of the total 

number of features used in each experiment (Breiman, 2001). 

The RF classification was conducted using the randomForest 

package (Liaw, Wiener, 2002) in R programming. In the case of 

the SVM and RF classifications associated with a data 

augmentation and deep features extracted from the CNN, they 

were respectively named CNN-SVM and CNN-RF approaches, 

and the same parameters of their conventional classifications 

described above were used.  

 

For the CNN, CNN-SVM and CNN-RF approaches, a data 

augmentation step using flip and rotation operations was 

executed prior to the classification. The training samples were 

replicated as the feature space was rotated and flipped in 

different directions until they reached an amount of 15,000 

pixels per class, while the few species with training samples 

exceeding 15,000 pixels were downsampled.  

 

The feature extraction and classification using the CNN were 

performed using the architecture shown in Figure 2, executed in 

Keras with TensorFlow backend (Abadi et al., 2015). It 

consisted of five convolutional layers, three pooling layers, a 

fully-connected layer and a classification layer. The numbers of 

kernels for the successive convolutional layers were 32, 32, 48, 

48, 64, and 128 for the fully-connected layer, with a learning 

rate of 10e-4. After every convolution operation and the fully-

connected layer, a batch normalization, followed by a leaky 

rectified linear unit (Leaky ReLU) activation function, was 

applied. The Adam optimizer (Kingma, Ba, 2015) parameters 

were set to default values. To deal with overfitting, the network 

was trained using early stopping and dropout regularization of 

0.35 after the fully-connected layer and before the top layer. 

The last layer of the network (classification layer) was 

composed of a softmax activation function that performs a 

pixel-wise classification upon the learned representative 

features. For the CNN-SVM and CNN-RF approaches, the 

learned features corresponding to the output of the fully-

connected layer are used as input for the SVM and RF 

classifiers. The total number of CNN parameters was 186,896.  

 

 
Figure 2. CNN architecture adopted in this study. 

 

In the inference step, the trained network was applied over the 

image to generate the classification maps. The CNN classifier 

was applied to overlapping image patches to predict the class of 

their central pixel using a sliding window technique with a 

stride set to 1. Next, each query was spatially concatenated to 

obtain a classification at the same resolution of the input image. 

After testing different window sizes, the evaluated network was 

designed to receive a patch of 33x33 pixels and to output a 

probabilistic vector of size equal to the number of classes, 

where the index location of the highest value indicates the most 

probable class. Figure 3 depicts the methodological flowchart of 

tree species classification using the CNN method and the CNN-

SVM and CNN-RF approaches. It should point out that for all 

classifiers and approaches, the ITC samples were randomly split 

into training (and validation) and test sets prior to the 

classification. Training samples together with validation 

samples were used to train the classifier and to find the best 

classification parameters, while test samples were separate for 

the accuracy assessment. 

 
Figure 3. Methodological flowchart of tree species classification 

using the CNN method and CNN-SVM/ CNN-RF approaches. 

Note: sp1 (yellow) and sp2 (green) representing different 

species; ITC= individual tree crown. 

 

2.4 Accuracy assessment 

To evaluate the classification results, the confusion matrices 

were generated based on a cross-check between the classified 

results and test samples, corresponding to 50% of ITCs not used 

in the training or validation steps. With the confusion matrices, 

different agreement indices were calculated: (a) overall 

accuracy (OA); (b) precision (i.e. producer’s accuracy), (c) 
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recall (i.e. user’s accuracies); (d) F-measure and; (e) Kappa 

index. 

 

Even aware of the uncertainties in expanding the tree species 

classification over the entire area because not all the species 

were represented, the classified images were made to analyze 

the representativeness and abundance of each species, observing 

the classification patterns and the agreement in classifications 

resulted from different classifiers/approaches. The non-forest 

areas were removed by a CHM mask, considering pixel values 

below 2 m. We emphasize that expanding the classification to 

the entire study areas would lead to a misclassification of the 

tree species not surveyed in the field work. This is the reason 

why such species were not included in the confusion matrices 

reckoning. 

 

 

3. RESULTS AND DISCUSSION 

Results showed that the CNN classifier outperformed the SVM 

and RF classifiers (Table 3), reaching an OA of 84.37% and 

Kappa of 0.82. The SVM and RF had a poor accuracy when 

only the original spectral bands were used (OA 62.67% and 

59.24%), but an increase between 14% and 21% for SVM and 

RF, respectively, was observed when a data augmentation 

process and deep features extracted from the CNN were 

employed by these classifiers. 

 
Classifier/Approach OA (%) Kappa 

SVM 62.67 0.57 

RF 59.24 0.52 
CNN 84.37 0.82 

CNN-SVM 76.83 0.73 

CNN-RF 80.73 0.78 

Table 3. Tree species classification results. 

 

Figure 4 shows the F-measure of each tree species and 

classifier/approach. In general, the CNN outperformed the 

classification for most species, except for Campomanesia 

xanthocarpa and Schinus sp2, in which the CNN-RF approach 

had a slightly better performance. When using only the original 

bands, the SVM and RF had a poor performance for most 

species, showing that the process to increase and balance the 

sample set and the extraction of deep CNN features were crucial 

for improving their results.  

 

 

 
Figure 4. F-measure of each tree species class according to the 

classifier/approach. 

 

The use of the CNN classifier as well the CNN-SVM and CNN-

RF approaches showed to be particularly relevant to increase 

the accuracy of species with fewer pixel samples, as in the case 

of Cinnamodendron dinisii, Cupania vernalis, Nectandra 

megapotamica, Podocarpus lambertii, Schinus sp1 and Schinus 

sp2 as shown in the confusion matrices (Figure 5). For these 

species in particular, the data augmentation process could 

significantly increase their accuracy. Yu et al. (2017) observed 

that the experimental results with augmentation operations 

outperform those from the same deep model architecture 

training on the original sample set. According to the authors, the 

diversity and completeness of remote sensing data can be 

greatly enhanced by data augmentation.  

 

 

 
Figure 5. Confusion matrices of RF classifier (top) and CNN-

RF approach (bottom). Note: Species ID according to Table 1. 

 

The spatial information extracted from the CNN may also have 

been decisive in improving the accuracy of some classes. 

Nectandra megapotamica, for instance, is a species with small 

crowns and considering this, even with eight ITC samples, it 

presents a small number of pixel samples. This may result in a 

higher intraclass variability, which was better captured by the 

spatial information extracted from the CNN. Zhao and Du 

(2016) also highlighted the potential of the CNN as a method to 

extract spatial features for land cover classification. They 

reported that the CNN had better results when compared with 

conventional feature extraction methods, such as principal 

component analysis and linear discriminant analysis.  

 

The findings of this study are consistent with the studies 

exploring the CNN for tree species classification so far. Hartling 

et al. (2019) compared a dense CNN architecture to the RF and 

SVM methods to classify eight tree species in an urban area 

using WorldView-2, WorldView-3 and intensity derived from 
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light detection and ranging (LiDAR) data. In their study, the 

CNN classifier reached 82.6% of OA in comparison to 60% 

achieved by machine learning methods. Fricker et al. (2019) 

reached a F-score of 0.87 when classifying seven tree species in 

a mixed-conifer forest in USA using hyperspectral data. 

Pölönen et al. (2018) reached 96.2% of OA when classifying 

three tree species of a boreal forest using a 3D CNN and 

hyperspectral data. The results of this study are comparable to 

those of the above-mentioned works, given that Fricker et al. 

(2019) and Pölönen et al. (2018) handled a limited number of 

species and not a tropical forest, and Hartling et al. (2019) 

studied urban areas, which represent a more controlled 

environment. Similar to our study, Hartling et al. (2019) 

emphasized the ability of the CNN to automatically extract 

information from the input dataset, given that the addition of 

hand-engineered features does not always result in higher 

accuracies. For instance, the studies conducted by Sothe et al. 

(2019) and Maschler et al. (2018) observed that the inclusion of 

texture information derived from GLCM did not significantly 

increase the accuracy of tree species classification when using 

SVM or RF methods. 

 

 
Figure 6. Classified images. (a) RF classifier; (b) CNN 

classifier. 

 

Zhao and Du (2016) noticed that the method involving spatial 

features extracted from a CNN produced maps with less “salt 

and pepper” effect, which was also observed in this study 

(Figure 6). The CNN classifier (Figure 6b) produced a more 

homogeneous map than RF (Figure 6a) and SVM due to the use 

of deep spatial features. This is an important issue to be 

considered, because in maps with the “salt and pepper” effect it 

is very common that an ITC of one single species is composed 

by pixels classified as different species. This effect can also be 

minimized when adopting a segmentation method to delineate 

the crowns previous to the classification. However, for tropical 

forests, this task is very time consuming and usually involves 

many steps (e.g., Tochon et al., 2015; Wagner et al., 2018). In 

fact, a study conducted by Sothe et al. (2019) reported that the 

SVM only reached similar accuracies to CNN when 3D 

information was incorporated into the dataset and the final 

classification was aggregated into segments. They also pointed 

out the use of a CNN for tree species classification as a 

promising way to extract spatial features, while dealing with the 

intraclass variability of high spatial resolution images, without 

the need of a segmentation procedure. 

 

 

4. CONCLUSION 

This study investigated the ability of a CNN associated with a 

data augmentation process, as a feature extraction and 

classification method for classifying 14 tree species in a 

subtropical forest by means of UAV-borne hyperspectral data. 

Results showed that the CNN outperformed the conventional 

machine learning methods SVM and RF, with an OA of 84.37% 

and a Kappa index of 0.82. SVM and RF had a marked increase 

when associated with a data augmentation step and deep spatial 

features extracted from a CNN. With an OA of 76.83% and 

80.73%, respectively, SVM and RF were 14% and 21% more 

accurate than the classification using only the original training 

sample set and spectral data. In addition to not requiring hand-

engineered features, the CNN stood out for producing more 

homogeneous tree species maps without the need of previous 

segmentation steps, which is usually imperative when dealing 

with very high spatial resolution images. 
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