ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020
XXIV ISPRS Congress (2020 edition)

A COARSE-TO-FINE BAND REGISTRATION FRAMEWORK FOR
MULTI/HYPERSPECTRAL REMOTE SENSING IMAGES CONSIDERING CLOUD
INFLUENCE

Xuhui Zhao', Zhi Gao'* Wenbo Sun?, Fei Wen'

! School of Remote Sensing and Information Engineering, Wuhan University, 430079 Wuhan, China -
(zhaoxuhui, wenfei) @whu.edu.cn, gaozhinus @ gamail.com
2 School of Electronic Information, Wuhan University, 430079 Wuhan, China - wenbosun@whu.edu.cn

Commission III, WG 111/4

KEY WORDS: Multi/hyperspectral Band Registration, Moving Clouds, Coarse-to-fine Framework, RASL, Low-rank Analysis,
Zhuhai-1 Satellite

ABSTRACT:

Band registration is one of the most critical steps in the production of multi/hyperspectral images and determines the accuracy of
applications directly. Because of the characteristics of imaging devices in some multi/hyperspectral satellites, there may be a time
difference between bands during push-broom imaging, which leads to displacements of moving clouds with respect to the ground.
And a large number of feature points may gather around cloud contours due to the high contrast and rich texture, resulting in building
a transformation more suitable for moving clouds and making ground objects ghosted and blurred. This brings a big challenge for
registration methods based on feature extraction and matching. In this paper, we propose a novel coarse-to-fine band registration
framework for multi/hyperspectral images containing moving clouds. In the coarse registration stage, a cloud mask is generated by
grayscale stretching, morphology and other operations. Based on this mask, a coarse matching of cloud-free regions is performed
to eliminate large misalignment between bands. In the refinement stage, low-rank analysis and RASL (Robust Alignment by Sparse
and Low-rank decomposition) are used to optimize the rank of coarse results to achieve fine registration between bands. After
experiments on a total of 102 images (83 cloudy images and 19 cloud-free images with all 32 bands) from Zhuhai-1 hyperspectral
satellite, our method can achieve a registration accuracy of 0.6 pixels in cloudy images, 0.41 pixels in cloud-free images, which is
enough for subsequent applications.

1. INTRODUCTION

With the continuous development of science and technology,
more multi/hyperspectral sensors have been equipped on earth
observation satellites, which effectively expands the ability to
observe the earth through rich spectral information. How-
ever, due to the characteristics of imaging devices in some
multi/hyperspectral satellites, the imaging time of the same
ground object may vary in different bands during push-broom
imaging, which leads to misalignment between bands. There-
fore, band registration is one of the most important steps in the
production of multi/hyperspectral data and there are mainly two
types of registration methods at present. One is the method that
takes into account satellite imaging models (hereinafter referred
to as model-based method), and the other is the method that
uses computer vision (hereinafter referred to as vision-based
method). Model-based methods use attitude, orbit, and time
data of satellites during imaging to build a geometric position-
ing model between ground points and image pixels. The relat-
ive relationship between bands can be restored using this point-
to-point model, which may achieve a high registration accuracy.
But it needs many satellite operational parameters that are not
easy to get and use. And the calculation for the satellite ima-
ging model is complicated and tedious. Vision-based methods
usually estimate a transformation by extracting and matching
tie points' in different bands and uses it for alignment. Com-

Figure 1. Influence of moving clouds on multi/hyperspectral
band registration in the cloudy image. (a) Registration results of
band red, green and blue using the vision-based method. Roads
become rainbow-like due to the movement of clouds. (b) Results

after eliminating cloud motion with our methods.

and requires fewer parameters and computations.However, as
mentioned before, there may be a slight movement of mov-
ing clouds in different bands with respect to the ground due
to the imaging time difference. And many tie points may gather
around cloud contours because of the strong contrast and rich
texture when extracting and matching features. Transforma-

pared with model-based methods, it is more straightforward

* Corresponding author
! The correspondence points between the reference and sensed image.

tions based on these tie points are inaccurate and will lead to a
poor registration or even failure for ground objects while a good
accuracy for clouds as shown in Fig.1. It brings a big challenge
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for vision-based methods, but many do not take into account
this impact of moving clouds on band registration. Aiming at
the problem of poor registration for ground objects in cloudy
multi/hyperspectral images, we propose a novel coarse-to-fine
band registration framework that eliminates the influence of
moving clouds.

The main structure of this paper is as follows: Some work re-
lated to this topic is introduced in Section 2. Then the coarse-
to-fine band registration framework is described in Section 3
in detail. Extensive experiments are performed on data from
Zhuhai-1 hyperspectral satellite and results are in Section 4.
Conclusions are summarized in Section 5.

2. RELATED WORK
2.1 Cloud Detection in Remote Sensing Images

Clouds cover about 50% of the earth’s surface (Randall, Cor-
setti, 1989), (King et al., 2013), which indicates that clouds
inevitably appear in most remote sensing images. Cloud de-
tection is a subject that has been studied for years, many meth-
ods have been proposed for general or specific scenarios. In
general, it can be divided into two categories: methods based
on image grayscale (hereinafter referred to as grayscale-based
method) and methods based on physical spectrum (hereinafter
referred to as spectrum-based method).Grayscale-based meth-
ods use computer vision methods for cloud detection based
on the grayscale value of pixels rather than the physical spec-
tral reflection characteristics, which are quite simple and easy
to use. It can be further divided into learning-based methods
and non-learning methods. Different convolutional neural net-
works (Ozkan et al., 2018),(Li et al., 2019a),(Shao et al., 2019)
were used for cloud detection and got some good results. As for
non-learning methods, it involves broader technologies. A non-
negative matrix factorization method was used for cloud detec-
tion(Li et al., 2019b). (Xu et al., 2019) studied noise-adjusted
principal components transform for removing clouds in optical
remote sensing images.(Wang et al., 2016),(Deng et al., 2016)
tried to propose a general and automatic method for detecting
clouds. Besides using a single image,(Wen et al., 2018),(Zhang
et al., 2019) used low-rank analysis to remove clouds in remote
sensing image sequences and proposed a coarse-to-fine frame-
work for detecting and inpainting clouds from other time serial
images. Spectrum-based methods are mainly used in multispec-
tral images. It can be divided into three categories: threshold,
radial transfer, and statistical. Among them, the threshold
method is a commonly used method because of its simplicity
and small calculation amount (Hagolle et al., 2010),(Jedlovec et
al., 2008),(Zhu et al., 2015). Clouds are considered cold water
vapor which has higher reflectivity and lower temperature than
the ground. Simple visible and infrared window thresholding
methods perform quite well in cloud detection(Ackerman et al.,
1998). It may have higher detection accuracy in complex scenes
while a narrower application because of its requirements on the
data type. And it may be hard to distinguish objects with similar
spectral characteristics such as snow from clouds.

2.2 Multi/Hyperspectral Image Band Registration

Currently, two kinds of methods are widely used for
multi/hyperspectral band registration : model-based methods
and vision-based methods. Model-based methods usually build
arigid geometric imaging model for simulation based on satel-
lite operational parameters during the observation process and

solve the geographic location of ground objects pixel by pixel.
It may achieve high accuracy in some complex scenarios, while
it has to use many operational parameters that are not easy to
get and may change often. On the other hand, the process of
model-based methods is quite sophisticated, which hinders the
versatility for different sensors and platforms, such as small
drones.(Jiang et al., 2013) achieved high accuracy band-to-band
registration for ZY-3 satellite by virtual re-imaging. (Jiang et
al., 2019) proposed a band-to-band registration method based
on positioning consistency constraint for Zhuhai-1 hyperspec-
tral satellite. A pixel in a certain band can be calculated to the
corresponding ground point by establishing the imaging model,
and then the ground point can be calculated back to other bands.
Theoretically, points in the other bands should coincide with
the points in the reference band, but they will not actually coin-
cide completely. This difference between bands can be used to
find the relationship for band registration. Vision-based meth-
ods usually extract corresponding feature pairs (such as points,
lines, etc.) and use these relationships to fit a transformation
(such as affine, homography, etc.) between bands. (Pan et al.,
2011) used a Harris corner detector (Harris et al., 1988) for fea-
ture detection and matching. And they also used OpenMP tech-
nology to implement the parallel band-to-band registration. (Yi
et al., 2008) modified the SIFT(Scale-invariant Feature Trans-
form) (Lowe, 1999) for better performance on multispectral
images, which they called SR-SIFT. (Ma et al., 2016) also
modified the SIFT for remote sensing image registration. Be-
sides modifying existing features in computer vision, (Ye, Shan,
2014) proposed a two-step registration method for multispec-
tral images. They used SR-SIFT for primarily matching. And
then a Harris corner detector and an LSS(Local Self-Similarity)
descriptor were used for fine matching. It achieves good results
in cloud-free images, but cannot eliminate the cloud movement
in bands. There are still some other methods that do not lever-
age on feature extraction and matching. (Dong et al., 2011)
provided a registration method based on optical flow, it is suit-
able for small images but needs lots of calculations when im-
ages are large. (Wang et al., 2018) proposed a deep learning
framework for remote sensing image registration. However, it
just works on optical images and needs a lot of labeled data to
train the network. (Peng et al., 2012) proposed a new method
for alignment of batch images, which is called RASL (Robust
Alignment by Sparse and Low-rank decomposition). They re-
gard image alignment as an optimization problem of the rank
of a matrix and achieve some great results. Inspired by this
work, (Hu et al., 2014) used rank minimization for multiangle
multi/hyperspectral images. But the initialization of optimiza-
tion is complex which makes it hard for practical use. Generally
compared with model-based methods, vison-based methods are
more universal and can be used for alignment when we do not
know parameters for building an imaging model.

As a summary, we propose a coarse-to-fine multi/hyperspectral
band registration framework for cloudy images to eliminate the
influence of moving clouds on registration. We adopt grayscale-
based methods for cloud detection because of its simplicity and
good performance, which can be used for panchromatic im-
ages. And we achieve coarse alignment by vision-based meth-
ods for the high efficiency and wide applicability. Finally, we
use RASL for fine registration based on coarse stage results.

3. THE PROPOSED FRAMEWORK

Fig.2 shows the main flow of the coarse-to-fine framework for
multi/hyperspectral band registration.In the coarse stage, two
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processings are performed on the input band simultaneously,
one is to generate the cloud mask for feature filtering based
on thresholding and morphological operations, the other is to
enhance the contrast of cloud-free part for a better feature ex-
traction. After extraction and filtering, the filtered features are
matched to find a coarse band-wise transformation. In the re-
finement stage, results from the coarse registration are used as
initial inputs to RASL for optimization, and finally a more ac-
curate registration result is obtained.

Matching and|
% - resampling |

s e |

Grayscale

stretching

Keypoint extraction |

RASL
Refinement

Coarse aligned
column stack data

Aligned band images

Figure 2. Flowchart of the proposed coarse-to-fine registration
framework for multi/hyperspectral images.

3.1 Coarse Band Registration

In cloudy images, a large amount of cloud-contour feature
points are included because of the strong contrast and rich tex-
ture around cloud contours. And due to the brightness of clouds,
the ground becomes darker after grayscale stretching, which
further aggravates this situation and builds a model more suit-
able for clouds, resulting in a poor registration accuracy for
ground objects. In the coarse stage, our goal is to increase the
proportion of ground feature points in total as much as possible,
so as to find the model that fits most matches (ground features)
for alignment. We generate a cloud mask to filter cloud-contour
points and perform grayscale stretching to enhance the contrast
of the ground for more feature points. In practice, the cloud
mask and filtered points may not be absolutely accurate due
to errors, but it is enough for the initialization of the refine-
ment stage. For finding the cloud mask, the input image is
pre-processed to make the bright part brighter and the dark part
darker. A new stretching function is proposed as Eq.1:

B 2m71$'m
Y= (72)m—1 41

Where = and y are the input and output normalized grayscale
value, m is a coefficient used to adjust the stretching effect.
The larger m indicates more obvious effects. We set m = 4
for experiments in this paper. After obtaining the stretched
image, OTSU binarization (Otsu, 1979) is performed on it.
Then a dilation operation is used to remove fragmented pixels
and noise, and multiple erosion operations are used to expand
the cloud range. For the ability to describe details we use
small morphological kernels. And to filter “fake” feature points
around cloud contours as possible, a “greedy strategy” is adop-
ted for a complete coverage of the cloud. On the other hand,
due to limited sensor quantization levels, the grayscale con-
trast of remote sensing images is usually low, which may lead

0<z<0.5,

05<z<1 M

to failure and mismatching of algorithms based on grayscale
information. Therefore, grayscale stretching is usually per-
formed on images before feature extraction. But with the exist-
ence of clouds, grayscale value and contrast in dark cloud-free
parts(compared with clouds) reduces significantly after ordin-
ary grayscale stretching, which affects the quantity and quality
of features. For a better feature extraction, another effective
grayscale stretching algorithm is designed by combining log-
arithmic stretching and linear stretching. The core grayscale
transformation is as shown in Eq.2.

9(0.) = d- oy (1 + 5+ G (F0.) — ) @)

Where f(i,7) and g(i,7) are the input and output grayscale
value of the pixel at the location (i,7). a and b represent
the minimum and maximum grayscale values before stretch-
ing, while c and d are the expected corresponding values after
stretching. k is the adjustment coefficient, usually set to 1.
According to the normal distribution, we take grayscale val-
ues in the range of 20 for stretching, that is, keeping pixels
with a distribution in the range of about 96%. As for pixels
out the range of 2% - 98%, we set them the grayscale value
of 2% or 98% pixels. To further increase the stability and re-
liability of features in low texture and contrast parts, a multi-
feature strategy is adopted. Single feature may not output sat-
isfactory results in remote sensing images. While different
feature extraction algorithms can complement each other and
help to solve this problem. We mainly use three mixed fea-
tures of SIFT(Lowe, 1999), SURF(Speeded Up Robust Fea-
tures)(Bay et al., 2006), and ORB(Oriented FAST and Rotated
BRIEF)(Rublee et al., 2011) in this paper. Compared with
SURF and ORB, SIFT is more robust, resulting in a better per-
formance in complex scenarios. While SURF and ORB are
more efficient based on simpler algorithms. These three fea-
tures are extracted independently and combined to get final fea-
ture points. After obtaining feature points, FLANN(Fast Lib-
rary for Approximate Nearest Neighbors)(Muja, Lowe, 2009) is
used for fast matching, and RANSAC(RANdom SAmple Con-
sensus)(Fischler, Bolles, 1981) algorithm is used to eliminate
the error matches. Finally, the least-squares method is used to
solve the optimal transformation model. We select 2D Affine
as the band-wise transformation model in this paper. In order
to reduce the influence of grayscale difference between differ-
ent bands on matching, we adopt “iterative reference” strategy
based on the idea of adjacent bands are more similar in spec-
trum signatures. It takes the resampled output band of this it-
eration as the input for the next iteration.Some results in coarse
stage are shown in Fig.3.

3.2 Fine Band Registration

The coarse stage eliminates large-scale translation, rotation, and
scaling between bands, but it is not accurate enough. Results
from the coarse stage are used as initial values for further op-
timization. Inspired by (Peng et al., 2012), the registration of
hyperspectral bands can be converted to the optimization of the
rank of a low-rank matrix. Suppose I1, I, ..., I, are images
aligned with each other, w and h are width and height of the
image. Images can be reduced to n one-dimensional vector
v1, V2, ..., Un by stacking rows or columns of every image to-
gether, the length of this vector is m = w x h. Since images are
aligned and similar in content, there will be a linear relationship
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Figure 3. Results of the coarse stage. (a) Features extracted on
the raw image. (b) Cloud mask of (a). (c) Features extracted on
the stretched image using Eq.2. (d) Filtered result of (c) based
on cloud mask (b) and RANSAC. Red and green points indicate
cloud contour and ground points respectively.

among v1, va, ..., Un. Stack these vectors by columns to form a
new low-rank matrix A = [v1,vg, ..., vs]. The rank of A will
be minimum when this linear relationship is strongest, which
means that images are aligned.

Considering practical multi/hyperspectral bands of remote
sensing images, this linear relationship is destroyed to a cer-
tain extent due to cloud movement, occlusion, and spectral
reflection characteristics of different ground objects between
bands. The aforementioned method cannot be used directly
and it is necessary to eliminate the non-linear change of gray-
scale values between bands as much as possible. Inspired by
RPCA(Robust Principal Component Analysis)(Candes et al.,
2011), it can be resolved by decomposing the band into a low-
rank part and a sparse part. Suppose B1, Ba, ..., B, are bands in
multi/hyperspectral image, B; indicates the i-th band(i < n).
These multi/hyperspectral bands can be expressed as: B; =
B! + B$, B, = B, + Bj,..., B, = B!, + B:, while B! in-
dicates the low-rank part of i-th band, and B; indicates the
sparse part. Generally, the value of B; is large but only affects
a part of the band, and is used to correct the non-linear variation
of grayscale values between bands. Let vec() be the operation
that converting a two-dimensional band into a one-dimensional
vector by rows or columns and D be the matrix after each band
is stacked, so we can write Eq.3.

D = [vec(By)|vec(B2)| -« |vee(Brn)] =L+ S  (3)

Where L = [vec(B!)|vec(BS)|-- - |vec(B)] is a low-rank
matrix used to describe the overall linear relationship between
bands. S = [vec(B{)|vec(Bs3)| - - - |vec(B;)] is a sparse matrix
used to express the non-linear relationship components between
bands, such as the non-linear grayscale change caused by spec-
tral characteristics of the ground objects. In addition to the non-
linear changes in grayscale between bands, there is some mis-
alignment which breaks the linear relationship between bands.
For Bi, Ba, ..., B, bands, we can introduce n transformations
7 ={7m,72, -+, Tn} (such as affine, homography, etc.) to make
BioTi,Bz 07, -, B, o1, aligned as written Eq.4 and ad-
just transformations 7 simultaneously during the optimization
for finding the minimum rank of D.

D o1 = [vee(BioTi)|vec(B2o7i)|---|vec(Bnoti)] (4)

Both the non-linear changes of grayscale and misalignment
between bands can be expressed by Eq.4, these two variables
can be optimized at the same time to achieve accurate registra-
tion between bands. Our goal is to find the optimal low-rank
matrix L and transformation 7. If bands are strictly aligned,
the rank of L should be optimized as much as possible, and the
objective function is as follows:

min rank(L) s.t.
L,S,7

Dor=L+5|S|l,<k (5
The Lo norm indicates the number of non-zero elements in the
sparse matrix S. The above equation can be more conveniently
solved in the Lagrangian form:

min rank(L)+~|S||, st. Dor=L+S (6)

L,S

Where ~ is a parameter used to adjust the weight. While in
Eq.6 both the objective and constraints are nonconvex and non-
linear, it is hard to solve this optimization problem directly. To
solve this problem, we adopt the methods in (Chandrasekaran
et al., 2011),(Lin et al., 2009),(Peng et al., 2012). We convert
the nonconvex objective function in Eq.6 to its convex surrog-
ate constraint, replace the rank() with the nuclear norm or sum
of the singular values: |L||,=>"" oi(L), where m is the
row number of L and then replace the Lo norm ||S||, with L;
normzzij |Si;|. After applying this operation to Eq. 6, we can
get a new objective function to optimize in Eq.7.

{nén IL||,+AllS|l, st. Dor=L+S (7

Here ) is a coefficient. Suggested by (Candes et al., 2011), it
should be v/C'/m , where C is typically a constant and usu-
ally set to C' = 1. m is the row number of L and equals
to the product of w and h of a certain band. Now the object-
ive function is continuous and convex. The only problem is
the non-linearity of constraint D o 7 = L + S . If 7 changes
very small, we can linearize the current estimate of 7 to ap-
proximate this constraint. We assume that transformation 7 =
[T1]72| - - |Ta] € RP*™, p suggests the number of parameters
for the transformation model. For example, p = 6 in 2D Affine
model. n indicates the number of bands needs to be aligned. For
AT € RP*", wehave Do(T+ A7)~ DoT+ Z?:l JiATel,
where J; ~ a%vec(B,- 0 ()|¢=r; € RP*™ is the Jacobian of
the i-th band corresponding to the transformation parameters
7; and {e; } is the standard basis for R". Eq.7 can be written as
follows:

. n T —
Join [[L XS]y st Dor+ Y Jilmel =L+
(®)

Here Eq.8 is a convex optimization problem, where L, S, AT
are unknowns. By continuously iterating to solve Eq.8, we can
get a series of convex problems until it converges. Finally, we
can get the minimum estimate result of Eq.5.
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4. EXTEXPERIMENTS
4.1 Data Introduction

The experiment data comes from Zhuhai-1 hyperspectral satel-
lite constellation(OHS-A,B,C,D), which was launched on April
26, 2018. It is the first commercial hyperspectral satellite in
China and opens a new era of commercialization(Orbita, 2020).
A push-broom mode is adopted for hyperspectral imaging in
Zhuhai-1 satellite. The imaging system is composed of three
separated CMOS(Complementary Metal Oxide Semiconduct-
ors) sensors with an overlap of fifty pixels among them(Jiang
etal., 2019). Every CMOS sensor contains 5056 x 2968 pixels
with a GSD(Ground Sample Distance) of 10m, and is divided
into 32 stripe regions along the flight direction with a filter on its
surface, covering a range of 400 - 1000nm in spectrum. In prac-
tice, 8 lines are used for integral imaging, as shown in Fig.4.

Flight

Band Direction

Red

Band

Green 2068 Pixels

} 8 Lines

Band
Blue

5056 Pixels

Figure 4. One CMOS sensor in Zhuhai-1 imaging system. Each
band is captured by eight lines with a different location.

The different imaging position on CMOS leads to the misalign-
ment between bands. However, we cannot directly eliminate it
by history data due to its variation among images with different
time and sensors, which is caused by random factors during the
imaging. For Zhuhai-1 Satellite, the difference between adja-
cent bands along the flight direction in the raw image is 64.6
pixels in average, and the cumulative offset of all bands reaches
about 1950 pixels in general. Experiments were performed on
a total of 102 hyperspectral images, of which 83 cloudy im-
ages and 19 cloud-free images using all 32 bands with a size of
600 x 400 pixels, as listed in Tab.1.

Data Satellite Number Size(pixels)
Cloudy Images OHS-A 16
OHS-C 57

OHS-D 10 600 x 400
Cloud-free Images OHS-A 7
OHS-C 12

Table 1. Information about experiment data. We did not use data
of OHS-B because we did not get data from it.

4.2 Evaluation Method

Registration accuracy can be evaluated by manually selecting
tie points on different bands. However, it is not realistic to use
this method with a large amount of data in experiments. (Zhu et
al., 2013) uses automatic feature extraction and matching to find
tie points for evaluation in multispectral images. However, al-
most no ground object appears in all hyperspectral bands due to
diverse reflection characteristics, which brings great challenges
for tie point extraction. Although the aforementioned “iterative
reference” strategy can handle some spectral variation between
bands, it is not feasible to use it to obtain the same tie point on

all bands directly. But we can get the band-wise transformation
by feature extraction and matching first, and then multiply all
band-wise transformations together to get an overall transform-
ation for evaluation. These band-wise transformations have an
approximate direction due to the unique push-broom imaging,
which means the overall transformation reflects the maximum
registration accuracy. In other words, the accuracy for any two
bands between the first and the last band in the aligned image
will be smaller than it. For one checkpoint, we calculate Eu-
clidean distance between its two corresponding coordinates P
in the first band and P’ in the last band as the registration er-
ror. For one image, we select some evenly distributed points
and then transform them to the last band based on the overall
transformation. The final registration accuracy of this image is
calculated by RMSE(Root Mean Squared Error) of all selected
checkpoints, as written in Eq.9.

(C)]

Where err; is the registration error for i-th checkpoint, n is the
number of checkpoints. We extract 4000 SIFT feature points for
band-wise 2D Affine transformations and select 17 checkpoints
for evaluation, as shown in Fig.5.
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Figure 5. The map of checkpoint distributions. 16 checkpoints
are selected from every other grid in 8 x 8 grids. Finally
including the center point, a total of 17 checkpoints.

4.3 Results and Comparisons

Because we do not get operational parameters for building ima-
ging model, only vision-based methods are compared. To verify
our coarse-to-fine registration framework, “direct method”,
“cloud mask method” and our method were performed on 83
cloudy images respectively. ‘“direct method” means we ex-
tract and match features directly and use it for building trans-
formations without filtering any cloud-contour points. “cloud
mask method” refers that we take into account the movement
of clouds and use methods proposed in this paper to elimin-
ate the movement and filter tie points. As aforementioned, a
mix-feature strategy(SIFT, SURF, and ORB) is used for feature
extraction. We extract a maximum number of 20,000 feature
points per band. And the morphological operation kernel size
for generating the cloud mask is 7, the number of iterations is 8.
Finally, we calculate the RMSE of all 17 checkpoints in every
image as the registration error using Eq.9. The registration ac-
curacy of all 83 cloudy images is shown in Fig.6. The com-
parison of some registration results in cloudy images is shown
in Fig.7. It can be seen that the “direct method” has a better
registration result on cloud contours, while ghosting appears
on ground objects. “cloud mask method” has partially elimin-
ated the influence of cloud movement, making the registration
of the ground objects slightly better. Compared with the first
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two methods, our method can best eliminate the influence of
cloud movement and achieve the highest registration accuracy
for ground objects. Comprehensive statistics are performed on
all 83 cloudy images, results are shown in Tab.2. In cloudy
images, the mean RMSE of our method on all test data is 0.6
pixels. Compared with the 3.44 pixels accuracy of the “direct
method”, it is significantly improved by about 80%. To evaluate
the variation of accuracy, we compare the biggest and smallest
RMSE among all separated bands. Our method achieves an
RMSE within a range of 0.28 - 0.9 in pixel, which means all
bands achieved an accuracy better than 1 pixel. The compar-
isons of the first and the last band of the same ground features
are shown in Fig.8. And the composite images after band re-
gistration are shown in Fig.9. In order to test the generality of
our method, experiments were also performed on 19 cloud-free
images. Since there are no moving clouds in images, the “direct
method” is compared with our method. The results are shown
in Tab.3. For images without clouds, the mean RMSE registra-
tion accuracy of the “direct method” is 0.81 pixels while we can
continue improving about 50% to a mean RMSE of 0.41 pixels
on test data. Some registration results are shown in Fig.10.

—— direct method

—— cloud mask method
—— our method

v

RMSE registration accuracy(pixel)
w

image index

Figure 6. RMSE registration accuracy of “direct method”,
“cloud mask method” and our method in 83 cloudy images.

Figure 7. Registration result (band 2(blue),7(green),14(red))
comparison of different methods in cloudy images. (a) are
results of the “direct method”. (b) are results of the “cloud mask
method”. (c) are results of our method.

After a large number of experiments, our method can achieve
an accuracy of mean RMSE of 0.6 pixels in cloudy images and
0.41 pixels in cloud-free images. It is slightly better than res-

Figure 8. Comparison of the first band(marked blue) and the last
band(marked red) in cloudy images using our framework.(a) is
the farmland.(b) is the city.(c) is the road.(d) is the river.

Figure 9. Color composite images of our methods in cloudy
images. (a), (b) are true-color images with band 2,7,14. (c), (d)
are pseudocolor images with band 2,7,21.

Figure 10. Color composite results of our methods in cloud-free
images. (a), (b) are true-color images with band 2,7,14. (c), (d)
are pseudocolor images with band 2,7,21.

ults in (Jiang et al., 2019), which uses the geometric position-
ing model for Zhuhai-1 hyperspectral satellite band registration.
And we also simplifies the production of data to some extent.
In addition, based on our framework, every band is decomposed
into a sparse and a low-rank part.We can effectively identity and
remove speckle noises and unevenly stripes using sparse mat-
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Criteri Max Min RMSE Var. Max Min RMSE Var. Max Min RMSE Var.
riterion dx dx dx dx dy dy dy dy ds ds ds ds
ﬁ;{ﬁf}; 1527 | 0420 | 1.013 | 0.145 | 4.148 | 2.168 | 3223 | 0474 | 4414 | 2377 | 3435 | 0499
Clﬁ}l‘;xfk 1321 | 0313 | 0.850 | 0.120 | 2229 | 0.661 | 1.490 | 0301 | 2.602 | 0971 | 1.796 | 0.304
Our 0.601 | 0.097 | 0364 | 0.031 | 0.736 | 0.125 | 0439 | 0.043 | 0901 | 0.284 | 0596 | 0.041
Framework
Increase
et 1348 | 2540 | 1606 | 17.60 | 4625 | 69.52 | 5379 | 3649 | 41.05 | 59.13 | 47.72 | 39.10
I‘;,Cé?r"‘;e 54.53 | 69.15 | 57.18 | 74.16 | 66.96 | 81.17 | 7056 | 8572 | 6539 | 70.76 | 66.80 | 86.51
Increase
PCTs 60.66 | 7699 | 64.06 | 78.71 | 8224 | 94.26 | 86.40 | 90.93 | 79.60 | 88.05 | 82.64 | 9178

Table 2. Comparison of “direct method”, “cloud mask method” and our framework in 83 cloudy images. (Accuracy unit: pixel). Max
dx, dy and ds are the max errors among all images in x-direction, y-direction and plane respectively, while Min dx, dy and ds are the
opposite. Var. means the variance. Increase PCT1,PCT2,PCT3 are the percentage increase in “cloud mask method” relative to the
“direct method”,our method relative to the “cloud mask method”, and our method relative to the “direct method” respectively.

Criteri Max Min RMSE Var. Max Min RMSE Var. Max Min RMSE Var.
riterion dx dx dx dx dy dy dy dy ds ds ds ds
h?é{li?d 0.671 | 0.078 0.390 0.043 | 1.060 | 0.252 0.663 0.084 | 1.263 | 0.366 0.806 0.087

E Our 0.467 | 0.003 0.242 0.021 | 0.547 | 0.072 0.315 0.026 | 0.689 | 0.150 0.412 0.031
ramework

In;ge;se 30.46 | 61.84 37.89 51.03 | 48.39 | 71.32 52.50 68.81 | 4546 | 59.03 48.92 65.04

Table 3. Comparison of “direct method” and our framework in 19 cloud-free images. (Accuracy unit: pixel). Max dx, dy and ds are
the max errors among all images in x-direction, y-direction and plane respectively, while Min dx, dy and ds are the opposite. Var.
means the variance. Increase PCT is the percentage increase in our framework relative to the “direct method”.

rix, while keeping spectral signatures of ground objects. And
inpainting corrupted or damaged parts by low-rank component
of that band.Some results are shown in Fig.11.

achieve a good accuracy in both cloudy and cloud-free images,
which can meet the needs of subsequent applications. In the
future, data from other hyperspectral satellites can also be used
for testing. In addition, how to give a more accurate initial value
for optimization is also an open problem needs to be studied.
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