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ABSTRACT: 

 

Satellites can estimate forest canopy moisture content at the landscape level, and thus have been widely utilized in forest health 

monitoring. However, the calibration and validation of the estimation models can be challenging. Collecting a sufficient number of 

leaf samples from the canopy top layers in sampling plots that match the pixel size of the sensor is needed, which is a cost, time and 

effort consuming process. Dual-wavelength Terrestrial Laser Scanning (TLS) has been successfully used in estimating canopy 

moisture content of individual trees in three dimensions (3D) in several recent studies. Such 3D estimates, if produced at the plot 

level, can be used in the calibration and validation of satellite forest canopy moisture content estimation models. In this study, forest 

canopy moisture content, quantified as the leaf Equivalent Water Thickness (EWT), was estimated in 3D at the plot level in a mixed-

species deciduous broadleaf forest plot using dual-wavelength TLS intensity data (808 nm near infrared and 1550 nm shortwave 

infrared wavelengths). The relative error in the EWT estimation was 6%, and the EWT point cloud revealed vertical heterogeneity in 

the EWT distribution. EWT was 37% higher in the canopy top layers than in the canopy bottom layers. The results obtained in this 

study showed that dual-wavelength TLS has the potential to be used in operational landscape-scale EWT estimation, and can be a 

useful tool for the calibration and validation of satellite EWT estimation models. 

 

 

 
*  Corresponding author 

 

1. INTRODUCTION 

Satellite optical sensors have been widely used in measuring 

forest canopy moisture content, which serves as an early 

indicator of tree stress and risk of wildfires (Colombo et al., 

2008). Satellites can provide measurements at the landscape 

level and produce time series of the change in forest canopy 

moisture content (Foley et al., 1998). In addition, free access is 

available to data from a number of the earth observation satellite 

sensors, including Landsat, MODIS (Moderate-Resolution 

Imaging Spectroradiometer), Sentinel-2, and Hyperion, 

reducing the cost needed for continuous monitoring of forest 

health.  

 

Typically, canopy moisture content at the landscape level is 

quantified as the product of leaf Equivalent Water Thickness 

(EWT) and Leaf Area Index (LAI) (Clevers et al., 2010). EWT 

is the amount of liquid water in a given leaf area  (Danson et al., 

1992), while LAI is the total one-sided green leaf area in canopy 

per unit ground surface area (Jonckheere et al., 2004). EWT can 

be estimated using vegetation indices that combine the 

reflectance measured in near and shortwave infrared bands, or 

by the inversion of Radiative Transfer Models (RTMs) (Ceccato 

et al., 2001; Yebra et al., 2013). RTMs are more widely used 

because they are not site-dependent, as they simulate the 

vegetation spectra using the radiative transfer equation, taking 

into consideration the leaf and canopy biophysical and 

biochemical characteristics (Yebra et al., 2008). Similarly, LAI 

can be estimated using vegetation indices and RTMs, utilizing 

the reflectance measured in visible and near infrared spectral 

bands (Eriksson et al., 2006). 

 

One challenge associated with the use of satellites in mapping 

canopy EWT is collecting large number of leaf samples from 

the upper canopy layers in sampling plots that match the pixel 

size of the sensor to calibrate and validate the EWT estimation 

models. For instance, Trombetti et al. (2008) considered the use 

of destructive sampling to directly calibrate and validate 

MODIS estimates of canopy EWT in woodlands, shrublands, 

and grasslands sites in continental USA to be extremely difficult 

and costly. It was not possible to collect a sufficient number of 

leaf samples in a large number of sampling plots to directly 

scale the EWT measurements to 500 m MODIS pixels, and 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data 

was used for this purpose. Jurdao et al. (2013) reported a 30% 

error in the estimation of canopy EWT using MODIS data in 

deciduous broadleaf and coniferous woodlands in Spain, 

highlighting the challenge of collecting a sufficient number of 

leaf samples for calibration and validation. Such difficulty was 

also highlighted by Quan et al. (2017) when Landsat 8 data 

were used to estimate canopy EWT in evergreen broadleaf, 

deciduous broadleaf, and coniferous woodlands in Sichuan 

province, China. Canopy EWT was overestimated, and this was 

explained as a result of the number of leaf samples collected to 

calibrate and validate the models being insufficient to represent 

all canopy properties in the sampled plots. 

 

There is a need for a fast, non-destructive EWT estimation 

method that can retrieve canopy EWT in large sampling plots. 

Terrestrial Laser Scanning (TLS) can serve as such a tool 

because of the high speed and long range of the commercial, 

modern instruments, making them suitable for collecting data at 

the plot level. Also, TLS can easily provide information about 
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the canopy top layers, even if these layers are not accessible 

from the ground. Recently, two studies showed that the intensity 

data from near and shortwave infrared TLS instruments, after 

calibrating the intensity to apparent reflectance, can be 

combined into a Normalized Difference Index (NDI) and used 

to estimate canopy EWT in woodlands (Elsherif et al., 2019b; 

Junttila et al., 2019). However, these studies estimated EWT at 

the canopy level only for individual trees.  

 

The main aim of this study was to use NDI of 808 nm near 

infrared and 1550 nm shortwave infrared wavelengths, as 

utilized in the Leica P20 and P40 TLS instruments respectively, 

in estimating forest canopy EWT in three dimensions (3D) at 

the plot level. Canopy LAI was not the focus of this study. 

However, a number of recent studies have shown the potential 

of using TLS in measuring LAI at the canopy and plot levels 

(Antonarakis et al., 2010; Meng et al., 2019; Moorthy et al., 

2008; Vincent et al., 2015; Zheng et al., 2013).  

 

2. METHODS 

2.1 TLS instrumentation and calibration 

Two commercial, time-of-flight, pulsed TLS systems were used 

in this study: the Leica P20 (808 nm near infrared wavelength) 

and the Leica P40 (1550 nm shortwave infrared wavelength). 

The same instruments have been previously utilized in 

measuring canopy EWT of individual trees in Wytham Woods, 

Oxfordshire, UK, and calibration of their intensity data to 

retrieve apparent reflectance is fully described in Elsherif et al. 

(2019b). Table 1 shows the instruments’ technical 

specifications. 

 

 Leica P20 Leica P40 

Beam divergence 0.20 mrad 0.23 mrad 

Beam diameter at exit 2.8 mm 3.5 mm 

Beam diameter at 10 m 4.8 mm 5.8 mm 

Beam diameter at 20 m 6.8 mm 8.1 mm 

Wavelength 808 nm 1550 nm 

Maximum range 
120 m at 18% 

reflectivity 

180 m at 18% 

reflectivity 

Table 1. Leica P20 and P40 technical specifications. 

 

The point clouds from the two instruments, when acquired from 

the same surveying station, can be accurately aligned, and their 

intensity data can be combined to calculate NDI on a point-by-

point basis (Elsherif et al., 2018; Elsherif et al., 2019b). This is 

mainly a result of the similarities between the instruments’ 

chassis, scanning mechanism, and laser beam exit location. 

However, the slight differences between their beam diameter 

and divergence (Table 1) required further filtering and point 

matching for the calculation of NDI, as a P20 point cloud 

always had more points than a corresponding P40 point cloud. 

The point matching and filtering are described in Section 2.2.  

 

2.2 Study area and TLS data processing 

A mixed-species forest plot (40 m × 40 m) in Wytham Woods, 

Oxfordshire, UK (51.78 °N, 1.31 °W) was scanned with the two 

TLS instruments from five scanning positions (Figure 1). The 

plot was dominated by Acer pseudoplatanus (sycamore) and 

Fagus sylvatica (beech) trees. Four Leica black and white 

registration targets were placed in the plot, mounted on tripods 

with different heights, to be used in aligning the point clouds. 

At each scanning position, full-hemisphere scans (360° × 270°) 

were conducted with a resolution (point spacing) of 3 mm at 

10 m, with a duration of fifteen minutes for each instrument. 

Scanning the plot began at 11 am, and the total duration of the 

scanning was approximately two and a half hours. This was 

followed by the leaf sampling described in Section 2.4.  

 

Leica Cyclone version 9.1 (Leica Geosystems HDS) was used 

for the point cloud registration, using the registration targets 

placed in the scans. Then, a 3D nearest neighbour function was 

applied to match each point in a P40 point cloud to its nearest 

neighbour in a corresponding P20 point cloud. Afterwards, only 

the nearest neighbour points were retained in the P20 point 

clouds, and remaining points were disregarded. The point 

matching and filtering was carried out in Matlab (The 

MathWorks Inc., USA, 2016). The intensity data were then 

calibrated to apparent reflectance, and NDI was calculated on a 

point-by-point basis, following Equation (1), and the NDI point 

cloud of the plot was generated. 

 

 

Figure 1. View of the scanned plot and the five scanning 

positions (yellow). 

 

                NDI = (P20R – P40R) / (P20R + P40R)                     (1) 

 

where  P20R = reflectance from the P20 instrument 

 P40R = reflectance from the P40 instrument 

 

2.3 EWT estimation model 

Typically, leaf samples are needed to calibrate the EWT 

estimation model. However, the NDI used in this study has 

previously been reported to be species-independent to an extent, 

meaning that a general EWT estimation model can be 

transferred to different sites with no need for a recalibration 

(Elsherif et al., 2018; Elsherif et al., 2019a; Elsherif et al., 

2019b). This was examined in this study by developing a 

general EWT model, using PROSPECT radiative transfer model 

simulations and the canopy NDI and EWT values reported in 

the aforementioned studies. This included nineteen trees from 

six deciduous broadleaf species, including sycamore, beech, 

Sorbus intermedia (Swedish whitebeam), Fraxinus excelsior 

(ash), Quercus robur (oak), and Acer davidii (snake-bark 

maple). No additional leaf samples for the EWT model 

calibration were collected from the site, aiming at examining the 

transferability of the general EWT model. 

 

The PROSPECT-5 radiative transfer model (Feret et al., 2008; 

Jacquemoud and Baret, 1990) was then used to develop a 

general EWT model. The model was trained using the EWT and 

Leaf Mass per Area (LMA) values retrieved from the leaf 
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sampling conducted in the aforementioned studies, calculated 

following Equations (2) and (3), respectively.  

 

                EWT (g cm-2) = (FW – DW) / SA                            (2) 

 

                LMA (g cm-2) = DW / SA                            (3) 

 

where  FW = the leaf fresh weight 

 DW = the leaf dry weight 

 SA = the leaf surface area 

 

The leaf sampling included 137 leaf samples from 10 deciduous 

broadleaf species. Among the 137 leaves, 49 were collected 

from urban park tree plots from the following species: Alnus 

incana (grey alder), Alnus glutinosa (common alder), Populus 

sp. (poplar), Prunus avium (cherry), Tilia x europaea (lime), 

ash, beech, and Swedish Whitebeam. Eighty-eight leaves were 

collected from a forest plot in Wytham Woods, UK, from the 

following species: sycamore, beech, ash, and oak. 

 

The additional parameters of the model, chlorophyll a and b 

content, carotenoid content, and brown pigment content, were 

kept constant at the model defaults (47.7 µg cm-2, 4.4 µg cm-2 

and 0, respectively). Such parameters do not affect the 

reflectance in  the near and shortwave infrared wavelengths, and 

using generic, fixed values for them in the simulations is 

sufficient (Ceccato et al., 2001; Gaulton et al., 2013; Zarco-

Tejada et al., 2003). The leaf structural coefficient parameter 

(N), which represents the number and thickness of the leaf 

mesophyll cell layers, was changed between its minimum and 

maximum values for dicot leaves (1.5 and 2.5, respectively) 

(Jacquemoud and Baret, 1990), and simulation were carried out 

with an interval of 0.1. 

 

2.4 Leaf sampling for validation 

Leaf samples for validation of the EWT estimates were 

collected immediately after scanning the plot. The total number 

of leaf samples collected was 53. Table 2 shows the number of 

leaf samples collected from each species. The canopy top layers 

were not accessible from the ground, and thus all leaf samples 

were collected from the canopy bottom using a tree pruner. As 

there were more sycamore trees in the plot than beech trees, 

more sycamore leaf samples were collected, in order to better 

represent the average EWT. The leaf samples were collected 

from multiple trees from a specific canopy layer with a 

thickness of approximately 2 m (layer extending between 4 m 

and 6 m above ground). The leaf samples were collected from 

the lower branches of the main canopies, and no leaf samples 

were collected from the understory vegetation.   

 

Species Number of samples 

Sycamore 35 

Beech 18 

Total number of samples 53 

Table 2. Number of leaf samples collected. 

 

For each leaf, the fresh weight was measured immediately on 

collection using a precise scale (0.001g division). the surface 

area of each leaf sample was measured using Image-J 1.50i 

software (Schneider et al., 2012) after scanning them with a 

CanoScan LiDE 110 photo scanner (600 dpi). Next, the leaf 

samples were dried in an oven for 72 hours at 60 °C and then 

their dry weight was measured. EWT of each leaf sample was 

calculated following Equation (2).  

 

3. RESULTS AND DISCUSSION 

3.1 General EWT estimation model 

Figure 2 shows the EWT – NDI relationship at the canopy level 

for the calibration data, in addition to the EWT models derived 

from the PROSPECT simulations. It was found that all trees had 

leaves with N values ranging between approximately 1.5 and 2, 

meaning that a general EWT model with N value of 1.7 can be 

sufficient to represent all trees from the different species 

involved. Equation (4) describes the model.  

 

 

Figure 2. EWT – NDI relationship at the canopy level for the 

calibration data, in addition to the EWT models derived from 

PROSPECT simulations (black corresponds to N = 1.5, blue 

corresponds to N = 1.7, and green corresponds to N = 2). 

 

                EWT (g cm-2) = 0.0720 × NDI – 0.0076                 (4) 

 

However, Figure 2 also shows that for some individual trees, 

the general EWT model can introduce more errors in the EWT 

estimation than species and site-specific models. For instance, 

the snake-bark maple tree, one beech tree, and two oak trees 

were better represented by an EWT model corresponding to 

N = 1.5, while two sycamore trees were better represented by a 

model corresponding to N = 2. According to Figure 2, applying 

the EWT model corresponding to N = 1.7 to these trees can 

cause errors in the EWT estimates at the canopy level ranging 

between 10% and 14%. At the plot and landscape levels, the 

error in the EWT estimates is expected to be lower, as the errors 

of the individual trees will be averaged. However, the species 

present in the site must have N values between 1.5 and 2.  

 

In general, dicot leaves have N values between 1.5 and 2.5 

(Jacquemoud and Baret, 1990), and Elsherif et al. (2019a) 

showed that only species with very thick leaves (high LMA) 

had N value > 2, for instance, Ilex aquifolium (holly), which is 

an evergreen species. This, in addition to the number of leaves 

and species used in training the model, suggested that the EWT 

model developed in this study can be considered a general 

model for deciduous broadleaf species, as such species were 

found to have N values between 1.5 and 2. The model can be 

further improved by adding more species and leaf samples to 

the calibration data.  

 

3.2 Canopy level 

The general EWT model, described in Equation (4), was applied 

to the NDI point cloud of the plot. Afterwards, all the points 

that had EWT less than zero were disregarded from the point 

cloud, as these points corresponded to woody materials or noise, 

as discussed in Elsherif et al. (2019b). The resulted 3D EWT 
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point cloud of the plot is shown in Figure 3. As shown in the 

figure, there remained some points in the point cloud that 

corresponded to woody materials but had EWT slightly above 

zero. The majority of these points, especially the ones that were 

clearly part of the trunks, were visually identified and manually 

removed. 

 

The canopy layer from which leaf samples for validation were 

collected was extracted from the point cloud. EWT values of all 

points in the layer were average, and the average EWT was 

considered to be the layer’s EWT. The estimated EWT was 

compared to the actual EWT measured from destructive 

sampling, revealing a relative error of 6% in the EWT 

estimation. The observed error was considered low, as previous 

studies that utilized TLS in the estimation of EWT have 

reported errors in the EWT estimation ranging between 3% and 

14% (Elsherif et al., 2018; Elsherif et al., 2019a; Elsherif et al., 

2019b; Zhu et al., 2015; Zhu et al., 2017).   

 
 

Figure 3. 3D EWT (g cm-2) of the plot.  

 

The low error observed indicated that the general EWT model 

represented the NDI – EWT relationship of the trees present in 

the plot, although no leaf samples were collected from them to 

calibrate the model. This further confirmed the transferability of 

the general EWT model. However, the species present in the 

site, sycamore and beech, were both included in the model’s 

training data. The general EWT model still needs to be tested in 

forest plots with broadleaf deciduous species that were not 

included in the training data to further examine its 

transferability. Furthermore, the transferability of the general 

EWT model to other types of forests (boreal forests and tropical 

rainforests) still needs to be examined. General EWT models 

also still need to be developed for coniferous species, as the 

model introduced in this study was developed for broadleaf 

species only.  

 

3.3 EWT vertical profile 

The 3D EWT point cloud of the plot was split into 10 horizontal 

layers plus the ground layer (Figure 4). The first layer, 

extending between the ground level and 4 m above ground, 

represented the understory vegetation. The remaining nine 

layers, 2 m in depth each, represented the canopy layers. 

Vertical heterogeneity in EWT was observed in the plot. This 

agreed with the findings reported in the few previous studies 

found in the literature that investigated the vertical distribution 

of EWT at the canopy and plot levels (Arellano et al., 2017; 

Elsherif et al., 2018; Elsherif et al., 2019a; Elsherif et al., 

2019b; Gara et al., 2018; Liu et al., 2015; Zhu et al., 2017). 

 

Average EWT in the top three canopy layers was 57% higher 

than EWT of the ground, 42% higher than EWT of the 

understory, and 37% higher than EWT of the canopy bottom 

layer. Assuming that the plot corresponded to a pixel or more in 

a satellite image, the operator can choose which canopy layers 

to use in calibration and validation of the satellite EWT 

estimation model. EWT of the canopy top layers was produced, 

although such layers were not accessible from the ground. 

Furthermore, as the reflectance obtained from satellite sensors is 

expected to be dominated by the canopy top layers (Liu et al., 

2015), the 3D EWT estimates can be useful in providing 

information about EWT in the canopy bottom, the understory, 

and the ground, and also in studying the vertical variation of 

EWT within the plot. 

 

 

Figure 4. EWT vertical profile of the plot. 

 

3.4 The potential of dual-wavelength TLS in operational 

landscape-scale EWT estimation 

The use of general EWT models, being independent of species 

and transferable to different sites, can make dual-wavelength 

TLS a useful tool for operational, landscape-scale EWT 

estimation in mixed-species woodlands, with no need for a prior 

knowledge of the species present in the site. In case of the 

presence of trees from species that are known to have thick 

leaves (N > 2), such trees can be auto-detected in the point 

cloud using their NDI values, as such trees will have 

significantly higher NDI values than the other species, making 

them appear as statistical outliers. For instance, NDI values of 

the trees shown in Figure 2 ranged between 0.21 and 0.32, with 

mean NDI of 0.26 and standard deviation of 0.044. On the other 

hand, average NDI of holly trees, as an example of species with 

thick leaves and high EWT and LMA, was reported to be 0.42 

(Elsherif et al., 2019a). Using the mean and standard deviation 

values, holly trees can be auto-detected in the point cloud by 

using a threshold of the mean + one standard deviation (the 

threshold = 0.3). Afterwards, the general EWT model can be 

applied to all trees in the point cloud, whilst a species-specific 

model can be applied to the auto-detected holly trees.  

 

TLS has the potential to produce time series of the change in 

EWT at much higher temporal resolution than spaceborne 

sensors, as TLS is independent of the sun illumination and 

cloud coverage. For instance, during drought conditions, the 

daily change in EWT can be monitored, with the potential to 

even detect the changes in EWT throughout the day. As the 

EWT estimates are provided in 3D, the change in EWT vertical 

profiles can be observed, and trees reaction to drought 

conditions, and how they redistribute resources and water, can 

be studied at very high spatial and temporal resolutions.  
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However, one challenge associated with the use of TLS to 

estimate EWT at the landscape level is the scan time required to 

cover large areas of woodlands. For instance, applying this 

method to generate 3D EWT estimates in a one-hectare forest 

plot, using 20 m × 20 m scan grid and 3 mm point spacing, 

would require at least 25 hours of scanning (5 days of scanning, 

5 hours per day). This would reduce the temporal resolution of 

the time series of the change in EWT produced for such large 

areas, which may also be further reduced because of the wind 

effects, as scans cannot be conducted in windy conditions. The 

scanning time can be reduced by increasing the point spacing 

(reducing the scan resolution) or increasing the scan grid size. 

However, at the landscape level, TLS may only be suitable for 

detecting the weekly or monthly changes in EWT, depending on 

the size of the area to be scanned. Scanning only a set of plots 

that represent the different species in the site can be more 

useful, as these plots can be scanned daily and the rapid changes 

in EWT can be monitored. This can also reduce the data 

collection campaign’s cost, as the personnel and their 

instruments need to move between limited number of scanning 

locations. In general, cost-wise, TLS systems are becoming 

more and more affordable, faster, and easier to use, reducing 

their operational costs, and making them a potential tool for 

forest health monitoring. 

 

Another factor that needs to be taken in consideration while 

applying this approach at the landscape level is the effect of the 

variation of the canopy LAI in heterogeneous sites. Although 

the use of the NDI can be sufficient to reduce the effects of 

incidence angle and leaf internal structure, canopy LAI can 

influence the accuracy of the EWT estimation using vegetation 

indices. Thus, LAI measurements are needed, and canopy EWT 

should be quantified as the product of EWT and LAI. 

Furthermore, the effects of occlusion and forest density on the 

proposed approach still need to be further investigated. There 

existed canopy gaps and areas of low-density canopy cover in 

the study area involved in this research. Setting the scanning 

positions in locations corresponding to such areas reduced the 

occlusion effects, thus large number of laser beam returns were 

acquired from the canopy top layers. In denser forests, the 

understory and lower canopy layers can reduce the number of 

laser beams reaching the canopy top layers, which may reduce 

the accuracy of this approach in quantifying EWT in such 

layers. In case of inaccessible forest sites, this method cannot be 

used. One proposed solution for very dense or inaccessible 

forest sites is applying similar approach using airborne LiDAR 

data. Recently, the Optech Titan (Teledyne Optech) 

multispectral airborne LiDAR system was launched, being the 

first multispectral airborne LiDAR system commercially 

available. The system utilizes three laser wavelengths: 1550 nm 

shortwave infrared, 1064 nm near infrared, and 532 nm visible. 

The NDI of the 1550 nm and 1064 nm wavelengths can be 

linked to EWT, thus the system has the potential to provide 3D 

EWT estimates at the landscape level. However, this process 

will mainly depend on the accuracy of aligning the point clouds 

from the two different wavelengths, which still needs to be 

examined.    

  

4. CONCLUSIONS 

In this study, the NDI of 808 nm near infrared and 1550 nm 

shortwave infrared wavelengths, utilized in the Leica P20 and 

P40 commercial TLS instruments respectively, was used to 

estimate forest canopy EWT at the plot level. A mixed-species 

(sycamore and beech) deciduous broadleaf forest plot was 

scanned, and the PROSPECT RTM was used to develop a 

general EWT estimation model. The model was used to estimate 

EWT in the plot, and validating the estimates using leaf 

destructive sampling revealed a relative error of 6% in the EWT 

estimation. The low error suggested that the developed general 

EWT model was transferable to different sites, but more study 

areas are still needed to further test its transferability. The plot 

3D EWT point cloud revealed vertical heterogeneity in the 

canopy EWT distribution. EWT in the canopy top layers was 

higher than that in the canopy bottom layers, understory, and 

ground by 37%, 42%, and 57%, respectively. EWT of the 

canopy top layers can be easily extracted from the point cloud 

and used in calibrating and validating satellite EWT estimation 

models.  

 

This study showed that dual-wavelength TLS can estimate 

canopy EWT at the plot level with low error. Combining the 

proposed approach with an automatic leaf-wood separation 

algorithm can further improve its applicability in larger areas. 

Furthermore, combining the EWT estimates with canopy LAI 

measurements can lead to the use of dual-wavelength TLS in 

canopy EWT estimation at the landscape level in heterogeneous 

sites. It is worth mentioning that this was the first study to use 

dual-wavelength TLS in estimating canopy EWT at the plot 

level, and until the method is transferred to and tested in more 

sites with different species, the method should be considered a 

proof-of-concept.   
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