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ABSTRACT: 

Extracting detailed geometric information about a scene relies on the quality of the depth maps (e.g. Digital Elevation Surfaces, 

DSM) to enhance the performance of 3D model reconstruction. Elevation information from LiDAR is often expensive and hard to 

obtain. The most common approach to generate depth maps is through multi-view stereo (MVS) methods (e.g. dense stereo image 

matching). The quality of single depth maps, however, is often prone to noise, outliers, and missing data points due to the quality of 

the acquired image pairs. A reference multi-view image pair must be noise-free and clear to ensure high-quality depth maps. To 

avoid such a problem, current researches are headed toward fusing multiple depth maps to recover the shortcomings of single-depth 

maps resulted from a single pair of multi-view images. Several approaches tackled this problem by merging and fusing depth maps, 

using probabilistic and deterministic methods, but few discussed how these fused depth maps can be refined through adaptive 

spatiotemporal analysis algorithms (e.g. spatiotemporal filters). The motivation is to push towards preserving the high precision and 

detail level of depth maps while optimizing the performance, robustness, and efficiency of the algorithm. 

1. INTRODUCTION

1.1 Background 

Over the last few decades, a large number of Very High 

Resolution (VHR) Satellites are established to provide sub-meter 

resolution imageries, with frequent re-visiting times during the 

year to allow extracting comprehensive 3D geometrical 

information about the scene. Algorithms such as Multi-view 

stereo (MVS) highly depend on the spatial and temporal 

resolutions of sensors to facilitate generating reliable 3D 

reconstructed models. However, dense stereo image matching 

algorithms often rely on the quality of the image pair and nature 

of the captured surface. Images captured by satellite sensors are 

prone to spectral inconsistencies and distortions, which may 

affect the dense stereo matching algorithm and produce incorrect 

or missing height information, and therefore, degrade the quality 

of the depth map. In particular, MVS algorithms are very 

sensitive to temporal inconsistencies between the images, thus, 

they cannot be used directly to obtain 3D models and generate 

height information like the Digital surface model (DSM). The 

acquisition conditions and measurement errors such as distance 

to sensor, the lighting conditions, occlusions in the scene (e.g. 

Tree obstructing a building), and not enough overlap between the 

images can also complicate unique feature matching (Qin, 2019). 

Object properties and their pattern in the scene can also increase 

the uncertainty of the generated height, such as thin structures, 

texture-less surfaces, featureless areas, and repeated patterns or 

structures directly affect stereo matching. All these errors can 

cause the height data to be temporally inconsistent and lead to 

holes, noise, missing data, blurry artifacts, and fuzzy edges and 

boundaries, hence, incomplete and unreliable representation of 

the 3D information. 

To enhance low-quality depth maps (i.e. height map) generated 

from MVS algorithms, researchers suggest fusing several depth 

maps to utilize the redundant information in the temporal data. A 

common approach to fusing depth maps is the simple median 

filtering (Kuschk, 2013; Matyunin et al., 2011; Ozcanli et al., 
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2015; Qin, 2017).  The median filter is preferred in many works 

related to depth refinement and processing due to its simplicity, 

and ability to eliminate outliers while preserving the details. 

Other methods to process fusion include global approaches such 

as Markov Random Field (MRF) and total variation (TV) which 

optimizes the solutions (Zhu et al., 2010; Liu et al., 2015 ; Kuschk 

& d’Angelo, 2013; Lasang et al., 2016; Kuschk, et al., 2017). 

However, they are mostly used to fused depth maps resulted from 

RGB-D images from Kinect or video scenes, and despite the 

effectiveness of these algorithms, there are still some limitations 

that strict their usages. One limitation is the necessity to acquire 

noise-free and clear set of images to improve stereo matching and 

the corresponding depth map, and unlike Kinect and video scenes 

where many images are captured indoor within a few 

milliseconds with consistent acquisition and lighting conditions, 

satellite images are more exposed to noise and outliers due to 

atmospheric conditions, seasonal variations, sun and satellite 

angles, image time, occlusions, etc. (Qin, 2019).  Another issue 

is that current fusion algorithms are not adaptive to the scene 

objects. Urban features made of concrete and asphalt like 

buildings and roads are time-invariant, which means they 

experience a low rate of change in the temporal depth map. 

Vegetation, on the other hand, is time-variant, where they tend to 

change frequently during the year due to atmospheric conditions 

and seasonal changes. The time variance is not the only factor 

that should be considered while designing the fusion algorithm; 

the characteristics of the object should also be considered. For 

example, narrow objects like road and ground tend to be blocked 

by shadows, or trees, which increase their height uncertainty. The 

discrepancies in the height of objects in the depth maps produces 

a nonlinear type of change, which cannot be resolved directly 

using simple filters or fusion techniques that process all objects 

in the scene similarly. Therefore, in our work, we emphasize on 

the importance of analysing the type of class to develop an 

adaptive spatiotemporal fusion that processes each pixel based on 

its class stability. 
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1.2 Related Works and Rationale 

Generating high-quality depth maps using very high-resolution 

multi-view satellite images to improve 3D reconstruction model 

has been an ongoing research topic in the past few years. Multi-

view Stereo (MVS) methods are widely used to extract elevations 

from multiple satellite views due to its efficiency and lower cost 

in comparison to direct methods like LiDAR. However, the depth 

map generated from MVS may be of bad quality and come with 

noises, outliers, and missing data due to the temporal and spectral 

inconsistencies between the images pair used to generate the 

depth map. In dense image matching the number of matched 

points between the image pair can play a major role in depth 

quality, if no or few points can be matched between the image 

pair due to other factors such object surface properties (e.g. 

smooth or texture-less surface, repeated patterns, etc.), it can 

produce inaccurate depth map. 

 

A solution to recover the depth map generated from MVS 

algorithms is multi-view depth fusion, which has been explored 

by researches in two contexts either global or local approaches. 

The global approaches mainly involve optimization and energy 

function to minimize the losses and sometimes include 

smoothing and regularization terms as additional constraints. 

Markov Random Field (MRF) is one example that has been 

widely used in depth fusion. For instance, Zhu et al., (2010) and 

Liu et al.,(2015) both used spatiotemporal MRF to fuse depth 

maps by achieving temporal coherence. Weighted total variation 

(TV) and total generalized variation (TGV) methods are also 

popular approaches in global fusion of depths (Kuschk & 

d’Angelo, 2013; Lasang et al., 2016); Kuschk, et al., 2017). 

Neural networks are also effective fusion techniques that have 

been mostly used to fuse depth extracted from video scenes. 

Although global methods are useful and can provide accurate 

depth results, they are mostly applied to Kinect RGB-D sensors 

or video scenes, which in comparison to satellite images have an 

optimal indoor environment to capture numerous numbers of 

frames in a few milliseconds, therefore, provides lower 

distortions and better dense image matching. Additionally, 

background and foreground objects in the frames can be 

separated easily because of the fixed acquisition and lighting 

conditions, unlike satellite images where all objects are 

interrelated and difficult to extract directly. For depths generated 

from satellite images, local approaches are more popular, where 

fusion is performed mostly using local filtering. The most 

common fusion technique is the median filter because of its 

stability and robustness to outliers (Kuschk, 2013; Matyunin et 

al., 2011; Ozcanli et al., 2015; Qin, 2017). Other algorithms such 

as (Reinartz, Müller, Hoja, Lehner, & Schroeder, 2005) used 

average filtering to fuse DSMs obtained from stereo techniques 

using SPOT-5 and radar data obtained from SRTM, but because 

average filtering techniques smooth high-frequency data it tends 

to discard high level of details and generate outliers. Recent 

methods include median clustering which has been proposed in 

(Facciolo et al., 2017; Rumpler et al., 2013), where clustering is 

considered as an effective method to assess the temporal 

homogeneity of height data by measuring the inter- and intra-

class similarity and dissimilarity. Local strategies are efficient in 

terms of time and robust to small outliers but are not able to solve 

the problems of extensive nonlinear noise and object boundaries. 

Moreover, the current filtering methods used in fusion often 

ignores objects class and process the image using fixed 

parameters. Since objects in the scene and nature have different 

responses and reflection properties in the captured satellite 

image, it is important to assess the elevation uncertainty for each 

class and incorporate it into the fusion algorithm. 

 

1.3 Proposed Method and Rationale 

The spatiotemporal analysis is an effective way to solve problems 

related to data consistency, noise, missing data, outliers, etc. 

Using redundant data, we can fuse the depth maps to result in a 

reliable and accurate single depth map. Fusing depth maps using 

an adaptive spatiotemporal algorithm is an ongoing research 

topic where very few researches have investigated this area of 

research (Qin, 2017). Therefore, in our work, we aim to 

investigate and analyze the role of class to improve the multi-

depth fusion algorithm that is adaptive to scene elements, 

efficient, robust, and able to recover the gaps mentioned in the 

literature. 

 

This paper is organized in the following order, in Section 2, we 

will mention the methodology and analysis, where we will 

discuss the dataset used, the pre-processing methods, and the 

analysis that supports our proposed work. Section 3 includes the 

experimental results, with reasonable explanations and 

validations. Finally, the conclusion and future works will be 

addressed in Section 4. 

 

2. METHODOLOGY AND ANALYSIS  

2.1 Data Description and Pre-Processing 

In our experiment, we chose 3 different datasets with varying 

complexities to examine and fuse; dataset I, is a commercial 

buildings area, dataset II is a more open area with natural objects 

such as vegetation and a water surface, and dataset III is a 

condensed housing area (for more details see figure 1).  

We follow the same pre-processing method for all datasets, 

wherein each dataset we use VHR image pairs from Worldview 

3 satellite to generate the corresponding multispectral orthophoto 

and the temporal DSMs. We use RSP (RPC Stereo Processor)  

software developed by (Qin, 2016) that performs hierarchical 

semi-global matching (SGM) algorithm (Hirschmuller, 2008) to 

generate and register the Orthophoto and the DSMs. We then 

generate the mask for each class using the 8-band multispectral 

orthophoto. We categories the classes into tree, grass, buildings, 

and a combined category for ground/road for all datasets. We use 

indices such as the Normalized difference vegetation index 

(NDVI) along with normalized DSM (nDSM) generated using 

top har reconstruction (Qin and Fang, 2014) to extract the masks. 

For instance, the NDVI helps to determine the locations of trees 

and grass, and with the appropriate nDSM we can find the 

position of trees based on their heights, and determine  the 

location of buildings, ground, and road accordingly. For more 

details on the pre-processing steps, see the diagram in figure 2.  
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Figure 1. Details on the dataset. 

 

 
Figure 2. Pre-processing steps. Note h1, h2, and t are 

empirically determined based on the dataset. 

 

2.2 Data Analysis 

In our data analysis, we aim to investigate the stability and 

uncertainty of the height of objects and the way it varies 

according to the class. We categories the objects in the scene to 

either: 

 

1) Time-invariant (e.g. buildings, ground/roads.) or time-

variant (e.g. vegetation) objects. 

2) Based on its surface properties (e.g. smooth texture-less, 

flat, etc.). 

 

To assess the height of classes, we perform per-pixel processing 

by taking the standard deviation in the temporal DSMs of the 

DSMs for each class. We then summarize the analysis results by 

viewing the histogram of standard deviations to be able to see the 

distribution of every class and its average standard deviation (see 

Figure 3). From figure 3, we can see that each class has different 

standard deviation distribution. Most classes follow normal 

distribution, which can give us a clue about which type of 

probability to use in the weight measurement of our adaptive 

spatiotemporal fusion. The average standard deviation in Table 1 

tells us the average uncertainty of height for each class. We can 

notice from Table 1 that for all three datasets vegetation 

(including trees and grass) has higher uncertainty than other 

classes, which means that height in the temporal DSM varies 

more than other objects. The buildings class comes in second to 

have higher height uncertainty. Among all classes, ground/ road 

appear to have better and higher elevation stability, where in all 

datasets it had the lowest values of uncertainty.  

 

Class\ Dataset I II III 

Building 4.0968 8.8098 7.4692 

Ground/ road 3.8197 8.5997 7.3950 

Tree 4.1097 8.9717 8.8059 

Grass 4.6147 9.0144 9.6021 

Table 1. The standard deviation of the uncertainty per class 

(meter) 

 

  

  
Figure 3. The distribution of the standard deviations of temporal 

heights in dataset I. The x-axis shows the standard deviation. 

 

2.3 The Proposed Spatiotemporal Fusion Algorithm  

Our fusion method is based on spatiotemporal filter; the generic 

formula for the fusion process is as follows  

 

𝐷𝑆𝑀𝑓(𝑖, 𝑗) = 
1

𝑊𝑇
∗ ∑ ∑ 𝑊𝑟 ∗𝑊𝑠 ∗𝑊ℎ ∗ ℎ(𝑖, 𝑗, 𝑡)𝑚𝑒𝑑

𝐻𝑒𝑖𝑔ℎ𝑡
𝑗=1

𝑊𝑖𝑑𝑡ℎ
𝑖=1  

(1) 

 

Where     𝐷𝑆𝑀𝑓= final fused pixel  

 i, j = location of pixels along the width and height 

 ℎ𝑚𝑒𝑑 = median height in the temporal DSMs 

 𝑊𝑟= spectral weight 

 𝑊𝑠= spatial weight 

 𝑊ℎ= temporal height weight 

 𝑊𝑇= total weight 

 

Inspired from the basic median filter, where its purpose is to 

suppress noise and maintain the sharpness of edges, we extract 

the median height (ℎ𝑚𝑒𝑑) from the temporal for each pixel. We 

choose the median as the base to get the final fused height value 

and to calculate the height weight as in the following equation 

 

𝑊ℎ(𝑖, 𝑗) = 𝑒𝑥𝑝
−||ℎ𝑚𝑒𝑑−ℎ(𝑖,𝑗,𝑡)||

2

2 𝜎ℎ
2

     (2) 

 

Where     𝜎ℎ= the height bandwidth  

 

The height bandwidth determines the extent of filtering in the 

temporal direction of the DSMs. 𝜎ℎ is assigned for every pixel 

based on its class, and its value is decided empirically. With the 

prior knowledge of the extracted labeled image (mentioned in the 

pre-processing section 2.1.), we can determine which 𝜎ℎ to use 

for each pixel. 

 

𝜎ℎ= 

{
 
 

 
 

𝜎𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔  →  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗) 𝑖𝑠 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔

𝜎𝐺𝑟𝑜𝑢𝑛𝑑/𝑟𝑜𝑎𝑑  →  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗) 𝑖𝑠 𝑔𝑟𝑜𝑢𝑛𝑑/𝑟𝑜𝑎𝑑

𝜎𝑡𝑟𝑒𝑒  →  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗) 𝑖𝑠 𝑡𝑟𝑒𝑒

𝜎𝑔𝑟𝑎𝑠𝑠  →  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗) 𝑖𝑠 𝑔𝑟𝑎𝑠𝑠

𝜎𝑤𝑎𝑡𝑒𝑟  →  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗) 𝑖𝑠 𝑤𝑎𝑡𝑒𝑟

   (3) 

 

We also analyze each DSM spatially, where spatial information 

is known to best reflect similarities in the neighborhood. To 

further improve the results, we use the spectral information in the 

orthophoto (to get the RGB image) and smooth the final DSM.  

Thus, we calculate the weights (𝑊𝑟 , 𝑊𝑠) in the formula as follows 

 

𝑊𝑟(𝑖, 𝑗) = 𝑒𝑥𝑝
−||(𝐼(𝑖,𝑗)−𝐼(𝑘,𝑙)||

2

2 𝜎𝑟
2      (4) 

 

𝑊𝑠(𝑖, 𝑗) = 𝑒𝑥𝑝
−((𝑖−𝑙)2+(𝑖−𝑘)2)

2 𝜎𝑠
2

     (5) 

 

Where     I = RGB image 

 i, j, l, k = the location of pixels in the window 

 𝜎𝑟 = range bandwidth 

 𝜎𝑠 = spatial bandwidth 
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3. EXPERIMENTAL RESULTS  

The results of our proposed spatiotemporal fusion are shown and 

discussed in this section. We will specify the parameters used and 

the outcomes for the three datasets. We validate our results per 

pixel, and against other existing methods. 

 

3.1 Parameters  

The two main parameters that we require in this work are the 

window size and bandwidths (spectral, spatial, and height), the 

choice of these parameters is made empirically. The window size 

is set and fixed to a moderate value of 7. Similarly, the spatial 

and spectral bandwidths (𝜎𝑟, 𝜎𝑠) are set to (11, 50) (Tomasi and 

Manduchi, 1998). Validating the adaptive spatiotemporal fusion 

concept requires examining the bandwidth under different 

scenarios. For example, for objects with high uncertainty such as 

the time-variant objects like vegetation, we might need high 𝜎ℎ. 

For flat, narrow, and featureless objects like ground and road, we 

might also need high 𝜎ℎ . We also want to compare our adaptive 

approach to the fixed value of 𝜎ℎ. We also chose the height 

bandwidth (𝜎ℎ) empirically, but in a manner that allows 

validating the assumption and the analysis made in section 2.2. 

Therefore, we chose 𝜎ℎ based on several criteria indicated in 

Table 2. 

 

 
Table 2. The choice categories for 𝜎ℎ.  

 

3.2 Results and Validations  

The fused DSM for all datasets is shown in figure 4, where we 

can see that most of the distortions such as noise, missing 

datasets, and holes are filled and taken into consideration. We can 

notice that the adaptive spatiotemporal fusion algorithm produces 

good results visually, in comparison to other methods. For 

instance, if we compared it to the simple median filter we can see 

that median filter fusion results can produce overly smoothed 

outcomes, in addition to blurring some details. The adaptive 

median, on the other hand, is better in terms of capturing the 

details of the buildings since they use an adaptive window for 

buildings, but smaller details in ground are also overly smoothed. 

The C-median clustering can generate fuzzy and partially noisy 

results as in dataset II and III. 

  

Dataset I Dataset II Dataset III 

    
Adaptive spatiotemporal fusion 

  
 

Adaptive median filter 

    
Simple median 

      
K-median clustering 

Figure 4. The fusion results of the three datasets using adaptive 

spatiotemporal fusion, the adaptive median filter, simple median 

filter, and C-median clustering. 

 

We evaluate the results of the adaptive spatiotemporal fusion 

statistically by showing a comparison between different values of 

𝜎ℎ for all classes, and a comparison between other existing 

approaches.  We compared the results of the proposed adaptive 

spatiotemporal fusion to the ground truth height data (from 

LiDAR) and measured the accuracy of each dataset to a 6-meter 

level of difference. The results are shown in tables 3, 4, and 5. 
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Table 3. Accuracy assessment of dataset II. Accuracy 

assessment of dataset I. Note: T=Tree, GRS=Grass, 

B=Building, GRD= Ground/Road, and OA = Overall Accuracy. 

 

From the table 3, we note that that the highest overall accuracies 

(95.6254%, 99.0925%, and 99.9962%) for all datasets are located 

in the second category (explained in Table 2.), where greater 

values of weight Wh are given to objects with high elevation 

uncertainty. We also note that the adaptive approach provides 

slightly better results (0.02% higher) than the fixed bandwidth 

parameter (see last rows in table 3). The second part of the table 

explains how different classes correspond to different sigma 

values. We also show this in Figures 5, 6, and 7. For instance, we 

can notice from Figure 7 that trees and grass achieve the highest 

accuracies at large values of  𝜎ℎ (30 and 35), while buildings 

require lower 𝜎ℎ to achieve high accuracy at 𝜎ℎ = 20 to 25.  In all 

three datasets, grass always require larger 𝜎ℎ, whereas urban 

objects such as buildings and ground can achieve high accuracies 

at moderate values of 𝜎ℎ ≈ = 20 to 25. This can lead us to 

conclude that the height of time-variant objects are less certain 

and require larger compensation using higher 𝜎ℎ. We can also 

conclude that fixed bandwidth parameters do not achieve optimal 

results; this can be seen from Figures 5, 6, and 7, and confirmed 

from the overall accuracy in table 3 at a fixed value of 𝜎ℎ=15. 

We can use the information in these figures, to determine the 

optimal sigma values for each class and use it to get the optimal 

fused depth map. However, we can see that the optimal height 

bandwidth patterns between the classes differ with the dataset 

depending on the complexity and objects in the scene. For 

instance, for areas with few trees and many large commercial 

buildings as in dataset I, trees and grass required least  𝜎ℎ of 

values 13 and 18 respectively, while, dominant objects like 

buildings and ground required larger 𝜎ℎ of values 23 and 27 

respectively. On the contrary, dataset II and III had trees and 

grass as dominant objects, thus, they require larger 𝜎ℎ than the 

other classes.  

 

 
Figure 5. The Accuracy of each class in dataset I according to 

the height bandwidth. 

 

 
Figure 6. The Accuracy of each class in dataset II according to 

the height bandwidth. 

 

 
Figure 7. The Accuracy of each class in dataset III according to 

the height bandwidth. 

 

We also use existing methods such as simple median filter, 

adaptive median filter by (Qin et al., 2017), and C-median 

clustering by (Facciolo et al., 2017) to evaluate our method (see 

table 4). We find that our adaptive method provides marginally 

higher accuracy with an increased range between almost 0.01-

2%. Similarly, the accuracy of the majority of classes has higher 

accuracy in the adaptive case than the other methods with fixed 

bandwidths.   

 

 
Table 4. Accuracy assessment for all datasets. Note: 

ADPT_MED= adaptive median filter, SIMP_MED= simple 

median filter, C-MEDCLUST= C-median clustering, and 

ADPT_STF= adaptive spatiotemporal fusion.  
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4. CONCLUSION AND FUTURE WORKS 

In our work, we show that the adaptive spatiotemporal fusion 

technique can provide a better solution for objects with a high 

level of elevation uncertainty. The overall accuracy in all three 

datasets showed that optimal results could be achieved using a 

class-adaptive approach rather than the fixed parameter. Our 

analysis also shows that for classes with a high level of 

uncertainty like vegetation, more emphasis should be given by 

adjusting their height bandwidths to larger values. We also 

compare our results to existing work and found that it achieved 

slightly better overall accuracy ranging from 0.01 to 2%. In the 

next step, we will extend this work to determine the value of the 

height bandwidth automatically based on the scene information-

using machine learning (ML) methods. We also would like to 

obtain the label image more efficiently using better 

nonparametric classification methods with indices such as NDVI, 

Morphology index, etc. to extract varying objects, their class and 

the corresponding classification map.  

 

ACKNOWLEDGMENT 

The authors would like to express their gratitude for the Johns 

Hopkins University Applied Physics Laboratory and IARPA 

and the IEEE GRSS Image Analysis and Data Fusion Technical 

Committee for the ONR data used in this work. 

 

REFERENCES 

Facciolo, G., Franchis, C.D., & Meinhardt, E. (2017). Automatic 

3D Reconstruction from Multi-date Satellite Images. 2017 IEEE 

Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW), 1542-1551. 

 

Hirschmuller, H. (2005). Accurate and Efficient Stereo 

Processing by Semi-Global Matching and Mutual 

Information. Proceedings, 2, 807-814. 

 

Kuschk, G. (2013). Large Scale Urban Reconstruction from 

Remote Sensing Imagery. ISPRS - International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences. XL-5/W1. 139-146. 10.5194/isprsarchives-XL-5-W1-

139-2013. 

 

Kuschk, G., d'Angelo, P. (2013). Fusion of Multi-Resolution 

Digital Surface Models. ISPRS - International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences. XL-1/W3. 247-251. 10.5194/isprsarchives-XL-1-W3-

247-2013. 

 

Kuschk, G., d'Angelo, P., Gaudrie, D., Reinartz, P., & Cremers, 

D. (2017). Spatially Regularized Fusion of Multiresolution 

Digital Surface Models. IEEE Transactions on Geoscience and 

Remote Sensing, 55, 1477-1488. 

 

Liu, J., Li, C., Fan, X., & Wang, Z. (2015). Reliable Fusion of 

Stereo Matching and Depth Sensor for High Quality Dense Depth 

Maps. Sensors. 

 

Lasang, P., Kumwilaisak, W., Liu, Y., & Shen, S. (2016). 

Optimal depth recovery using image guided TGV with depth 

confidence for high-quality view synthesis. J. Visual 

Communication and Image Representation, 39, 24-39. 

 

Özcanli, Ö.C., Dong, Y., Mundy, J.L., Webb, H.F., Hammoud, 

R.I., & Tom, V. (2015). A comparison of stereo and multiview 

3-D reconstruction using cross-sensor satellite imagery. 2015 

IEEE Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW), 17-25. 

  

Qin, R., (2016). RPC Stereo Processor (RSP) – A software 

package for digital surface model and orthophoto generation 

from satellite stereo imagery. ISPRS Annals of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, III-1, 77–82.  

 

Qin, R., & Fang, W. (2014). A Hierarchical Building Detection 

Method for Very High Resolution Remotely Sensed Images 

Combined with DSM Using Graph Cut Optimization. 

Photogrammetric Engineering & Remote Sensing, 80(9), 873–

883.  

 

Qin, R., (2017), Automated 3d recovery from very high 

resolution multi-view satellite images, ASPRS (IGTF) annual 

Conference, Baltimore, Maryland, USA. 

 

Qin, R., (2019) A Critical Analysis of Satellite Stereo Pairs for 

Digital Surface Model Generation and A Matching Quality 

Prediction Model. ISPRS Journal of Photogrammetry and 

Remote Sensing. 154 (2019).  

 

Rumpler, M., Wendel, A., & Bischof, H. (2013). Probabilistic 

Range Image Integration for DSM and True-Orthophoto 

Generation. SCIA. 

 

Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray 

and color images. In IEEE: Sixth international conference on 

computer vision (ICCV’98), pp. 839-846. 

 

Zhu, J., Wang, L., Gao, J., & Yang, R. (2010). Spatial-Temporal 

Fusion for High Accuracy Depth Maps Using Dynamic MRFs. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 32, 899-909. 

 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-227-2020 | © Authors 2020. CC BY 4.0 License.

 
232


	Enhancement of Depth Map by Fusion using Adaptive and Semantic-Guided Spatiotemporal Filtering
	1. INTRODuction
	1.1 Background
	1.2 Related Works and Rationale
	1.3 Proposed Method and Rationale

	2. methodology and analysis
	2.1 Data Description and Pre-Processing
	2.2 Data Analysis
	2.3 The Proposed Spatiotemporal Fusion Algorithm

	3. Experimental results
	3.1 Parameters
	3.2 Results and Validations

	4. CONCLUSION and future works
	Acknowledgment
	References



