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ABSTRACT: 

 

Image matching is a fundamental issue of multimodal images fusion. Most of recent researches only focus on the non-linear 

radiometric distortion on coarsely registered multimodal images. The global geometric distortion between images should be 

eliminated based on prior information (e.g. direct geo-referencing information and ground sample distance) before using these 

methods to find correspondences. However, the prior information is not always available or accurate enough. In this case, users have 

to select some ground control points manually to do image registration and make the methods work. Otherwise, these methods will 

fail. To overcome this problem, we propose a robust deep learning-based multimodal image matching method that can deal with 

geometric and non-linear radiometric distortion simultaneously by exploiting deep feature maps. It is observed in our study that some 

of the deep feature maps have similar grayscale distribution and correspondences can be found from these maps using traditional 

geometric distortion robust matching methods even significant non-linear radiometric difference exists between the original images. 

Therefore, we can only focus on the geometric distortion when we deal with deep feature maps, and then only focus on non-linear 

radiometric distortion in patches similarity measurement. The experimental results demonstrate that the proposed method performs 

better than the state-of-the-art matching methods on multimodal images with both geometric and non-linear radiometric distortion. 
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1. INTRODUCTION 

Multimodal images reflect different characteristics and 

information of the observed objects because of the difference of 

sensor imaging mechanism. Making full use of the 

complementary advantages of multimodal images can help 

image interpretation. Image matching, seeking correspondences 

from overlap image regions, is a fundamental task in the 

processing and application of multimodal images (Kong et al., 

2019; Sedagha and Mohammadi, 2019; Zhang et al., 2019). 

Because multimodal images are often captured from different 

platforms, sensors, viewpoints and times, there are significant 

geometric and non-linear radiometric distortion between 

multimodal images (see Figure 1), which brings great 

difficulties to reliable image matching. 

 

         
 

(a)                                               (b) 

 

Figure 1. Multimodal images with overlap regions. (a) is a 

visible band image. (b) is a near-infrared band image. There are 

significant geometric (scale and rotation) and non-linear 

radiometric distortion between the two images. 

 

To achieve reliable image matching, many remarkable methods 

have been proposed. According to the difference of matching 

strategy, image matching methods can be mainly classified into 

two categories: area-based method and feature-based method 

(Gruen, 2012; Chen et al., 2017). 

 

For a pair of multimodal images (one reference image and one 

target image), the area-based method often sets a window on the 

reference image and a corresponding search area on the target 

image, and finds the most similar window in the search area as 

the matched window. The central points of the two windows are 

regarded as a pair of matches (Gruen, 2012). The two key points 

of area-based method are to determine a search area of 

appropriate size and construct a reliable and robust similarity 

measurement method. The search area should contain the 

corresponding window region but not too large. Existing 

methods usually use direct geo-referencing information or 

perform a step of coarse registration to roughly eliminate the 

global geometric distortion between images and then determine 

a search area of appropriate size. Among similarity 

measurement methods, the normalized cross correlation (NCC) 

and mutual information (MI) are robust to radiometric changes 

to some extent (Chen et al., 2003; Hel-Or et al., 2014). However, 

they are still difficult to adapt to the non-linear radiometric 

difference between multimodal images. To improve the 

matching performance, some methods (e.g. HOPC and CFOG 

(Ye et al., 2016, 2019)) based on phase congruency model 

(Kovesi, 1999) have been proposed. However, these methods 

still have the common problem of other area-based methods: 

difficult to adapt to image geometric distortion. For example, in 
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HOPC and CFOG methods, image rotation and translation 

should be coarsely eliminated by direct geo-referencing, and 

image scale change should be removed based on ground sample 

distance (GSD). Therefore, they will fail when the prior 

information of physical sensor models, navigation devices and 

GSD is unknown or the accuracy is not enough. Another way of 

eliminating geometric distortion is to find some ground control 

points (GCPs) to estimate the geometric transformation between 

images. However, it is difficult to extract reliable GCPs 

automatically under geometric and non-linear radiometric 

distortion by using traditional matching methods. Thus, users 

have to select GCPs manually in many cases. It limits the 

widespread application of this kind of methods. 

 

Feature-based methods are more robust to image geometric 

distortion than area-based methods by considering geometric 

distortion in the designing of feature description algorithm. 

Feature-based matching methods usually include three steps: 

feature detection, description and matching. First, feature 

detectors are adopted to extract features from the reference 

image and the target image. Interest points, lines and regions are 

the three most commonly used features. In this paper, feature 

means interest point if there is no special explanation. Then, a 

robust feature descriptor is constructed to describe the features. 

Finally, features are matched based on descriptor similarity 

measurement. According to the difference of feature detection, 

description and similarity measurement, feature-based methods 

can be further subdivided into handcraft methods and deep 

learning-based methods. Among the handcraft methods, the 

scale invariant feature transform (SIFT) method (Lowe, 2004) is 

a milestone work and is widely used in many fields including 

photogrammetry and remote sensing. With the successful effect 

of SIFT method, many handcraft methods, such as the speeded 

up robust features (SURF) (Bay et al., 2008), oriented FAST 

and rotated BRIEF (ORB) (Rublee et al., 2011), and Affine-

SIFT (ASIFT) (Morel and Yu, 2009), have been proposed to 

improve the performance in time efficiency and robustness to 

image geometric distortion. To overcome the problems caused 

by non-linear radiometric difference, some methods on the basis 

of local self-similarity and phase congruency have been 

proposed (Huang et al., 2011). However, similar to area-based 

methods, these methods are not robust to image geometric 

distortion while improving the robustness to non-linear 

radiometric distortion. 

 

Recently, with the rapid improvement of computer hardware 

and software, deep learning technology has attracted more and 

more attention and has been introduced into the field of image 

matching (Zagoruyko and Komodakis, 2015; Altwaijry et al., 

2016; Melekhov et al., 2017; He et al., 2018). A common idea 

of deep learning-based matching method is as follows: a deep 

convolutional neural network with two weights shared branches 

is constructed and trained on the basis of positive and negative 

samples by minimizing the distance of deep features between 

positive samples and maximizing the distance of deep features 

between negative samples. Studies have shown that deep 

learning-based matching method is robust to non-linear 

radiometric distortion between images (He et al., 2019, Quan et 

al., 2019). However, most of existing deep learning-based 

matching methods only focus on the non-linear radiometric 

difference between images. The geometric distortion between 

images should be coarsely corrected before matching similar to 

area-based methods. 

 

According to aforementioned introduction, existing matching 

methods are not robust enough to image geometric and non-

linear radiometric distortion simultaneously, which leads to the 

limitation of practical application. To overcome this problem, 

we propose a geometric and non-linear radiometric distortion 

robust multimodal image matching method in the framework of 

convolutional neural network by exploiting deep feature maps. 

Firstly, a Siamese-type neural network containing convolutional 

layers and fully connected layers is designed. For presentation 

purpose, this network is marked as FSNet (fully connected 

Siamese-type neural network). FSNet could extract deep 

features and perform feature similarity measurement. A training 

dataset is collected by considering negative sample distance to 

train FSNet. Secondly, the convolutional layers of FSNet are 

extracted to form another network, marked as CSNet (Siamese-

type neural network only has convolutional layers). CSNet is 

used to produce deep feature maps for multimodal images of 

any size without known geo-referencing information and GSD. 

Then, a geometric transformation is estimated by exploiting the 

deep feature maps to eliminate the geometric distortion between 

the input multimodal images. After that, interest points are 

detected from the reference image and the geometric distortion 

eliminated target image, respectively. Image patches 

corresponding to interest points are generated and input into the 

FSNet to find matches. Finally, inliers are recognized from the 

matching result based on RANSAC method and inversely 

computed into the original images. The main contributions of 

this paper are as follows. 

 

1) This paper points out that the main reason that deep learning-

based methods can match multimodal images with non-linear 

radiometric difference is that the non-linear radiometric 

difference between some deep feature map pairs generated from 

the last convolutional layer has been alleviated or eliminated. 

Based on this observation, a multimodal image matching 

method robust to geometric and non-linear radiometric 

distortion is proposed. The proposed matching framework is 

very flexible and can be combined with other advanced image 

matching neural network in addition to the Siamese-type neural 

network used in this paper. 

 

2) We find that some non-corresponding image patches with 

small spatial distances to the corresponding image patch have 

high similarity because they have large overlapping areas, 

which leads to mismatches around corresponding points. To 

overcome this problem, a negative sample generation strategy 

that takes the distance between non-corresponding and 

corresponding patches into account is proposed in this paper. 

 

The remainder of this paper is organized as follows. Section 2 

presents a Siamese-type neural network and analyses the 

feasibility of exploiting deep feature maps to deal with the 

geometric and non-linear radiometric differences between 

multimodal images. Section 3 describes the proposed 

multimodal image matching method in detail. The experimental 

results, along with the method of training dataset generation, 

matching performance analysis and discussion, are presented in 

Section 4. The final section concludes this paper and points out 

possible further improvements that can be made. 

 

 

2. NEURAL NETWORK CONSTRUCTION AND DEEP 

FEATURE MAP ANALYSIS 

2.1 Network architecture 

Siamese-type neural network has been proved to be an 

outstanding architecture in computer vision tasks in recent years. 

It has been widely utilized in fields of target tracking, similarity 

discrimination of images and texts. Because Siamese-type 
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neural networks perform well for multimodal images without 

significant geometric distortion, a Siamese-type neural network 

is designed as the base model of the proposed matching method. 

This network is marked as FSNet in this paper, as shown in 

Figure 2. FSNet contains convolutional and fully connected 

layers but no pooling layer because pooling layers may make 

the network hard to locate the correct match accurately and 

finally affect the matching performance. The convolutional 

layers extracted from trained FSNet form a new network, 

marked as CSNet. To achieve optimal performance, we tested 

architectures with different network layers and different 

convolution kernel sizes. It is found that the network with five 

convolutional layers (convolution kernel sizes are 33, 55, 

55, 55 and 55) and two fully connected layers performed 

well. 

 

 
 

Figure 2. Architecture of the networks used in this paper. 

 

2.2 Loss function 

From the perspective of metric learning, image patches 

matching can be transformed into a binary classification task. A 

commonly used objective function in classification is cross 

entropy loss function (Miller et al., 1993). Specifically, the 

Sigmoid cross entropy loss function (Han and Moraga, 1995) is 

used in this paper. Given a triplet input 
1 2( , , )i i ix x y , where 

1 2( , )i ix x  denotes the thi  pair of patches in the training dataset 

and iy  is the corresponding label. The Sigmoid cross entropy 

loss function can be expressed as Equation (1). 

 

ˆ

[ ln (1 )ln(1 )]

1
ˆ( )

1 i

i i i i

i i y

loss y p y p

p Sigmoid y
e−

= − + − −



= =
+

              (1) 

 

where ip  is the posterior probability of the thi  pair of patches, 

ˆ
iy  is the predicted value of the patch pair 

1 2( , )i ix x . 

Specifically, the label 
iy  is expressed as 

 

1,    positive patch pairs

0,   negative patch pairs
iy


= 


                       (2) 

 

The Sigmoid cross entropy function is used for both clustering 

the positive samples and separating the negative samples. 

 

2.3 Deep feature maps analysis 

Analyzing the architecture of the network shown in Figure 2, if 

FSNet can recognize positive sample correctly, we can infer that 

some of the feature maps output from the two branches of 

CSNet are similar, that is, there is no significant non-linear 

radiometric distortion between the corresponding feature maps. 

This is because the fully connected layers in FSNet mainly play 

the role of dimensionality reduction and similarity measurement. 

Figure 3 is an example to demonstrate this conjecture. In Figure 

3, the input images are the blue band image and near-infrared 

band image of a Landsat8 image, respectively. Images shown in 

the grids are the deep feature maps generated by CSNet. Images 

in the grids are arranged in the order of the neurons in the last 

layer of CSNet. It can be seen that although there is significant 

non-linear radiometric difference between the input images, 

some deep feature maps that are marked with dotted boxes of 

the same color have similar appearance. The non-linear 

radiometric difference has been alleviated or eliminated. 

 

 
 

(a) A pair of visible and near-infrared band images 

 

 
 

(b) Deep feature maps of the visible band image 

 

 
 

(c) Deep feature maps of the near-infrared band image 

 

Figure 3. Deep feature map examples of two images with non-

linear radiometric difference. (a) shows the blue band image and 

near-infrared band image of a Landsat8 image. (b) and (c) show 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-233-2020 | © Authors 2020. CC BY 4.0 License.

 
235



 

the deep feature maps generated from the last convolutional 

layer of CSNet. These deep feature maps are displayed in the 

order of the neurons in the convolutional layer. Any two images 

marked with dotted boxes of the same color are a pair of deep 

feature maps generated by the neurons at the same location in 

the convolutional layer. 

 

The abovementioned conjecture can be extended to images with 

both geometric and non-liner radiometric distortion: if a pair of 

multimodal images of any size with geometric and non-linear 

radiometric distortion are input into CSNet, the non-linear 

radiometric difference between some deep feature maps 

generated from corresponding neurons in the last convolutional 

layer will be alleviated or eliminated. Under such circumstances, 

some traditional geometric distortion robust matching methods 

(e.g. SIFT, SURF or ASIFT) can be adopted to find some 

correct matches from these pairs of feature maps. And the 

global geometric distortion between the original images can be 

eliminated by performing a step of coarse registration. On the 

basis of this conjecture, a multimodal image matching method 

that is robust to geometric and non-linear radiometric distortion 

is proposed in this paper (see Section 3). 

 

 

3. ROBUST MULTIMODAL IMAGE MATCHING VIA 

EXPLOITING DEEP FEATURE MAPS 

Our goal is to match multimodal images with geometric and 

non-linear radiometric distortion. In this study, we deal with the 

geometric distortion and the non-linear radiometric distortion in 

turn, but the influence of the latter is considered when dealing 

with the former and vice versa. The flowchart of the proposed 

robust multimodal image matching method is shown in Figure 4. 

 

Reference image Target image

Interest point matching based on FSNet

Outlier elimination

Final matches

Deep feature map generation based on CSNet

BoF-based deep feature map retrieval

Deep feature map matching and image registration

Non-linear radiometric variation robust geometric 

distortion correction

 
 

Figure 4. Flowchart of the proposed multimodal image 

matching method. The steps in the blue dotted box are designed 

to make the matching method robust to image geometric 

distortion. 

 

3.1 Non-linear radiometric variation robust geometric 

distortion correction 

3.1.1 Deep feature map generation based on CSNet: 

According to the analysis in Section 2, the reference image and 

target image should be input to CSNet to generate deep feature 

maps. Due to the large size of remote sensing images, especially 

satellite images, it is very inefficient to input such images 

directly into CSNet. In order to overcome this problem, the 

input images are down-sampled at the beginning, and then input 

into the convolutional layers for processing. In the down-

sampling, the down-sampling rate of the reference image and 

the target image should be kept the same, so as to maintain the 

fixed scale relationship between the original images. Therefore, 

the proposed down-sampling method is as Equation (3). 

 

 

( )

' ' ' ', , , , , ,

min , , ,

r r t t r r t t

r r t t

R C R C R C R C

R C R C



 

  = 


=

            (3) 

 

where 
rR  and 

rC  are the number of rows and columns of the 

reference image. 
tR  and 

tC  are the number of rows and 

columns of the target image. 
'

rR  and 
'

rC  are the number of 

rows and columns of the down-sampled reference image. 
'

tR  

and 
'

tC  are the number of rows and columns of the down-

sampled target image.   is a scale factor.   is a size factor to 

determine the size of the down-sampled images, which is 

empirically set as 600 in this paper. 

  

3.1.2 BoF-based deep feature map retrieval: After down-

sampling, the multi-layer convolutional operation is performed 

to obtain deep feature maps, and the most similar feature map 

pair can be found. The most straightforward way to find the 

most similar deep feature map pair and do coarse registration is 

to perform feature matching on every pair of deep feature maps 

and the matching result of the deep feature map pair with the 

most matches is adopted to do coarse registration. However, 

such a straightforward strategy is inefficient and unreliable. In 

order to overcome this problem, we use a Bag-of-Feature-based 

(BoF-based) image retrieval method (Philbin et al., 2007) to 

measure the similarity of each pair of deep feature maps and 

select the three pairs with the highest similarity to do feature 

matching. Because the non-linear radiometric distortion has 

been significantly relieved between the similar deep feature 

maps, the SIFT method is adopted in the feature matching. 

 

3.1.3 Image coarse registration: After feature matching, the 

generated three sets of matches are merged into one group. The 

RANSAC algorithm is performed on the group to eliminate 

outliers. Then, a projective transformation is fitted based on the 

matches. And the original target image is transformed into the 

coordinate system of the original reference image. 

 

3.2 Interest point matching based on FSNet 

Through the process described in subsection 3.1, the geometric 

distortion between multimodal images has been roughly 

eliminated. There is only non-linear radiometric difference 

between corresponding image patches on the reference image 

and the registered target image. Thus, we use the FSNet to 

match this kind of patches. 

 

In order to produce image patches for similarity measurement, 

the Harris detector (Harris and Stephens, 1988) is adopted to 

detect interest points from the reference image and the 

registered target image firstly. For each interest point ( ),ip x y  

on the reference image, a search area of m m  pixels centred 
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on ( ),x y  is determined on the registered target image, and all 

interest points located in the search area are taken as candidate 

matches of ( ),ip x y . m  is set as 30 empirically in this paper. 

Taking interest point ( ),ip x y  as the centre, an image patch of 

97×97 pixels is cut from the reference image as reference 

image patch. An image patch is generated for each candidate 

match point from the registered target image in the same way. 

The reference image patch and each candidate image patch are 

input into FSNet for deep feature extraction and similarity 

measurement. Among all candidate matches, the candidate with 

the recognition result “Matching” and the highest similarity is 

regarded as the match point of the reference point ( ),ip x y . 

When all interest points on the reference image have been 

processed, the RANSAC algorithm is adopted to eliminate 

outlies and the inliers are computed back to the original image 

to be the final matches. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

In order to demonstrate the effectiveness of the proposed 

method, we compare it with both handcraft and deep learning-

based methods. Among the handcraft methods, the most popular 

SIFT method (Lowe, 2004) and the multimodal image matching 

method CFOG (Ye et al., 2019) are selected. Among the deep 

learning-based methods, the FSNet described in Section 2 is 

selected as a method of comparison. If the proposed method 

performs better than FSNet, it will be proved that the proposed 

matching strategy is effective because FSNet is the base 

network of the proposed method. All the three compared 

methods are followed by a step of RANSAC to eliminate 

outliers as the proposed method. 

 

4.1 Datasets 

Three types of multimodal image pairs, including visible-to-

infrared, optical-to-SAR, and optical-to-LiDAR are used in our 

experiments. There is significant non-linear radiometric 

distortion between images of each pair. To evaluate the 

robustness of the proposed method to geometric distortion, scale 

and rotation changes are added to the images manually. Finally 

six image pairs are formed. The datasets are shown in Figure 5. 

 

   
 

(a) pair 1 

 

   
 

(b) pair 2 

 

   
 

(c) pair 3 

 

   
 

(d) pair 4 

 

   
 

(e) pair 5 

  

   
 

(f) pair 6 

 

Figure 5. Experimental datasets. (a) and (b) are visible-to-

infrared image pairs. (c) and (d) are optical-to-SAR image pairs. 

(e) and (f) are optical-to-LiDAR image pairs. There is 

significant non-linear radiometric distortion in all image pairs. 

Besides, there are scale change between images in pairs 1, 3 and 

5. Rotation and scale changes exist between images in pairs 2, 4 

and 6. 

 

4.2 Evaluation criteria 

In our experiments, two widely used indicators, number of 

correct matches (NCM) and matching precision (MP), are 

adopted to evaluate the performance of the proposed matching 

method. MP is computed as Equation (4). 

 

( ) 100%MP NCM NTM=                     (4) 

 

where NTM is the number of total matches. To count the value 

of NCM, we manually selected some evenly distributed GCPs 

to fit a projective transformation for each image pair. Then, a 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-233-2020 | © Authors 2020. CC BY 4.0 License.

 
237



 

localization error is computed for each pair of match on the 

basis of the transformation. If the localization error is smaller 

than a threshold (2 pixels in this paper), the corresponding 

match is regarded as correct match. 

 

4.3 Training 

4.3.1 Training dataset: A training dataset consists of 

150000 pairs of matching patches (positive samples) and 

150000 pairs of non-matching patches (negative samples) are 

generated from multimodal images including Google Earth 

images, ZY3 satellite images, Landsat-8 satellite images, 

TerraSAR-X satellite images and elevation rendering image of 

LiDAR point cloud. Multiple land cover types like buildings, 

rivers, roads and farmlands in urban and rural areas are 

contained in the training dataset. 

 

In the generation of negative samples, a strategy considering the 

distance between the centre points of non-matching patches is 

proposed to overcome the false matching problem caused by 

neighbour points. As shown in Figure 6, the red patches form a 

pair of positive sample. Around the corresponding patch (red 

box) on the target image, eight patches (blue boxes) that are r 

pixels from the corresponding patch are extracted. One of the 

eight patches is selected randomly to form a negative pair with 

the reference patch. We call this kind of negative sample as 

DNS (distance-based negative sample). 

 

 
 

Figure 6. Negative sample generation by considering the 

distance between the centre points of matching and non-

matching patches. 

 

In the training sample generation, if n pairs of positive samples 

are collected, there will be n pairs of DNS. However, we only 

select n/2 pairs from all DNS randomly. We produce another 

n/2 pairs of negative samples randomly from the whole images 

without considering sample distance. This kind of negative 

samples is marked as RNS (random negative sample). Therefore, 

our training dataset contains n pairs of positive samples, n/2 

pairs of DNS, and n/2 pairs of RNS (n=150000 in this study). 

Some training sample examples are shown in Figure 7. 

 

 
 

(a)                            (b)                            (c) 

 

Figure 7. Examples of training sample. The samples from top to 

bottom in (a) are a pair of positive sample, a pair of RNS, and a 

pair of DNS generated from visible-to-infrared images, 

respectively. (b) and (c) show samples generated from optical-

to-SAR and optical-to-LiDAR images, respectively.  

 

4.3.2 Network training: We trained FSNet on NVIDIA 

GTX 1080Ti GPU with Tensorflow. A batch size of 32 is used 

in each iteration and all the patches were resized to 97×97 

pixels. The training is optimized by the Momentum Optimizer 

in Tensorflow. The initial learning rate and the momentum are 

set as 0.001 and 0.9 respectively. The training is terminated 

when the average loss value is less than 0.001. Figure 8 shows 

the convergence process of the training. 

 

 
 

Figure 8. Training loss curve drew by Tensorboard. 

 

4.4 Multimodal image matching results 

The statistical results, including NCM and NTM, are displayed 

in Table 1. It can be seen directly from Table 1 that the 

proposed method performed best in term of NCM while the 

SIFT, CFOG and FSNet methods have not found any correct 

match on all image pairs. It is also indicated that the proposed 

method achieved the highest MP on the basis of the NCM and 

NTM values. The MP values are 100.00%, 93.67%, 79.88%, 

63.19%, 76.92% and 59.76%, respectively. 

 

Datasets Statistical results (NCM/NTM) 

 SIFT CFOG FSNet Proposed 

pair 1 0/4 0/9 0/55 234/234 

pair 2 0/5 0/8 0/58 222/237 

pair 3 0/3 0/9 0/60 131/164 

pair 4 0/2 0/9 0/59 103/163 

pair 5 0/4 0/9 0/52 130/169 

pair 6 0/4 0/8 0/53 98/164 

 

Table 1. Statistical matching results of the proposed method and 

all compared methods on all experimental datasets. 

 

There is a normalization step in the descriptor computation in 

SIFT method, which makes it robust to illumination variation. 

However, the normalization is not robust to non-linear 

illumination difference. Therefore, SIFT method does not 

perform well for multimodal images with non-linear radiometric 

distortion although it is scale and rotation invariant. 

 

The CFOG method is designed for multimodal images matching 

especially. Some prior information, including direct geo-

referencing information and GSD, must be available to correct 

the global geometric distortion between images to make the 

method work. If the prior information is unavailable, we have to 

select some GCPs manually to achieve coarse registration. 

However, in our experiments, we do not have any prior 

information of the images and enough GCPs to overcome the 

problem caused by geometric distortion. Therefore, the CFOG 

method failed in all image pairs with scale and rotation changes. 
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The FSNet method is a kind of deep learning-based method. 

Because geometric distortion has not been considered in the 

patch generation before similarity measurement, the patches of 

corresponding points are inconsistent. Thus, the features 

extracted from the patches are dissimilar and finally cannot be 

matched. 

 

Compared with the aforementioned methods, both non-linear 

radiometric difference and geometric distortion are considered 

in the proposed method. On one hand, we exploit the deep 

feature maps to estimate the global geometric transformation 

between multimodal images and register images automatically. 

The coarse registration works without any extra information 

other than the two input images. After that, patches are 

produced from the coarsely registered images. Therefore, the 

proposed method is robust to image geometric distortion. On 

the other hand, we use a deep neural network trained by a 

dataset containing multimodal image patches with non-linear 

radiometric difference to extract features and measure similarity. 

The feature extraction and similarity measurement are robust to 

non-linear radiometric distortion. Therefore, the proposed 

method performs best on all image pairs. Figure 9 presents the 

matching results of the proposed method on all image pairs. 

Matches are linked with red lines. 
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(b) 

 

 
 

(c) 
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Figure 9. Matching results of the proposed method. (a)-(f) are 

the matching results of image pairs 1-6, respectively. 

 

In addition, we can see from Table 1 that the proposed method 

performs better on image pairs 1 and 2 than on image pairs 3-6. 

There are two main reasons. First, the production of visible-to-

infrared training samples is easier than that of optical-to-SAR 

and optical-to-LiDAR training samples. Therefore, the number 

of visible-to-infrared samples is larger than that of other two 

kinds of samples in our training datasets. It makes the trained 

neural network perform better on visible-to-infrared image pairs. 

Second, in the evaluation, it is easier to select accurate GCPs 

from visible-to-infrared image pairs than optical-to-SAR and 

optical-to-LiDAR image pairs. Therefore, the estimated image 

transformation to recognize correct and false matches is more 

accurate. In this case, some correct matches on optical-to-SAR 

and optical-to-LiDAR image pairs may be wrongly counted as 

false matches.  

 

 

5. CONCLUSION 

In this study, a multimodal image matching method that is 

robust to both geometric and non-linear radiometric distortion is 

proposed. We observed that the non-linear radiometric 

distortion between some deep feature maps generated from the 

last convolutional layer has been eliminated or relieved. On the 

basis of this observation, we analyzed the deep feature maps 

and designed a framework to overcome the geometric distortion 

between multimodal images. In this process, the geometric 

transformation can be estimated by using traditional feature 

matching method. We do not have to try to construct a feature 

descriptor that is robust to both geometric and non-linear 
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radiometric distortion under the help of deep feature maps. The 

experimental results demonstrate that the proposed method 

performs better than other state-of-the-art multimodal image 

matching methods. The proposed method can be used to match 

multimodal images without any prior information and manually 

selected GCPs. A possible future work is to increase training 

samples and make the proposed method work well on 

multimodal images in different areas.  
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