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ABSTRACT: 

 

Obtaining spatially continuous, high resolution thermal images is crucial in order to effectively analyze heat-related phenomena in 

urban areas and the inherent high spatial and temporal variations. Spatiotemporal Fusion (STF) methods can be applied to enhance 

spatial and temporal resolutions simultaneously, but most STF approaches for the generation of Land Surface Temperature (LST) have 

not focused specifically on urban regions. This study therefore proposes a two-phase approach using Landsat 8 and MODIS images 

acquired on a study area in Beijing to first, investigate the sharpening of the fine resolution image input with urban-related spectral 

indices and second, to explore the potential of implementing the sharpened results into the Spatiotemporal Adaptive Data Fusion 

Algorithm for Temperature Mapping (SADFAT) to generate high spatiotemporal resolution LST images in urban areas. For this test, 

five urban indices were selected based on their correlation with brightness temperature. In the thermal sharpening phase, the Fractional 

Urban Cover (FUC) index was able to delineate spatial details in urban regions whilst maintaining its correlation with the original 

brightness temperature image. In the STF phase however, FUC sharpened results returned relatively high levels of correlation 

coefficient values up to 0.689, but suffered from the highest Root Mean Squared Error (RMSE) and Average Absolute Difference 

(AAD) values of 4.260 K and 2.928 K, respectively. In contrast, Normalized Difference Building Index (NDBI) sharpened results 

recorded the lowest RMSE and AAD values of 3.126 K and 2.325 K, but also the lowest CC values. However, STF results were 

effective in delineating fine spatial details, ultimately demonstrating the potential of using sharpened urban or built-up indices as a 

means to generate sharpened thermal images for urban areas, as well as for input images in the SADFAT algorithm. The results from 

this study can be used to further improve STF approaches for daily and spatially continuous mapping of LST in urban areas.  

 

1. INTRODUCTION 

With the rapid growth in data volumes, satellite image 

accessibility, and increasingly powerful computing efficiency, 

remote sensing applications are experiencing a paradigm shift 

towards monitoring land surface dynamics seamlessly over time 

using densely amassed time series data (Woodcock et al., 2019). 

In light of this trend, Land Surface Temperature (LST) is a crucial 

parameter to examine and interpret the processes occurring in the 

atmosphere and on the Earth’s surface at regional and global 

scales. On a finer scale, LST can be used to study thermal 

variations across urban areas, such as urban climate conditions, 

heat wave and drought predictions, and urban heat island effects 

(Weng et al., 2014). LST can be derived by using thermal images 

from multiple satellite platforms, such as Moderate Resolution 

Imaging Spectroradiometer (MODIS), Advanced Spaceborne 

Thermal Emission and Reflectance (ASTER), Landsat 5, Landsat 

7, and Landsat 8. On the one hand, coarse resolution sensors 

provide frequent data needed for monitoring purposes, but at a 

spatial resolution which is too low to resolve details of urban LST 

measurements. On the other hand, fine resolution sensors offer 

remotely-sensed images which are more suitable for detailed 

urban analysis, but are limited by long revisit times.  

 

In general, optical satellites are restricted by a trade-off between 

spatial and temporal resolutions due to technical constraints. 

However, obtaining spatially continuous high resolution images 

is crucial to effectively analyze heat-related phenomena in urban 

areas and the inherent high spatial and temporal variations. Cloud 
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coverage and sparse data distribution due to missing information 

or data gaps also compound to this problem. Essentially, this 

conundrum can be narrowed to two possible solutions: enhancing 

the spatial resolution or increasing the temporal resolution. 

Conventional thermal sharpening methods utilize the relationship 

between LST and other land surface characteristics to downscale 

the image using statistical regression such as Normalized 

Difference Vegetation Index (NDVI) and Fractional Vegetation 

Cover (FVC). More recent studies incorporated machine learning 

techniques to generate more reliable results (Li et al., 2019). The 

drawback is that these downscaling methods only improve the 

image’s spatial resolution without accounting for the temporal 

resolution. Ideally, combining sharpening methods in an image 

fusion framework can provide a potential solution to combine the 

resolution advantages of both coarse and fine resolution sensors.  

 

In order to consider spatial and temporal resolutions 

simultaneously, spatiotemporal fusion (STF) methods can be 

applied to produce high spatial and temporal resolution products 

for daily, continuous mapping. Gao et al. (2006) developed the 

Spatial and Temporal Adaptative Reflectance Fusion Model 

(STARFM) by blending a pair of Landsat and MODIS images to 

generate synthetic “daily” surface reflectance products. 

Spectrally similar neighbourhood information and the temporal 

variation between the input images are estimated to generate the 

synthetic image at a given prediction date. However, the model’s 

performance degrades for highly heterogeneous, fine-grained 

landscapes (Gao et al., 2006). To overcome the landscape 

heterogeneity, Zhu et al. (2010) developed an enhanced version 
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of STARFM (ESTARFM) by inputting two pairs of Landsat and 

MODIS images, and introducing a conversion coefficient based 

on the ratio of change between the coarse image pixels and the 

fine image pixels. ESTARFM can interpret mixed pixels 

comprised of multiple classes, but cannot predict short-term 

changes unavailable in the input images and suffers in highly 

complex and fine-grained areas (Zhu et al., 2010).  

 

STF methods were originally designed for reflectance bands, but 

has also been applied on TIR bands. Weng et al. (2014) proposed 

the Spatiotemporal Adaptive Data Fusion Algorithm for 

Temperature Mapping (SADFAT) which improved upon 

STARFM by incorporating the annual temperature cycle and 

modified the conversion coefficient from ESTARFM to interpret 

urban thermal landscape heterogeneity. SADFAT combined 

Landsat 7+ ETM and MODIS images, but the LST products were 

limited to a spatial resolution of 120 m. which is still too coarse 

for an effective analysis of LST in urban areas (Weng et al., 2014). 

To improve the output’s spatial resolution, previous studies 

varied the input images or modified the original STF model. For 

instance, ASTER and MODIS images were used to evaluate three 

different STF models for LST generation, where ESTARFM was 

determined to produce better results over STARFM and a linear 

mixture based STF approach (Wu et al., 2015). Also, Landsat 8 

and Visible Infrared Imaging Radiometer Suite (VIIRS) images 

were combined using SADFAT to generate daily LST images at 

a spatial resolution of 100 m (Jia et al., 2017). Another study 

integrated an extreme learning machine using a neural network 

regression model into SADFAT to produce LST at 30 m spatial 

resolution, but the computation was highly time-consuming (Bai 

et al., 2015). However, not many studies have explored the 

application of STF to generate high resolution LST in 

heterogeneous urban environments.  

 

This study thus consists of two main objectives: first, to use 

sharpened regression-based urban indices for the enhancement of 

spatial features in urban areas and second, to investigate the 

feasibility of using the sharpened images into the SADFAT 

algorithm to generate LST images at 30 m spatial resolution for 

continuous, high resolution mapping and for finer-scale urban 

analysis. In more detail, urban indices were experimented for 

thermal sharpening in place of the traditional NDVI input, in 

order to represent the urban areas more accurately. The 

correlation of each index was compared with the original Landsat 

8 thermal image to validate its relationship with LST. The 

generated LST results were tested using five images acquired 

from May to September of 2019 to minimize seasonal variation. 

The first two images were processed to determine the conversion 

coefficient while the remaining three images were used to test the 

influence of temporal variation on the STF algorithm. The 

following content of this paper is structured in the following 

order: Section 2 introduces key theoretical background 

information on thermal sharpening and STF, and also displays 

the study area and satellite image datasets used this research. 

Section 3 shows an overview of the study and describes the 

processing steps in more detail. Section 4 presents the generated 

LST images and quality assessment results with associated 

discussion points. Lastly, Section 5 provides a conclusion, 

summarizing the study as well as outlining the limitations and 

potential of the study.  

2. STUDY AREA AND DATASETS 

2.1 Study Area 

The study area was selected to be in Beijing between 116° 17’ 

26’’ E to 116° 38’ 33’’ E and 39° 50’ 34’’ N to 40° 6’ 50’’ N, 

covering an area of approximately 30 km2. The location of the 

area is shown in Figure 1. The majority of the study area is urban 

land cover, but also includes other heterogeneous land cover 

types such as vegetation, water, bare soil, and impervious 

surfaces. Notable features in the study area include the Beijing 

Capital airport in the northeast and the Forbidden City palace 

complex near the center. Beijing has a humid, continental climate 

with a hot summer season influenced by monsoon seasons, 

followed by a dry autumn with minimal precipitation. According 

to the National Oceanic and Atmospheric Administration, the 

monthly average temperature in Beijing reaches an average 

maximum temperature of 31°C and an average maximum 

precipitation of 177.9 mm.  

 

 
 

Figure 1. Location of the study area 

 

2.2 Satellite Image Datasets 

Landsat 8 and MODIS images were used as the fine and coarse 

resolution images, respectively. Landsat and MODIS data are 

ideal for STF because of their similar orbit parameters and sensor 

specifications. For this study, Landsat 8 multispectral and 

thermal images were obtained with minimal cloud coverage. For 

MODIS images, MOD09GA surface reflectance and MOD11A1 

LST products were acquired. A total of five pairs of Landsat and 

MODIS images were used. The minimum, maximum and median 

temperatures of the Landsat and MODIS datasets are shown in 

Figure 2. VIIRS Nighttime Light (NTL) images were required for 

the computation of urban indices, discussed in Sub-section 3.1. 

VIIRS NTL images were acquired by the Day-Night band at a 

spatial resolution of 750m. The monthly composite NTL images 

were selected to avoid cloud coverage and stray light effects. In 

comparison to daily NTL images, the monthly composite images 

were considered suitable for this study based on the assumption 

that there would be minimal NTL variations in urban 

environments within the span of a month.   

 

2.3 Image Pre-processing 

Landsat 8 multispectral images require radiometric calibration 

and atmospheric correction using the FLAASH module in ENVI. 

Landsat 8 TIR images can be radiometrically calibrated to 

produce at-sensor radiance and brightness temperature images. 

Both images are reprojected to UTM zone 50N and are subset to 

the study area’s extents. Likewise, MODIS surface reflectance 

and LST images are reprojected using the MODIS reprojection 

toolkit, and are then resampled to 30 m to match Landsat 8’s 

spatial resolution. Lastly, VIIRS NTL images are normalized to 

compensate for atmospheric effects and reprojected.  

km 
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Figure 2. Maximum, minimum and median temperatures for Landsat 8 (left) and MODIS (right) LST in Kelvin (K) 

 

3. METHODOLOGY 

This study proposes a “regression-then-fusion” approach to STF 

as coined by Xia et al. (2018). As presented in Figure 3, the study 

can be divided into two phases: (1) Data preparation of input 

images and (2) STF. Sub-sections 3.1 and 3.2 explain the first 

phase while Sub-section 3.2 describes the second phase in detail.  

 

3.1 Urban Spectral Indices 

For this study, urban-related indices were selected based on their 

correlation with the corresponding Landsat 8 thermal image. First, 

the Normalized Difference Built-up Index (NDBI) has been 

extensively used to classify built-up, urban areas (Zha et al., 

2013). NDBI is designed to capture urban regions since built-up 

features tend to have a higher reflectance in the shortwave-

infrared (SWIR) region, as shown by the following equation: 

 

 𝑁𝐷𝐵𝐼 =  
𝑏𝑆𝑊𝐼𝑅 −𝑏𝑁𝐼𝑅 

𝑏𝑆𝑊𝐼𝑅 +𝑏𝑁𝐼𝑅
 (1) 

 

Second, Jieli et al. (2010) developed the New Building Index 

(NBI) to emphasize the spectral response of barren land from 

other land covers. 

 𝑁𝐵𝐼 =  
𝑏𝑅𝑒𝑑∙ 𝑏𝑁𝐼𝑅 

𝑏𝑆𝑊𝐼𝑅1 
  (2) 

 

Third, Liu et al. (2014) proposed the Modified Built-up Index 

(MBI) to accentuate built-up areas for a study on investigating 

spatiotemporal dynamics of urban sprawl.  

 𝑀𝐵𝐼 =  
𝑏𝑆𝑊𝐼𝑅2  ∙ 𝑏𝑅𝑒𝑑−𝑏𝑁𝐼𝑅

2 

𝑏𝑆𝑊𝐼𝑅2 +𝑏𝑁𝐼𝑅 +𝑏𝑅𝑒𝑑
  (3) 

 

Fourth, Lu et al. (2003) proposed the Human Settlement Index 

(HSI) to extract urban areas by integrating NTL and NDVI data. 

The maximum value of the calculated NDVI and the normalized 

NTL data were used to calculate HSI. 

 

 𝐻𝑆𝐼 =  
(1−𝑁𝐷𝑉𝐼𝑀𝑎𝑥 +𝑁𝑇𝐿𝑁𝑜𝑟𝑚) 

(1−𝑁𝑇𝐿𝑁𝑜𝑟𝑚 )+ 𝑁𝐷𝑉𝐼𝑀𝑎𝑥 +(𝑁𝐷𝑉𝐼𝑀𝑎𝑥 ∙𝑁𝑇𝐿𝑁𝑜𝑟𝑚)
  (4) 

  

Last, Cho (2019) proposed a novel index designed for urban areas 

called Fractional Urban Cover (FUC), which was inspired by the 

structure of fractional vegetation cover (FVC) and HSI. In 

comparison to other thermal sharpening methods, FUC 

demonstrated superior results for built-up areas, but recorded 

lower performance for water bodies (Cho, 2019). FUC can be 

expressed using minimum and maximum values of HSI: 

 

 𝐹𝑈𝐶 = (
𝐻𝑆𝐼𝑀𝑎𝑥 −𝐻𝑆𝐼 

𝐻𝑆𝐼𝑀𝑎𝑥 −𝐻𝑆𝐼𝑀𝑖𝑛 
)𝑛  (5) 

Here, the exponent n is determined based on the maximum 

Correlation Coefficient (CC) derived from linear regression 

between FUC and brightness temperature. 

 

3.2 Thermal Sharpening Methods 

Disaggregating Tr to the NDVI pixel resolution (DisTrad) 

(Kustas et al., 2003) and Thermal Sharpening (TsHARP) (Agam 

et al., 2007) are two of the most widely adopted methods in 

thermal sharpening. The TsHARP method conducts a polynomial 

regression using FVC to produce a predicted thermal image as 

shown in Equation 6. FVC is computed based on Equation 7 and 

uses minimum and maximum NDVI values. A residual term, 

∆𝑇𝐿𝑅, is computed in Equation 8 by using the difference between 

the predicted thermal image and the original low-resolution 

thermal image  𝑇𝐿𝑅,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 . Lastly, linear least squares 

regression is applied using the high-resolution 𝐹𝑉𝐶𝐻𝑅 with the 

addition of the residual term from the previous equation to 

estimate the sharpened image 𝑇𝐻𝑅̂ in Equation 9.  

 

 𝑇𝐿𝑅̂ = Ϝ( 𝐹𝑉𝐶𝐿𝑅) = 𝑎0 + 𝑎1𝐹𝑉𝐶𝐿𝑅  (6) 

 

 𝐹𝑉𝐶𝐿𝑅 = (
𝑁𝐷𝑉𝐼𝑀𝑎𝑥−𝑁𝐷𝑉𝐼𝐿𝑅

𝑁𝐷𝑉𝐼𝑀𝑎𝑥− 𝑁𝐷𝑉𝐼𝑀𝑖𝑛
)

0.625
  (7) 

 

 ∆𝑇𝐿𝑅 = 𝑇𝐿𝑅,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑇𝐿𝑅̂  (8) 

 

 𝑇𝐻𝑅̂ = Ϝ( 𝐹𝑉𝐶𝐻𝑅) + ∆𝑇𝐿𝑅̂  (9) 

 

However, since NDVI or FVC may be inadequate to interpret 

fine-grained, heterogeneous urban areas, the urban indices 

introduced in the previous sub-section can be integrated into the 

TsHARP model to produce sharpened thermal images in a similar 

manner. For clarity, the urban index input images can be 

implemented using the following expression: 

 

   𝑇𝐿𝑅̂ = Ϝ( 𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑑𝑒𝑥𝐿𝑅) = 𝑎0 + 𝑎1𝑈𝑟𝑏𝑎𝑛 𝐼𝑛𝑑𝑒𝑥𝐿𝑅 (10) 

 

where the urban indices are first aggregated to match the thermal 

image’s resolution prior to calculating the regression.  

 

3.3 Implementing the STF Model (SADFAT)  

The SADFAT model proposed by Weng et al. (2014) was 

adopted to generate high resolution LST images. To differentiate 

from past studies, the principal contribution of this study lies in 

the investigation of urban index-based thermal images as input 

datasets, as shown in Figure 3 by the “Index-based LST (30m) 

input” highlighted in red text. 

29-May 14-Jun 17-Aug 02-Sep 18-Sep

Max 326.21 323.18 315.57 316.78 313.98

Min 293.53 296.35 288.99 295.40 285.61

Med 309.50 310.84 303.38 303.86 300.02

273.00

283.00

293.00

303.00

313.00

323.00

333.00

29-May 14-Jun 17-Aug 02-Sep 18-Sep

Max 311.48 315.56 308.58 308.36 304.60

Min 304.24 309.06 303.00 302.60 299.30

Med 308.82 311.86 305.66 305.94 302.32

293.00

298.00

303.00

308.00

313.00

318.00

323.00
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Figure 3. Overview of the two-phase methodology showing the input images and processes involved in this study 

 

Linear spectral mixture analysis was used since the majority of 

urban areas are filled with mixed pixels. Hence, each of the finer 

resolution Landsat pixels can be considered as a pure endmember 

within the resampled MODIS pixel.  For this study, Landsat and 

MODIS images are assigned as the fine resolution and coarse 

resolution image inputs in the SADFAT algorithm, respectively. 

Using a pair of Landsat 8 and MODIS radiance images at 𝑡0 and 

another MODIS image at 𝑡𝑝, the corresponding Landsat image 

can be generated at 𝑡𝑝 using the following formula: 

 

𝑅𝐿(𝑥, 𝑦, 𝑡𝑝) =  𝑅𝐿(𝑥, 𝑦, 𝑡0) + ℎ(𝑥, 𝑦) ×

                                                 − [𝑅𝑀(𝑥, 𝑦, 𝑡𝑝)𝑅𝑀(𝑥, 𝑦, 𝑡0)]  (11) 

                

where 𝑅𝐿 is the Landsat radiance derived from TIR Band 10, 𝑅𝑀 

is the MODIS radiance, 𝑊𝑖 is the weight of a neighboring similar 

pixel which considers the spectral similarity of the ith pixel 

between the Landsat and MODIS images as well as the spatial 

distance between the selected similar pixel and the center pixel. 

In more detail, the combined weight term C𝑊𝑖 can be computed 

by combining the Euclidean distance of the neighboring similar 

pixel and the central pixel, 𝑑𝑖 . The weight of the pixel is 

calculated by finding the normalized result of the inverse of the 

combined weight using the expression: 

 

 𝐶𝑊𝑖 = (1 − 𝑅𝑖) × 𝑑𝑖   (12) 

 𝑊𝑖 =
(

1

𝐶𝑊𝑖
)

∑ (
1

𝐶𝑊𝑖
)𝑁

𝑖=1

  (13) 

 

Also, ℎ𝑘  is the conversion coefficient originally proposed in 

ESTARFM which computes the ratio of the difference between 

the radiance value of Landsat and MODIS at the inputted times, 

𝑡1and 𝑡2, and can be explained by the following expression:  

 

 ℎ𝑘 =  
𝑅𝑘𝐿(𝑡2)−𝑅𝑘𝐿(𝑡1) 

𝑅𝑘𝑀(𝑡2)−𝑅𝑘𝑀(𝑡1)
 (14) 

 

where 𝑅𝑘𝐿 denotes the radiance pixel of the kth Landsat pixel at 

a given time, while 𝑅𝑘𝑀  refers to the corresponding radiance 

pixel of the kth MODIS pixel at a given time. A moving window 

can then be used to incorporate additional information from 

neighboring spectrally similar pixels, and to determine a unique 

solution of Equation 11 to find the value of the center pixel. 

Assuming the moving window has a size of 𝑤 with a center pixel 

of  𝑥𝑤/2, 𝑦𝑤/2, the Landsat radiance can be predicted at 𝑡𝑝 as: 

𝑅𝐿(𝑥𝑤/2, 𝑦𝑤/2, 𝑡𝑝) =  𝑅𝐿(𝑥𝑤/2, 𝑦𝑤/2, 𝑡0) + ∑ 𝑊𝑖  × ℎ𝑘

𝑁

𝑘=1

×   [𝑅𝑀(𝑥𝑤/2, 𝑦𝑤/2, 𝑡𝑝) 

          −𝑅𝑀(𝑥𝑤/2, 𝑦𝑤/2, 𝑡0)]  (15) 

 

3.4 Generalized Single Channel (SC) Algorithm 

LST can be retrieved from radiometrically calibrated thermal 

images using single channel, split-window, and mono-window 

methods (Lu et al., 2004). The Generalized SC algorithm was 

used since in-situ radio-soundings or effective mean atmospheric 

temperature values were not required (Jiménez‐Muñoz and 

Sobrino, 2003). The predicted Landsat radiance image at  𝑡𝑝 can 

be converted to LST and corrected for atmospheric effects using 

the Generalized SC algorithm outlined in Sobrino et al. (2004): 

 

 LST = 𝛾 [
1

𝜀
(𝜓1𝐿𝑠 + 𝜓2) + 𝜓3] +  𝛿  (16) 

 

where LST is the calculated Landsat 8 thermal image (in Kelvin), 

𝐿𝑠 is the at-sensor radiance, 𝜀 is the surface emissivity, 𝜓1, 𝜓2, 

𝜓3  are atmospheric functions, and 𝛾  and 𝛿  are parameters 

dependent on Planck’s function which are calculated by: 

 

 𝛾 = (
𝑐2𝐿𝑠

𝑇𝑠
2 [

𝜆4

𝑐1
𝐿𝑠 +

1

𝜆
])−1 (17) 

 

 𝛿 =  −𝛾𝐿𝑠 + 𝑇𝑠 (18) 

 

where 𝜆 is the effective wavelength of Landsat 8 TIR band 10 

(µm), 𝑇𝑠  is the sharpened index radiance image, and 𝑐1  and 𝑐2 

are Planck’s radiation constants which correspond to  774.8853 

and 1321.0789, respectively. Land surface emissivity can vary 

based on the feature’s characteristics, and is denoted as 𝜀𝜆 . 

Emissivity products from satellite images are available, but are 

either outdated (ASTER) or have a very coarse resolution 

(MODIS). Alternatively, emissivity can be determined 

conditionally based on NDVI proportions, calculated separately 

for vegetation, soil, water, and mixed areas using:  

 

 𝜀𝜆 = 𝜀𝑣𝑒𝑔,𝜆𝑃𝑣𝑒𝑔 + 𝜀𝑠𝑜𝑖𝑙,𝜆(1 − 𝑃𝑣𝑒𝑔) +  𝐶𝜆  (19) 

 

 𝑃𝑣𝑒𝑔 = (
𝑁𝐷𝑉𝐼− 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙

𝑁𝐷𝑉𝐼𝑣𝑒𝑔−𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙
)2            (20) 
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where 𝜀𝑣𝑒𝑔,𝜆  and 𝜀𝑠𝑜𝑖𝑙,𝜆  correspond to vegetation and soil 

emissivities, respectively, 𝐶𝜆 is the surface roughness, 𝑃𝑣𝑒𝑔 is the 

proportion of vegetation calculated by using NDVI values for 

vegetation, 𝑁𝐷𝑉𝐼𝑣𝑒𝑔 , and for soil, 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙 . For this study, a 

surface roughness was used as a constant value of 0.005 (where 

𝐶𝜆 = 0  for homogeneous, flat surfaces), while  𝑁𝐷𝑉𝐼𝑣𝑒𝑔  and 

𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙  were set to 0.5 and 0.2, respectively, based on an 

empirical validation of the NDVI results for each date. Negative 

NDVI values were deemed as water pixels and were assigned an 

emissivity value of 0.991, while other emissivity terms were 

calculated based on Equation 19 and 20 using the aforementioned 

four land cover classes from Sub-section 2.1 (vegetation, water, 

bare soil, and mixed area). The emissivity of mixed pixels, 𝜀𝜆,𝑚𝑖𝑥, 

can be calculated using the following conditioned formula: 

 

 𝜀𝜆,𝑚𝑖𝑥 = {

[1] 𝜀𝑠𝑜𝑖𝑙,𝜆

[2]𝜀𝑣𝑒𝑔,𝜆𝑃𝑣𝑒𝑔 + 𝜀𝑠𝑜𝑖𝑙,𝜆(1 − 𝑃𝑣𝑒𝑔) + 𝐶𝜆

[3]𝜀𝑠𝑜𝑖𝑙,𝜆 + 𝐶𝜆

  (21) 

 
[1]𝑁𝐷𝑉𝐼<𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙

[2]𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙≤𝑁𝐷𝑉𝐼≤𝑁𝐷𝑉𝐼𝑣𝑒𝑔

[3]𝑁𝐷𝑉𝐼>𝑁𝐷𝑉𝐼𝑣𝑒𝑔

  

 

Condition [1] is represented by bare soil and was given an 

emissivity value of 0.996, condition [2] contains both vegetation 

and soil pixels and was assigned an emissivity value based on 

Equation 21, and condition [3] is represented by vegetation and 

was allocated an emissivity of 0.973 (Avdan and Jovanovska, 

2016). Lastly, atmospheric functions are required to eliminate the 

atmospheric effects on the LST product. This study used the 

Atmospheric Correction Parameter Calculator (ACPC) offered 

by NASA to estimate transmissivity (𝜏), upwelling radiance (𝐿↑), 

and downwelling radiance (𝐿↓). These variables are related to the 

atmospheric functions as shown in Equation 22. 

 

 𝜓1 =  
1

𝜏
, 𝜓2 = −𝐿↓ −

𝐿↑

𝜏
, 𝜓3 = 𝐿↓ (22) 

 

4. RESULTS AND DISCUSSION 

4.1 Calculation of Urban Indices  

While traditional thermal sharpening methods utilized NDVI or 

variants of the index, urban indices were hypothesized to be more 

prevalent in urban areas. In light of this shortcoming, five urban 

indices were selected on the basis of showing a reasonable 

correlation with the thermal image. The urban indices were 

processed using Landsat 8 bands and aggregated to 90 m for fair 

comparison with the Landsat 8 thermal image. The results of the 

correlation assessment are provided in Table 1. NBI was removed 

from the results in Table 1 and the STF phase due to poor 

performance to narrow the number of input images to four urban 

indices. MBI showed relatively higher results over NDBI, 

thereby indicating the effectiveness of combining both the 

difference between NIR and SWIR in conjunction with the red 

band. HSI demonstrated the lowest Root Mean Squared Error 

(RMSE) values while FUC displayed the highest CC values. In 

comparison to HSI, the relatively higher RMSE values in the 

FUC results can be attributed to the index’s low performance in 

delineating water body parameters.  

 

4.2 Thermal Sharpened BT Results 

The 30 m urban indices were used to sharpen the original 90 m 

Landsat 8 brightness temperature images, as shown in Figures 4 

and 5 using a range of 293 K to 328 K. All of the sharpened 

results enhanced the urban features in more detail, but varied in 

terms of sharpness and the noisy pixels in the image. On closer  

Index Metric 
Image Acquisition Date 

5/29 6/14 8/17 9/02 9/18 

NDBI 
CC 0.578 0.620 0.607 0.631 0.614 

RMSE 0.184 0.237 0.220 0.195 0.199 

MBI 
CC 0.566 0.636 0.570 0.608 0.621 

RMSE 0.179 0.227 0.198 0.167 0.186 

HSI  
CC 0.601 0.674 0.609 0.698 0.702 

RMSE 0.157 0.193 0.160 0.141 0.159 

FUC 
CC 0.683 0.745 0.715 0.766 0.752 

RMSE 0.171 0.209 0.195 0.163 0.180 

 

Table 1. Correlation assessment prior to thermal sharpening 

 

inspection, the NDBI and HSI results reflected the thermal 

distribution in the palace complex and in the nearby urban 

regions as shown in Figure 4, but were degraded by noisy pixels 

due to high heterogeneity. The MBI, TsHARP and FUC results 

displayed smoother variations, particularly evident near water 

bodies. All of the indices apart from FUC were able to distinguish 

the perimeter of water bodies effectively. Although the FUC 

result exhibited rougher extents, the overall result was smoother 

and more representative of the original image. Moreover, the 

spatial details in the Beijing Capital International Airport in 

Figure 5 were more pronounced in the NDBI, MBI and HSI 

results, but were nonetheless affected by noisy pixels. In contrast, 

the smoother TsHARP and FUC images presented similar 

thermal variations with respect to the original thermal image.  

 

  
(a) Original (90 m) (b) TsHARP 

  
(c) NDBI (d) MBI 

  
(e) HSI (f) FUC 

 

Figure 4. Sharpened images of the Forbidden City palace 

complex and nearby urban area from 06/14/2019 images using 

the urban indices. 
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(a) Original (90 m) (b) TsHARP 

  
(c) NDBI (d) MBI 

  
(e) HSI (f) FUC 

  

Figure 5. Sharpened images of the Beijing Capital International 

airport from 06/14/2019 images using urban indices. 

 

4.3 Results from the STF Algorithm 

Two pairs of Landsat and MODIS images from 05/29/19 and 

06/14/19 were used to compute the conversion coefficients, while 

the remaining acquisition dates of 08/17/19, 09/02/19, and 

09/18/19 were used as validation sets. The generated LST images 

using the original Landsat 8 thermal band are displayed in Figures 

6 to 8 on a scale of 293 K to 328 K. 

 

 
 

Figure 6. LST Prediction for 08/17/19 

 

 
 

Figure 7. LST Prediction for 09/02/19 

 
 

Figure 8. LST Prediction for 09/18/19 

 

4.4 Quality Assessment Results 

The generated LST images at 𝑡𝑝𝑟𝑒𝑑  were compared with the 

observed LST on the corresponding acquisition date. RMSE, 

Absolute Average Difference (AAD), and CC were computed to 

evaluate the algorithm’s prediction accuracy as displayed in 

Table 2. 𝑦𝑖 is the observed LST value and 𝑦𝑖̂ is the predicted LST 

value using the STF algorithm, while 𝜇𝑦𝑖
 and 𝜇𝑦𝑖̂

 correspond to 

the mean values of 𝑦𝑖 and 𝑦𝑖̂. These quality assessment metrics 

were selected based on their common usage in literature. 

 

Metric Ideal  Formula 

RMSE 0 RMSE = √
1

𝑁
∑(𝑦𝑖̂ − 𝜇𝑦𝑖̂

)2

𝑁

𝑖=1

 

AAD 0 𝐴𝐴𝐷 =  
1

𝑁
∑|(𝑦𝑖̂ − 𝜇𝑦𝑖̂

)|

𝑁

𝑖=1

 

CC 1 
𝐶𝐶 =  

∑ (𝑦𝑖 − 𝜇𝑦𝑖
)𝑁

𝑖=1 (𝑦𝑖̂ − 𝜇𝑦𝑖̂
)

√∑ (𝑦𝑖 − 𝜇𝑦𝑖
)2𝑁

𝑖=1 √∑ (𝑦𝑖̂ − 𝜇𝑦𝑖̂
)2𝑁

𝑖=1

 

 

Table 2. Quality assessment results for each index 

 

The spatiotemporally sharpened results are presented in Table 3, 

and the best results are highlighted in bold text. TsHARP, MBI, 

and FUC sharpened results scored relatively higher CC values, 

but MBI and FUC suffered from higher RMSE and AAD values. 

CC values for TsHARP, NDBI, and FUC are included in Figure 

9. Overall, the sharpened inputs were able to distinguish the LST 

patterns on a finer spatial resolution, especially for temporally 

closer prediction times. LST variations around larger built-up 

features such as buildings and airport facilities were more 

distinguishable, but the central Beijing area and surrounding 

urban regions were more difficult to predict due to the high 

landscape heterogeneity and complexity.  

 

08/17/19 TsHARP NDBI HSI MBI FUC 

RMSE (K) 3.232 3.126 3.252 3.367 3.462 

AAD (K) 2.404 2.325 2.401 2.515 2.582 

CC 0.669 0.580 0.662 0.668 0.671 

09/02/19 TsHARP NDBI HSI MBI FUC 

RMSE (K) 3.306 3.223 3.317 3.417 3.487 

AAD (K) 2.560 2.501 2.547 2.653 2.696 

CC 0.690 0.615 0.684 0.687 0.689 

09/18/19 TsHARP NDBI HSI MBI FUC 

RMSE (K) 3.807 3.510 3.849 4.062 4.260 

AAD (K) 2.610 2.435 2.613 2.794 2.928 

CC 0.658 0.576 0.646 0.651 0.650 

 

Table 3. Quality assessment results for each index 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-247-2020 | © Authors 2020. CC BY 4.0 License.

 
252



 

 TsHARP  NDBI FUC 
0

8
/1

7
/1

9
 

   

0
9

/0
2

/1
9
 

   

0
9

/1
8

/1
9
 

   

Figure 9. Visual representation of CC results found in Table 3   

 

Test Dates Original TIR (90 m) based LST TsHARP sharpened LST NDBI sharpened LST 
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Figure 10. Average difference percentage error of the STF sharpened images using TsHARP, NDBI, and FUC of the Beijing Capital 

International airport shown in Figure 5. The range of all of the images is 0 and 5%. 

 

Furthermore, the increase in RMSE and AAD over time can be 

correlated with the model’s lack of sensitivity to larger temporal 

variations. The NDBI sharpened result recorded the lowest 

RMSE and AAD values for all of the scenarios, but also returned 

the lowest CC values, indicating that the prediction may have 

been more accurate, but was unstable. In order to investigate the 

prediction errors in more depth, Figure 10 displays the average 

difference percentage error for each site using TsHARP and 

NDBI. FUC was omitted since the error map was similar to 

TsHARP, given that both results were NDVI-based. The average 

difference percentage error is calculated by dividing the average 

distance between pixels of the original and predicted LST images 
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by the original LST image, and is measured on a scale of 0 to 1, 

with 0 being ideal. The results showed higher levels of error at 

higher thermal variations, especially near building facilities. 

Comparing TsHARP and NDBI results, the latter result 

demonstrated smaller proportions (regions) of error in 

comparison to the TsHARP result for both test dates, indicating 

the relatively lower AAD and RMSE values in Table 3. On the 

contrary, the TsHARP results tended to smoothen the fine spatial 

details. Also, FUC was able to preserve the details to a reasonable 

extent, the MBI results tended to pixelate predictions, while the 

HSI results were found to overestimate predictions. Other 

sources of error include the uncertainty behind emissivity values. 

NDVI may not suffice to classify the various land cover classes 

in urban areas, especially considering the heterogeneity of a 

megacity like Beijing. In addition, the presence of water bodies 

tended to deteriorate the sharpening methods (such as for FUC) 

as well as for the SADFAT algorithm. The SADFAT parameters 

were also difficult to optimize, given the high computation time. 

 

5.  CONCLUSION 

STF of LST images provides a method to generate spatially 

continuous, high resolution thermal imagery. This study 

demonstrated the feasibility of applying urban indices to sharpen 

Landsat 8 thermal images in urban areas and of implementing 

these sharpened images in the SADFAT algorithm to generate 

high resolution LST images. Although the NDBI sharpened 

results were found to be unstable in highly heterogeneous urban 

regions, the low RMSE and AAD statistical parameters signified 

the potential to modify the index by optimizing its correlation 

with thermal images. Future works stemming from this study 

include enhancing the resolution of the coarse image input for 

SADFAT or other STF methods, utilizing classification methods 

to delineate land cover classes more accurately, and integrating 

dictionary-based or deep learning methods in the STF pipeline.  
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