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ABSTRACT:

In this paper, a multiscale Markov framework is proposed in order to address the problem of the classification of multiresolution
and multisensor remotely sensed data. The proposed framework makes use of a quadtree to model the interactions across different
spatial resolutions and a Markov model with respect to a generic total order relation to deal with contextual information at each
scale in order to favor applicability to very high resolution imagery. The methodological properties of the proposed hierarchical
framework are investigated. Firstly, we prove the causality of the overall proposed model, a particularly advantageous property
in terms of computational cost of the inference. Secondly, we prove the expression of the marginal posterior mode criterion for
inference on the proposed framework. Within this framework, a specific algorithm is formulated by defining, within each layer of
the quadtree, a Markov chain model with respect to a pixel scan that combines both a zig-zag trajectory and a Hilbert space-filling
curve. Data collected by distinct sensors at the same spatial resolution are fused through gradient boosted regression trees. The
developed algorithm was experimentally validated with two very high resolution datasets including multispectral, panchromatic
and radar satellite images. The experimental results confirm the effectiveness of the proposed algorithm as compared to previous
techniques based on alternate approaches to multiresolution fusion.

1. INTRODUCTION

Thanks to the potential offered by current and forthcoming
space missions, very high spatial resolution (VHR) optical
(e.g., Pléiades, WorldView-3, SPOT-6/7) and synthetic aper-
ture radar (SAR; e.g., COSMO-SkyMed Seconda Generazione,
TerraSAR-X, RADARSAT-2) instruments are now available to
serve many applications. From the viewpoint of image ana-
lysis, the joint exploitation of the resulting data requires novel
methods that operate with images collected by multiple sensors
on the same area at multiple spatial resolutions. This is highly
promising because it allows to benefit from data associated with
different physical natures, frequencies, polarizations, etc., and
from the tradeoff between a synoptic view at coarser resolu-
tions and the spatial detail of finer resolutions. In this paper,
the semantic segmentation (Wang, 2016, Arnab et al., 2018)
or dense supervised classification of images that are both mul-
tiresolution and multisensor is addressed. A major challenge in
this joint multisensor-multiresolution scenario is the combina-
tion of heterogeneous statistics of the input images and of the
need to characterize spatial information associated with differ-
ent resolutions (Hedhli et al., 2017). Trivial well-known solu-
tions mostly use resampling procedures and do not attempt to
capture the multiresolution structure of the data explicitly.

Here, an approach to address multiresolution fusion is pro-
posed based on hierarchical latent Markov modeling (Li,
2009). Within the family of structured output learning meth-
ods, Markov models postulated on planar or multilayer graphs
are known as flexible and powerful stochastic models for spatial
and possibly multimodal information (Li, 2009). A common
shortcoming of generic Markov random fields (MRFs) is their
non-causality that generally leads to possibly time-consuming

inference algorithms. The resulting non-convex problems are
addressed with stochastic optimizers such as simulated anneal-
ing (Li, 2009) or graph-theoretic algorithms (Boykov et al.,
2001). In opposition to the case of classical MRFs, for causal
probabilistic 1D models (e.g., Markov chains) efficient sequen-
tial techniques (e.g., the Baum-Welch algorithm (Baggenstoss,
2001)) are widely used for inference. Indeed, an effective
approach to multiresolution and multisensor fusion addressed
with Markov modeling is to postulate Markovianity on a hier-
archical graph structure (e.g., systems of quadtrees (Hedhli et
al., 2017)). However, despite hierarchical MRFs on quadtrees
capture relations among sites located at different scales through
the use of a Markov chain, a common limitation is that they do
not explicitly characterize spatial dependences within the layer
at each resolution (Laferté et al., 2000).

To join the benefits of both hierarchical and planar MRFs, the
classification of multiresolution and multisensor remote sens-
ing data is formulated in this paper through a causal hierarch-
ical Markov framework. The contribution of the paper is two-
fold. First, we extend the approach developed in (Montaldo
et al., 2019a, Montaldo et al., 2019b), in which hierarchical
MRFs on quadtrees have been combined with planar Markov
meshes and with various pixelwise probabilistic models, to a
broader framework in which each layer of the quadtree is asso-
ciated with a Markov model with respect to an arbitrary total
order relation. The resulting framework is highly general and
includes the Markov meshes in (Montaldo et al., 2019a, Mont-
aldo et al., 2019b) as a special case. Secondly, within this gen-
eralized framework, we develop a novel algorithm that is based
on a Markov chain model (Fjortoft et al., 2003) on each layer of
the quadtree. In this model, Markov chains are formulated both
across the scales of the tree and with respect to a 1D scan of the
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pixel lattice of each layer. This joint strategy benefits from the
spatial information within each layer and inherently supports
multiresolution fusion. A case-specific scan is defined on each
layer of the quadtree by integrating a simple zig-zag trajectory
and a Hilbert space-filling curve (Abend et al., 1965). Method-
ologically, we prove that the proposed generalized framework
ensures causality for the whole probabilistic graphical model,
thus favoring efficient inference. Then, we derive the analytical
formulation of the marginal posterior mode (MPM) inference
algorithm for the proposed framework and we customize it to
the special case of the aforementioned Markov chain. MPM is
especially advantageous for classification and segmentation in
a multiresolution scenario (Laferté et al., 2000) and its formu-
lation for causal hierarchical Markov models explicitly relies
on the causality of the models. In the proposed framework,
the images coming from the various sensors are inserted in a
quadtree based on their resolutions. On one hand, when dis-
tinct sensors provide data at different resolutions, multisensor
fusion is accomplished naturally thanks to the adopted hierarch-
ical topology. On the other hand, when data sources from dis-
tinct sensors are available at the same resolution, multisensor
fusion is addressed by incorporating a nonparametric ensemble
method within the proposed algorithm. Similar to (Montaldo
et al., 2019a, Montaldo et al., 2019b), gradient boosting regres-
sion trees (GBRT) (Friedman, 2001) are employed in this role.

2. METHODOLOGY

2.1 Causal hierarchical Markov models

Among the main current trends of probabilistic graphical mod-
els in remote sensing, multiscale and multiresolution mod-
els are of primary importance. The rationale is that comple-
mentary information is appreciated at different spatial scales.
While fine-scale observations provide lots of geometrical de-
tail but are spatially heterogeneous and noise-sensitive, coarse-
scale observations capture only large image regions and cov-
ers but with strong robustness to noise and outliers. Many
multiscale or multiresolution graphical models have been in-
troduced on the basis of hierarchical graphs (Willsky, 2002),
such as quadtrees (Laferté et al., 2000). With this topology,
hierarchical MRF models typically involve Markovianity along
the scale axis. However, a limitation of a hierarchical MRF
on a quadtree is that, while it captures relations among data
at different scales through a Markov chain, it generally does
not characterize spatial dependencies within the layer at each
scale (Laferté et al., 2000). Here, a causal hierarchical frame-
work that postulates Markovianity not only among pixels be-
longing to pixel lattices with different resolutions but also
among pixels in the same lattice is defined. This framework
describes both cross-layer (multiscale) and intra-layer (spatial)
dependence relations.

2.1.1 Planar causal Markov models Let R ⊂ Z2 be a
planar rectangular pixel lattice and let us define a total order
relation E on R. This means that this relation fulfills the fol-
lowing properties (r, s, t ∈ R):

Antisymmetry: r E s, s E r =⇒ r = s
Transitivity: r E s, s E t =⇒ r E t
Connexity: at least one holds between r E s and s E r.

We shall also write r C s to indicate that r E s and r 6= s.
Accordingly, the set {r ∈ R : r C s} formalizes the idea

Figure 1. Quadtree structure and notations on the tree

of the “past” of site s ∈ R. Let us consider also a neighbor-
hood relation to be defined in R consistently with the order
relation C, so that, intuitively, it makes sense to speak of the
“past neighbors” or “recent past” of each site. We write r J s
to indicate that r is one of such past neighbors of s. Formally,
{r ∈ R : r J s} ( {r ∈ R : r C s}, i.e., the past neighbors of
s ∈ R are all included in the past of s but form a proper (strict)
subset of its entire past. Normally, this subset is meant to be
small to favor low computational burden in the inference.

Let a discrete random variable xs be attached to each site s ∈ R
and let X = {xs}s∈R be the corresponding random field. A
Markovianity property restricted to the past of each site holds
for X if (Abend et al., 1965, Devijver, 1993, Willsky, 2002):

P (xs|xr, r C s) = P (xs|xr, r J s) ∀s ∈ S. (1)

This notion of causal Markovianity on a planar lattice extends
the one discussed in (Montaldo et al., 2019a, Montaldo et
al., 2019b), in which the order relation was referred to a 2D
mesh. We also recall that it can be proved for several planar
causal Markov models (including Markov meshes of second
and third order and Markov chains) that the following factor-
ization holds (Abend et al., 1965):

P (X ) =
∏
s∈R

P (xs|xr, r J s), (2)

up to properly defining the behavior of X at the image borders.

2.1.2 Hierarchical causal Markov random fields Let now
{S0, S1, . . . , SL} be a collection of pixel lattices organized as
a quadtree, as shown in Fig. 1. This hierarchical structure is ar-
ranged so that the width and the height of S`−1 are twice smal-
ler than those of S` (` = 1, 2, . . . , L). If ` ∈ {1, 2, . . . , L},
each site s ∈ S` in layer S` has a well-defined parent site
s− ∈ S`−1. If ` ∈ {0, 1, . . . , L − 1}, each site s ∈ S` has
in S`+1 four well-defined children sites, which we collect in
the set s+ ⊂ S`+1. These definitions imply a hierarchy on the
whole tree S = S0∪S1∪. . .∪SL from the root S0 to the leaves
SL (Laferté et al., 2000). If again a discrete random variable xs
is associated with each s ∈ S, then X = {xs}s∈S is a hierach-
ical MRF on the quadtree if the following property holds for all
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layers but the root (` = 1, 2, . . . , L) (Laferté et al., 2000):

P (X `|X `−1,X `−2, . . . ,X 0) =

= P (X `|X `−1) =
∏
s∈S`

P (xs|xs−), (3)

where X ` = {xs}s∈S` (` = 0, 1, . . . , L). The first equality
in (3) indicates that Markovianity is valid across the layers of
the quadtree. The second equality expresses that the transition
probability P (X `|X `−1) from the (`−1)th to the `th layer fac-
torizes on a pixelwise basis. Accordingly, a hierarchical MRF
on a quadtree describes the dependence along the scale axis but
not the spatial-contextual dependence associated with the ran-
dom field X ` that is supported on each layer S`.

2.2 The proposed framework

2.2.1 Model assumptions In this paper, we formulate a
general framework for the joint fusion of multisensor and mul-
tiresolution images in a supervised classification scenario. The
key-idea of the proposed framework is to generalize the ap-
proaches in (Montaldo et al., 2019a, Montaldo et al., 2019b)
by introducing a hierarchical Markov model with respect to a
quadtree topology and to an arbitrary total order relation on
each layer of the tree. Considering a set of well-registered im-
ages acquired by distinct VHR sensors at different spatial resol-
utions on the same area, each image is included in a correspond-
ing layer of the quadtree. Hence, the resolutions of the input
images should be in a power-of-2 relation. This is a restriction,
but given the resolutions of current VHR sensors, it can be eas-
ily met up to minor resampling (Dikshit, Roy, 1996, Inglada
et al., 2007) and appropriate antialiasing filtering (Alparone et
al., 2008, Mallat, 2009). The hierarchical model naturally fits
the requirements of multiresolution fusion. Furthermore, the
relations C,E, and J are assumed to be defined within each
planar layer of the quadtree. From a graphical viewpoint, this
implies that every site s ∈ S` of every layer S` but the root
(` = 1, 2, . . . , L) is linked to one parent s− ∈ S`−1 located in
the upper layer and to the past neighbors {r ∈ S` : r J s}
located in its own layer. A pixel in the root S0 has no parent
and only the causal neighbors, if any.

With the same notations as above, xs is now meant as the class
label of site s ∈ S and a finite set Ω of classes is assumed to be
defined by a training map (xs ∈ Ω, s ∈ S). For each s ∈ S,
let Cs be the vector collecting the labels of all nodes linked to s
(the “context” of s), i.e., Cs = {s−} ∪ {r ∈ S` : r J s} if s is
not in the root (s ∈ S \ S0), and Cs = {r ∈ S0 : r J s} if s ∈
S0 is in the root. As the input multisensor and multiresolution
images are framed in the quadtree, each s ∈ S is also associated
with a feature vector ys. Thus, a random field Y = {ys}s∈S
of observations is defined. If a site s is not in the leaf layer
(s ∈ S \ SL), then we shall denote as Ds the vector collecting
the feature vectors of all sites that descend from s ∈ S in the
quadtree. If s in the leaf layer (s ∈ SL), we set Ds = ys. The
proposed framework is defined by the following assumptions:

1. X is Markovian across the scales as in (3) and the fol-
lowing proportionality and factorization hold on all layers
except the root (` = 1, 2, . . . , L):

P (X `|X `−1,X `−2, . . . ,X 0) = P (X `|X `−1) ∝

∝
∏
s∈S`

P (xs|xr, r J s)P (xs|xs−). (4)

2. On the root, X 0 satisfies the factorization in (2):

P (X 0) =
∏
s∈S0

P (xs|xr, r J s). (5)

3. Conditional independence holds for the observations given
the class labels:

P (Y|X ) =
∏
s∈S

P (ys|xs) =

L∏
`=0

∏
s∈S`

P (ys|xs). (6)

4. The label of each site, given the labels of the sites linked
to it, only depends on the observations of its descendants
and not on those of the other sites:

P (xs|Cs,Y) = P (xs|Cs,Ds) ∀s ∈ S. (7)

5. Given the observation field, the parent and neighboring la-
bels of each site are conditionally independent:

P (Cs|Y) =

{
P (xs− |Y)

∏
rJs P (xr|Y) ∀s ∈ S \ S0∏

rJs P (xr|Y) ∀s ∈ S0

(8)

6. The parent and neighboring labels of each site, when con-
ditioned to the label of that site, are independent on the
observations of its descendants and mutually independent:

P (Cs|xs,Ds) = P (Cs|xs) = (9)

=

{
P (xs− |xs)

∏
rJs P (xr|xs) ∀s ∈ S \ S0∏

rJs P (xr|xs) ∀s ∈ S0

These assumptions play different roles within the proposed
framework. On one hand, methodologically, the framework is
defined by Assumptions 1, 2, and 3. Assumption 1 expresses
the key idea of the proposed combination of a hierarchical MRF
on a quadtree and a causal planar Markov model with respect to
a generic order relation E. It implies that Markovianity holds
across the scales and that the corresponding transition probab-
ilities factorize so that the labels in each layer convey both con-
textual and multiscale dependencies. Accordingly, the model
can characterize both multiresolution and spatial information.
From this perspective, Assumption 2 is necessary for complete-
ness, as it ensures that the analogous spatial factorization holds
on the root as well. The conditional independence in Assump-
tion 3 is a commonly accepted statement in the application of
MRFs to image classification and is used in the proposed frame-
work to favor tractability. On the other hand, Assumptions 4,
5, and 6 are not meant to formalize specifically desired behavi-
ors of the proposed model. As we shall argue in more detail in
the next section, they are basically technical conditions that fa-
vor the analytical tractability of the inference. They are similar
in nature to conditional independence hypotheses that are often
stated for mathematical convenience when operating with either
hierarchical (Laferté et al., 2000) or planar MRFs (Li, 2009).

Regarding inference within the proposed framework, we use
the MPM criterion, i.e., s ∈ S is assigned to the class ω ∈ Ω
that maximizes P{xs = ω|Y} (Li, 2009). MPM is especially
appropriate for hierarchical MRFs because it penalizes errors
according to the scale on which they are made, which is desir-
able to avoid error accumulation along the layers (Laferté et al.,
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2000). We shall prove in the next section that the proposed
framework is causal both spatially and across scales, which
makes it possible to compute P (xs|Y) on each s ∈ S recurs-
ively and efficiently. As data associated with different resolu-
tions are associated with the observations in distinct layers of
the quadtree, this recursive inference inherently accomplishes
their fusion, thus jointly classifying multisensor data suppor-
ted at different resolutions. If two or more considered input
sensors correspond to the same resolution, then their data con-
tribute to the feature vectors in the same layer (stacked vec-
tor). In this case, multisensor fusion is obtained by integrat-
ing the GBRT ensemble of decision trees (Friedman, 2001) in
the MPM scheme (see Section 2.3). The flexibility of tree en-
sembles and their applicability to highly heterogeneous input
feature vectors allows the proposed framework to address multi-
sensor fusion in this case as well.

2.3 Methodological properties and MPM inference

Here, we prove the causality of the proposed hierarchical
Markov framework and we derive a set of relations that allows
computing the MPM functional P (xs|Y) of each site s ∈ S.
Operatively, the causality is expressed in terms of the factoriz-
ation of the joint distribution of all observations and labels in
terms of causal transition probabilities.
Theorem 1. Under Assumptions 1-3, the joint distribution
P (X ,Y) of all class labels and feature vectors in the quad-tree
is entirely defined by the parent-child transition probabilities
{P (xs|xs−)}s∈S\S0 , the past neighbor transition probabilities
{P (xs|xr, r J s)}s∈S , and the pixelwise data conditional like-
lihoods {P (ys|xs)}s∈S .

Proof. According to (3), Assumption 1 implies that:

P (X ,Y) = P (Y|X )P (X ) = P (Y|X )P (XL,XL−1, . . . ,X 0)

= P (Y|X )P (XL|XL−1) . . . P (X 1|X 0)P (X 0). (10)

Plugging the factorizations (6) for P (Y|X ), (5) for P (X 0), and
(4) for P (X `|X `−1) (` = 1, 2, . . . , L) into (10) yields:

P (X ,Y) ∝
L∏

`=1

∏
s∈S`

P (xs|xr, r J s)P (xs|xs−)P (ys|xs)·

·
∏
s∈S0

P (xs|xr, r J s)P (ys|xs). (11)

Therefore, P (X ,Y) is entirely defined by the parent-child
transition probabilities P (xs|xs−), the past neighbor transition
probabilities P (xs|xr, r J s) and the data conditional likeli-
hoods P (ys|xs).

Theorem 2. Under Assumptions 1-6, for each site s ∈ S \ S0

not in the root 1:

P (xs) =
∑
x
s−

P (xs|xs−)P (xs−), (12)

P (xs|Cs,Ds) ∝ P (xs|Ds)P (xs|xs−)P (xs−)P (xs)−|Cs|·

·
∏
rJs

P (xs|xr)P (xr), (13)

P (xs|Y) =
∑
Cs

P (xs|Cs,Ds)P (xs− |Y)
∏
rJs

P (xr|Y). (14)

1 We denote as |A| the cardinality (i.e., the number of elements) of a
finite set A.

For each root site s ∈ S0:

P (xs|Cs,Ds) ∝ P (xs|Ds)

P (xs)|Cs|

∏
rJs

P (xs|xr)P (xr), (15)

P (xs|Y) =
∑
Cs

P (xs|Cs,Ds)
∏
rJs

P (xr|Y). (16)

For each site s ∈ S \ SL not in the leaf layer:

P (xs|Ds) ∝ P (xs|ys)
∏
t∈s+

∑
xt

P (xt|Ds)P (xt|xs)

P (xt)
. (17)

Proof. First, (12) is a straightforward application of the total
probability theorem, and the proof of (17) is the same as that
reported in (Laferté et al., 2000) for a hierarchical MRF. Then,
the total probability theorem implies that:

P (xs|Y) =
∑
Cs

P (xs|Cs,Y)P (Cs|Y), (18)

and (14) and (16) follow from plugging (7) and (8) into this
equation. Moreover, thanks to Bayes theorem:

P (xs|Cs,Ds) ∝ P (Cs|xs,Ds)P (xs|Ds), (19)

where the proportionality constant does not depend on xs. If
s ∈ S \ S0 and if we plug (9) into this equality, we obtain:

P (xs|Cs,Ds) ∝ P (xs|Ds)P (xs− |xs)
∏
rJs

P (xr|xs), (20)

from which (13) follows due to Bayes theorem. The case of
(15) is analogous.

Theorem 1 indicates that (X ,Y) is a Markov chain with respect
to the causal structure described above, which determines the
causality of the proposed hierarchical Markov model. Hence,
the proposed hierarchical Markov framework is causal both
spatially and across scales, which allows an efficient recursive
algorithm to be formulated for the MPM criterion. Based on
Theorem 2, this criterion can be formulated in terms of three re-
cursive steps. First, the prior probabilities P (xs) are initialized
on the root and (12) is used to calculate them for each class on
all sites of the quadtree through a top-down pass from the root
to the leaves. Second, (17), (13), and (15) are used to compute
P (xs|Cs,Ds) through a bottom-up pass from the leaves to the
root and within the root. Third, (14) and (16) are used to derive
P (xs|Y) through a second top-down pass within the root and
from the root to the leaves.

2.4 Proposed Markov chain-based method

Different choices for the definition of the total order relation E,
meaning different choices of the set of pixels which represent
the past of a site s ∈ S, lead to different algorithmic formu-
lations. In (Montaldo et al., 2019a, Montaldo et al., 2019b), a
Markov mesh model was considered, which, in the generalized
formulation of the present paper, is equivalent to saying that
r C s if pixel r is a neighbor of s and is reached before s as
the image is raster-scanned. Here, a Markov chain formulation
is used, which implies that the past of a pixel is determined on
a 1D basis according to a certain way of scanning all the pixels
in a lattice.
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Figure 2. Zig-zag scan

On each layer S` of the quadtree (` = 0, 1, . . . , L), let us con-
sider a scan trajectory, i.e., a sequence that visits every pixel
once and moves from one pixel to one of its neighbors. Given a
pixel s ∈ S`, let us indicate as s? ∈ S` the previous pixel in the
scan. We focus here on the special case in which r J s if and
only if r = s?. Accordingly, (4) and (5) characterize the spatial
behavior of X as a first-order Markov chain. In particular, (13)
and (14) simplify as follows (s ∈ S \ S0):

P (xs|xs− , xs? ,Ds) ∝ P (xs|Ds)P (xs)−2· (21)
· P (xs|xs−)P (xs−)P (xs|xs?)P (xs?),

P (xs|Y) =
∑

x
s− ,xs?

P (xs|xs− , xs? ,Ds)P (xs− |Y)P (xs? |Y),

and (15) and (16) simplify analogously.

Two well-known ways to perform such a pixel scan include a
zig-zag trajectory and the Hilbert space-filling curve. In the
former case, a zig-zag scan over the lattice S` is performed as
shown in Fig. 2. With the exception of the pixels at the border
of the lattice, s? is the pixel adjacent to s and placed diagonally
with respect to s in the direction of a zig-zag. Along the image
borders, this trajectory aligns with the borders themselves. The
latter scan option is based on the Hilbert space-filling curve over
a power-two sized lattice S` (see Fig. 3). The rationale for the
introduction of this order relation is twofold. First, the Hilbert
curve is useful because it gives a mapping between 1D and 2D
spaces that preserves locality, a precious property for contextual
classification. This means that two points which are close to
each other in the 1D scan are also close to each other after fold-
ing. The converse may not always be true. Second, the Hilbert
curve is particularly interesting in the case of a multiresolution
data set as the recursive construction of the curve matches the
power-of-2 relation of the layer sizes of the quadtree.

A typical drawback of causal Markov approaches is the possible
presence of anisotropic corner-dependent artifacts. To prevent
them, symmetrization procedures that ensure that, within the
overall execution of the method, pixels are visited in a balanced
and isotropic manner, are often necessary. In this paper, this
drawback is addressed by defining the scan according to a sym-
metrized combination of the aforementioned zig-zag and Hil-
bert curves. The proposed scan is shown in Fig. 4 and results as
a combination of four zig-zag scans and two Hilbert scans. It
is accomplished by moving onto two different directions of the
Hilbert curve and onto the zig-zag curves along the two diagon-
als, in both possible directions. Through this scan, each site is
visited multiple times in a symmetric manner, which prevents
the risk of geometrical artifacts that may occur while integrat-
ing contextual information in a 1D scan on a 2D pixel lattice.
Indeed, if asymmetric scanning was used, directional artifacts

Figure 3. Hilbert space-filling curve

in the classification map may generally occur in the shapes of
regions and edges (Yousefi, Kehtarnavaz, 2011).

The same approach used in (Montaldo et al., 2019a, Mont-
aldo et al., 2019b) is used to define the transition probability
P (xs|xs−) across consecutive scales. It consists of a paramet-
ric stationary model in which P{xs = ω|xs− = ω} = θ for
all ω ∈ Ω, where θ is a hyperparameter of the method, and
P{xs = ω|xs− = ω′} is constant over all ω 6= ω′ (ω, ω′ ∈ Ω).
Following the results obtained in (Hedhli et al., 2016) in the
case of a multitemporal hierarchical MRF model, the impact of
θ on the results of the method are expected to be minor. An ana-
logous model is used for the transition probability P (xs|xs?)
along the scan trajectory.

GBRT is used to estimate the pixelwise posteriors P (ys|xs)
from the training samples of the classes. GBRT is an ensemble
of decision trees that uses boosting (Schapire, 1990) to iter-
atively and adaptively manipulate the training set in order to
generate multiple decision trees. A weight is assigned to each
training sample, and at each iteration the weighted error on the
training set is minimized by a decision tree. Then the weights
are updated so that larger weight is given to wrongly classi-
fied samples and smaller weight is given to correctly classified
samples. The final predictor is constructed by a weighted vote
of the individual decision trees where the weights are given by
the accuracy of the corresponding decision tree.

3. EXPERIMENTAL RESULTS

3.1 Data sets and experimental setup

The proposed method was experimentally validated with two
VHR remote sensing datasets. The first one was collected
over Port-au-Prince, Haiti, shortly after the 2010 earthquake.
It consisted of an RGB GeoEye-1 image at 1.25 m resolu-
tion (1024× 1024 pixels), an RGB-NIR (near infrared) Quick-
Bird image at 2.5 m resolution, and a SAR COSMO-SkyMed
stripmap image at 5 m resolution. For the COSMO-SkyMed
stripmap modality, 5 m is the spatial resolution corresponding
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Steps 1, 2, and 3 of the scan

Steps 4, 5, and 6 of the scan

Figure 4. Symmetrized scan introduced. It consists of a
combination of four zig-zag scans and two Hilbert scans (6 steps

illustrated in the figure).

to 4-look data. The resolution of the multispectral channels
of QuickBird is 2.4 m, so minor resampling was applied. In
the case of GeoEye-1, the resolutions of the multispectral and
panchromatic channels are 1.64 and 0.41 m, respectively. The
1.25 m image was obtained by resampling after pansharpen-
ing. Pansharpened data were used as this was the format in
which GeoEye-1 imagery was provided by the Google Crisis
Response initiative2. In all resampling processes, proper an-
tialiasing filtering was applied (Alparone et al., 2008, Mallat,
2009). The thematic classes in the data set included “build-
ings,” “asphalt,” “containers,” “vegetation,” and “water.” In the
desired output map, these classes were meant to be discrimin-
ated at the finest observed resolution, i.e., 1.25 m. Yet, the pro-
posed method also mapped them at the other observed scales,
i.e., 2.5 and 5 m.

The second data set was acquired by the IKONOS optical mul-
tiresolution sensor in 2004 over the area of Alessandria, Italy. It
consisted of a single-channel panchromatic image at 1 m resolu-
tion (1024×1024 pixels) and a 4-channel RGB-NIR multispec-
tral image at 4 m resolution. The thematic classes in this data set
were “urban,” “agricultural,” “rangeland,” “forest,” “bare soil,”
“wet soil,” and “water.” As in the case of the first data set, they
were meant to be discriminated on the 1 m lattice, although
the method also provided a classification map at 4 m as a by-

2 http://www.google.com/relief/haitiearthquake/geoeye.html

(a) (b)

(c) (d)

Figure 5. “Haiti” data set. Details of (a) the optical image at
1.25-m resolution and of the classification maps obtained using
(b) a single-resolution MRF after resampling, (c) an adaptation

of the method in (Moser et al., 2016) to the case of input
multisensor optical-SAR imagery, and (d) the proposed
algorithm. Class legend: containers, vegetation, asphalt,

buildings, water.

product. The urban area was meant to be discriminated as a
whole, without separating possible subclasses associated with
ground materials.

For both data sets, non-overlapping training and test sets were
manually annotated in homogeneous areas by a specialist. No
borders were taken into account in the training and test sets to
avoid mixed pixels in the ground truth.

For comparison purposes, three previous approaches to mul-
tiresolution and multisensor fusion were considered. The first
one consists in a planar MRF classifier in which unary po-
tentials were based on the pixelwise predictions obtained by
random forest (Breiman, 2001) after resampling all the im-
ages to the finest resolution. The pairwise potential was the
Potts model, and the energy minimization was through sequen-
tial tree-reweighted message passing (TRW-S) (Kolmogorov,
2006). The second one is the method in (Moser et al., 2016)
for the classification of multiresolution optical images through
MRF, graph cuts, and a linear mixture model. This method
makes use of a Gaussian class-conditional model. In the ap-
plication to SAR data, it was adapted by using a log-normal
class-conditional model and by extending the technique accord-
ingly. The third benchmark technique is the recently developed
approach in (Montaldo et al., 2019a, Montaldo et al., 2019b)
in which decision tree ensembles are combined with a causal
hierarchical Markov model in which a Markov mesh is postu-
lated at each resolution scale. The framework proposed in the
present paper extends this previous technique. The algorithm
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(a) (b)

(c) (d)

Figure 6. “Alessandria” data set. Details of (a) the IKONOS
panchromatic image at 1-m resolution and of the classification

maps obtained using (b) a single-resolution MRF after
resampling, (c) the method in (Moser et al., 2016), and (d) the

proposed algorithm. Class legend: urban, agricultural,
rangeland, bare soil, forest, water, wet soil.

developed here within the proposed framework differs from that
in (Montaldo et al., 2019a, Montaldo et al., 2019b) especially
in the modeling of spatial-contextual information within each
layer of the quadtree (through Markov chains in the developed
method and Markov meshes in (Montaldo et al., 2019a, Mont-
aldo et al., 2019b)).

3.2 Experimental results and comparisons

The overall and class-wise accuracies obtained on the test sets
are presented in Tables 1 and 2. Spatial details of the clas-
sification maps are shown in Figs. 5 and 6. The proposed
technique obtained high accuracies on the test sets of both
data sets, a result that suggests the effectiveness of the pro-
posed causal hierarchical Markov framework and of the Markov
chain-based algorithm developed within this framework. Re-
markably, the accuracies obtained by the technique in (Mont-
aldo et al., 2019a, Montaldo et al., 2019b) were very similar
(identical in some cases) to those of the proposed technique.
This similarity is consistent with the fact that both algorithms
are special cases of the general framework formalized in the
present paper and share the same multiresolution hierarchical
structure based on a quadtree. On one hand, this similarity
suggests that the spatial-contextual models based on Markov
meshes and Markov chains, when integrated in the proposed
framework and at least in the case of the considered data sets,
allows for analogous capabilities in terms of class discrimina-
tion. From this perspective, large accuracy differences between
the two approaches are generally not expected. On the other
hand, this similarity in accuracy is contrasted by significantly
different computational burdens. In the proposed chain-based
algorithm, a pixel s is linked to the preceding pixel in the 1D
scanning curve. Hence, (13) and (14), in their special case
(21), involve looping over the three labels xs, xs− , and xs? ,
which is computationally O(|Ω|3). In the case of the previ-

ous method in (Montaldo et al., 2019a, Montaldo et al., 2019b),
the mesh formulation involves additional neighboring pixels,
which leads, for instance, to O(|Ω|4) or O(|Ω|5) in the case of
meshes with second- or third-order, respectively. Accordingly,
the algorithm developed here exhibits significant computational
advantages over the previous formulation in (Montaldo et al.,
2019a, Montaldo et al., 2019b).

The other two previous approaches also obtained high classi-
fication performances, yet with lower overall and/or class-wise
accuracies (e.g., for “forest” in the “Alessandria” data set). This
further suggests the effectiveness of the proposed framework
based on a hierarchical causal probabilistic graphical model as
compared not only to the use of a planar MRF together with
a traditional resampling process but also to a previous recent
Markov model in which multiresolution fusion is formalized
through linear mixtures.

A visual analysis of the classification maps confirm these com-
ments (Figs. 5 and 6). The map generated by the proposed
algorithm was characterized by remarkable visual regularity
without exhibiting oversmoothing issues. This is interpreted
as a consequence of the contextual modeling obtained through
Markovianity across both the scale and spatial domains.

4. CONCLUSIONS

A general hierarchical causal Markov framework has been pro-
posed for the challenging problem of jointly classifying in-
put image data that are both multiresolution and multisensor.
The proposed framework generalizes previous formulations
that made use of Markov meshes by combining a multiresol-
ution quadtree structure with a spatial Markovianity condition
formulated with respect to a generic total order relation. The
causality of the overall framework and the formulation of MPM
have been analytically proven, thus generalizing the previous
methodological results we proved in (Montaldo et al., 2019a).
Within this framework, a novel classification algorithm based
on a Markov chain model within each layer of the quadtree has
been developed. Experimental results obtained with VHR satel-
lite images collected by panchromatic, multispectral, and SAR
sensors pointed out the capability of the proposed algorithm to
achieve high class-wise and overall accuracy. This behavior is
shared by the previous technique in (Montaldo et al., 2019a,
Montaldo et al., 2019b), which can be seen as a special case
of the general framework developed here. On one hand, these
results confirm the capability of this framework to address mul-
tiresolution and multisensor fusion through a causal hierarch-
ical Markov approach. A further desirable property of the pro-
posed framework is that it allows classification maps to be ob-
tained at all spatial resolutions in the input data set. On the
other hand, the specific algorithm developed in the present pa-
per exhibits significantly lower computational complexity than
the previous one in (Montaldo et al., 2019a, Montaldo et al.,
2019b). Indeed, the approach of associating each layer of the
quadtree with a 1D Markov chain along Hilbert and zig-zag
curves demonstrated advantageous from a computational per-
spective thanks to its lower complexity and correspondingly
shorter execution times. This reduction in the order of com-
plexity allows to address more efficiently larger images and al-
lows especially to consider a larger number of classes. Higher
accuracies were also obtained by the proposed algorithm as
compared both to a traditional resampling-based approach and
to an advanced multiresolution model based on linear mixture

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-269-2020 | © Authors 2020. CC BY 4.0 License.

 
275



Table 1. “Haiti” data set. Overall accuracy (OA) [%], Cohen’s κ, and class-by-class accuracies [%] on the test set for the proposed
algorithm and the compared benchmark methods.

resolution 1.25 m containers vegetation asphalt buildings sea OA κ

Single-res. MRF after resampling 63.97 74.81 98.64 99.30 76.24 94.58 0.8880
Adaptation of (Moser et al., 2016) 75.06 85.32 95.89 97.75 99.36 95.11 0.9010
Method in (Montaldo et al., 2019b) 87.08 33.27 95.17 99.04 97.18 96.36 0.9124

Proposed method 86.97 34.57 97.82 99.36 100 96.90 0.9057
resolution 2.5 m containers vegetation asphalt buildings sea OA κ

Method in (Montaldo et al., 2019b) 86.31 32.71 94.87 100.00 96.04 96.63 0.9276
Proposed method 86.92 33.08 97.29 100.00 100 97.00 0.9218

resolution 5 m containers vegetation asphalt buildings sea OA κ

Method in (Montaldo et al., 2019b) 87.98 25.39 96.55 100.00 88.88 96.01 0.9288
Proposed method 87.98 25.39 96.55 100.00 88.88 96.01 0.9288

Table 2. “Alessandria” data set. Overall accuracy (OA) [%], Cohen’s κ, and class-by-class accuracies [%] on the test set for the
proposed algorithm and the compared benchmark methods.

resolution 1 m urban agri rangeland forest water wet soil bare soil OA κ

Single-res. MRF after resampling 98.58 99.12 92.23 36.98 100 98.30 96.82 96.03 0.9453
Method in (Moser et al., 2016) 99.70 99.21 97.34 64.92 100 100 99.66 98.60 0.9804

Method in (Montaldo et al., 2019b) 100 99.07 99.65 100 99.65 100 100 99.12 0.9976
Proposed method 99.54 98.26 99.91 86.40 99.80 100 100 98.58 0.9853

resolution 2 m urban agri rangeland forest water wet soil bare soil OA κ

Method in (Montaldo et al., 2019b) 99.54 98.06 99.91 78.74 99.53 100 100 98.01 0.9825
Proposed method 99.49 98.08 99.91 79.52 99.84 100 100 98.03 0.9829

resolution 4 m urban agri rangeland forest water wet soil bare soil OA κ

Method in (Montaldo et al., 2019b) 99.09 96.81 99.82 64.86 98.72 100 100 96.36 0.9697
Proposed method 99.09 96.81 99.82 64.86 98.72 100 100 96.36 0.9697

concepts (Moser et al., 2016). Furthermore, these previous ap-
proaches allow a classification map to be generated at the finest
spatial resolution in the input data set but not at the other resol-
utions involved (unless case-specific resampling procedures are
applied).

Future extensions of this work may involve integrating its
multiresolution structure with convolutional neural networks,
whose convolution and pooling layers intrinsically extract
multiscale data representations (Goodfellow et al., 2016), and
with adaptive multiresolution topologies based for instance on
superpixel segmentations at different scales (Li, 2009).
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