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ABSTRACT:

Near infrared bands (NIR) provide rich information for many remote sensing applications. In addition to deriving useful indices to
delineate water and vegetation, near infrared channels could also be used to facilitate image pre-processing. However, synthesizing
bands from RGB spectrum is not an easy task. The inter-correlations between bands are not clearly identified in physical models.
Generative adversarial networks (GAN) have been used in many tasks such as generating photorealistic images, monocular depth
estimation and Digital Surface Model (DSM) refinement etc. Conditional GAN is different in that it observes some data as a
condition. In this paper, we explore a cGAN network structure to generate a NIR spectral band that is conditioned on the input
RGB image. We test different discriminators and loss functions, and evaluate results using various metrics. The best simulated NIR
channel has a mean absolute error of around 5 percent in Sentinel-2 dataset. In addition, the simulated NIR image can correctly

distinguish between various classes of landcover.

1. INTRODUCTION

In remote sensing, near-infrared bands (NIR) have been playing
important roles in many aspects. They exhibit additional po-
tential for representing ground objects in comparison to RGB
bands, especially in representing vegetations. For example, in-
dices involving NIR have been developed and used for tasks
such as landcover classification. These indices includes Nor-
malized Vegetation Index (NDVI) and Normalized water index
(NDWI), which have been proven to be effective in highlighting
vegetation and open water feature in remote sensing imagery
(McFeeters, 1996). In addition to identifying vegetation and
water, NIR band is also capable of discerning materials such as
plastic, minerals, sea foams, trace gases, and the health prob-
lems of trees. In data-hungry machine learning or deep learn-
ing methods for landcover classification, these characteristics
enable NIR bands to be used to improve coarse ground truth,
and correct wrong labels with their capability of distinguish-
ing between classes with subtle difference in spectral signature.
Moreover, NIR-derived indices have also been used in some
tasks such as atmospheric correction (Kaufman, Sendra, 1988).

But NIR bands are not always available in every sensor. Some
low cost satellite might not be equipped with sensor capable of
capturing NIR bands. Some airborne systems also only consist
of cameras capturing RGB bands. Moreover, sometimes when
doing landcover change detection, data from old sensors might
not provide NIR bands as the newer ones, thus hindering the ac-
curacy of change detection. Therefore, synthesizing NIR bands
from RGB is of practical values.

The generation of NIR band from RGB can be regarded as a
nonlinear mapping from RGB to NIR. Neural networks have
been proven to be effective in nonlinear mapping. For example,
one paper (Fu et al., 2018) proposed a network structure for
hyperspectral image reconstruction from RGB bands. The net-
work consists of a spectral sub network, which performs the
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spectral nonlinear mapping, and a spatial sub network, which
models the spatial correlation. Then hyperspectral bands are
generated by minimizing a mean squared error between gener-
ated bands and real bands.

In recent years, generative adversarial networks (GANs) have
been extensively used in remote sensing community to tackle
various tasks. For example, GAN and its variants are capable
or refining Digital Surface Models (DSMs) derived from stereo
matching (Bittner et al., 2019). In addition, GANs are applied
in hyperspectral image classification (Zhan et al., 2017), PAN-
sharpening (Liu et al., 2018) and super resolution (Ledig et al.,
2017) tasks.

Due to the versatility of GANs, we want to test if GANs are
capable of generating realistic NIR band reflectance. The gen-
erated NIR bands should keep the original image textures, as
well as the physical radiometric properties. To this purpose,
GAN in conditional setting is more suitable, meaning that the
generated NIR bands will be conditioned on the visible spec-
tra (red, green and blue). This conditional setting ensures that
the generated NIR bands are not only realistic, but also close
to RGB input in terms of information content. To this end, ad-
ditional loss functions such as L1 or L2 are added to the GAN
loss to ensure that the output is close to the ground truth (Isola
et al., 2017). However, such losses are susceptible to outliers.
Some robust loss functions are able to handle outliers by put-
ting less sensitivity to large error. A single robust loss function
proposed by (Barron, 2019) encompasses several common ro-
bust loss functions. This robust loss function is controlled by a
single continuous-valued parameter that can also be optimized
when training neural networks.

In this work, we will present a method to generate NIR band
from RGB bands, which applies a robust loss function in condi-
tional GAN setting. We tested the method on Sentinel-2 Data-
set and analysed the applicability of the proposed method. The
contribution of our work is twofold: we tested a conditional
GAN for task that not only requires perceptive realness but also
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NIR band with meaningful radiometric properties; we also ad-
opted a robust loss function that contributes to better learning
in the generative model.

The paper is structured as follows. In chapter two we describe
in detail the concepts and methodology involved; in chapter
three, dataset and experiment settings are detailed. Results are
analysed in chapter four, followed by conclusions in chapter
five.

2. METHODOLOGY

GAN:Ss are built on game theory (Goodfellow et al., 2014) and
have been used in multitudes of tasks in computer vision. In
remote sensing, GANs have been proven to be effective in many
applications and have achieved good results. The characteristics
of cGAN will be briefly described in this chapter.

2.1 Conditional GAN

GAN comprises generator and discriminator. The generator
tries to produce output while the discriminator tries to classify
if the output is fake or real (Goodfellow et al., 2014). The input
of GAN is usually random noise vector, and the output is image
that is similar to realistic images. Different from conventional
GANsS, conditional GANs (Mirza, Osindero, 2014) observe in-
put data. In our case, the network should generate NIR band
while observing RGB bands. Then the discriminator tries to
distinguish between the real and the fake image from generator
until it can not distinguish anymore. In cGAN, the discrimin-
ator is also conditioned on the input RGB bands similar to the
generator. Therefore, NIR band corresponding to RGB bands
can be generated from the cGAN.

2.1.1 Generator Generating realistic NIR band from RGB
bands can be regarded as a mapping from input to output of the
same spatial resolution. As the input and output are representa-
tion of the same ground objects, they should match in structure,
texture and have same semantics. A number of GAN generat-
ors adopt encoder-decoder structures that first reduce the spatial
resolution of input and gradually recover it. This structure loses
the low level information from previous stages, resulting in lack
of details. Therefore, encoder-decoder network with skip con-
nection is more suitable for this task. This structure is capable
of retaining information from different stages in the network,
which is popularly known as U-Net structure (Ronneberger et
al., 2015). This generator is adopted in image-to-image trans-
lation model Pix2pix (Isola et al., 2017). The U-net in our ex-
periment consists of 8 blocks in both encoder and decoder. In
encoder each block encompasses convolution, batch normaliz-
ation and LeakyReL U of slope 0.2. In decoder each block com-
prises transposed convolution, batch normalization and ReLU
layers. The convolution has a filter size of 4 and stride of 2 in
both encoder and decoder. In some conditional GANs, Gaus-
sian noise z is provided to generator as input to avoid determ-
inistic results matching delta function (Isola et al., 2017). Dif-
ferent from this approach, Pix2pix model employs drop out in
generator during both training and testing phase. Although this
approach results in reduced stochasticity, it is still suitable for
our task as our task does not need much randomness as other
computer vision tasks such as image translation.

2.1.2 Discriminator As for discriminator, various options
are available depending on the task. One choice is the Markovian
discriminator, which is also termed as PatchGAN (Isola et al.,

2017). It classifies whether a N x N patch in the input im-
age is real or fake, and average all the patches in the image.
The discriminator is made of several blocks consisting of 2D
convolution, batch normalization and leaky ReLU layers. The
stride of all convolutions are 2 except for the last and second
last convolutions. The size of receptive field of previous block
is calculated as:

(outputsize — 1) X stride + kernelsize @)

It should be noted that the patch size of the patch discriminator
is defined as the size of receptive field in input that corresponds
to one output pixel. Therefore, the deeper the discriminator,
the larger the patch size. The detail of a 3-layer (excluding the
last two layers) PatchGAN discriminator is shown in Figure 1.
Ignoring padding, the patch size is 70 x 70 for such 3-layer
patch discriminator. It could be understood as a form of texture
loss (Isola et al., 2017).

Another option is a pixel level discriminator, which only clas-
sifies real or fake on pixel level. Different from PatchGAN, the
kernel size and stride equal to 1. Therefore, the feature map
size remains unchanged across the network and no texture in-
formation is considered by discriminator. An illustration of the
pixel discriminator is shown in Figure 2.

Both discriminators’ last layer is a binary cross entropy layer
that classifies if the generated image is true or false. The result
is averaged over the whole image.

Convad

2 stride 2 stride 2 stride 1 stride 1 stride

Input(256x256x4) 128x128x64 64x64x128 32x32x256 32x32x512 32x32x2

Figure 1. [llustration of PatchGAN Discriminator. The first
block has no batch normalization. The first three convolutions
have a filter size of 4 x 4 and stride of 2. The last two
convolution layers has stride of 1, therefore retaining the spatial
resolution. The output is passed on to a binary cross entropy
function. The output is a score for whole image.
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Figure 2. Illustration of Pixel Discriminator. The convolution
filters have a size of 1 x 1 and stride of 1. The classification of
real and fake is only on pixel level, without any contextual
information. The result after binary cross entropy (BCE) is
averaged.

2.2 Loss Function Formulation

2.2.1 GAN Loss In GANSs, random noise z conforming to
certain probability distribution is mapped to the desired output
y by generator G. Conditional GAN, on the other hand, learns a
mapping not solely from random noise z, but from both random
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noise z and input image z. G : {z, 2} — y. Discriminator D is
trained adversarially against generator G to distinguish between
real image and generated image. The objective function of con-
ditional GAN can be expressed as:

LCGAN(G7 D) = ET,y[LOgD(Ia y)]

2

+Eollog(l - DG, 2))

The loss of the unconditional GAN can be written as:
Laan(G, D) = Ey[LogD(y)] 3)

+E.[log(1 — D(G(z2)))]

2.2.2 Traditional Loss It has been found beneficial to com-
bine GAN loss with traditional loss functions such as L1 or
L2 (Isola et al., 2017). In our task, the generated NIR band
should not only be distinguishable from the real NIR band, but
also has to be close to the real NIR band numerically. There-
fore, traditional loss is helpful in enforcing results to be close
to ground truth. Compared with L2, L1 loss encourages less
blurring (Isola et al., 2017). L1 loss is calculated as:

Li1(G) = Eopy 2|2 — Glz, 2)||,] )
The final loss can be expressed as:

arg min max = Lecan (G, D) + ALL1(G) ®

2.2.3 Robust Loss L1 and L2 losses suffer from the prob-
lem of outliers, meaning that outlier contributes equally to loss
as inlier. The ability to handle outliers is termed robustness in
machine learning. Robustness is a crucial property that is de-
sired in machine learning models. There are several robust loss
functions that have reduced sensitivity to large errors, such as
Cauchy/Lorentzian (Black, Anandan, 1996), Geman-McClure
(Geman, McClure, 1985), Welsch (Dennis Jr, Welsch, 1978),
Charbonnier (Charbonnier et al., 1994) and generalized Char-
bonnier (Sun et al., 2010). These loss functions have saturating
or even reduced gradient when the loss is large. A robust loss
function proposed by (Barron, 2019) is the superset of many
common robust loss functions mentioned above. It is able to
adjust its robustness as a continuous parameter during training.
The loss function is defined as:

2 af2
flz,a,c) = o — 2| <(x/c) + 1> -1 (6)

! | — 2|

It is a generalisation of many losses. In Equation 6, o controls
the robustness of the loss; ¢ > 0 is the scale parameter that
controls the size of quadratic bowl nean z = 0. A general
probability distribution can be constructed from the robust loss,
so that the log-likelihood of the probability density is a shifted
version of the robust loss function. The distribution is defined
as:

pali.oc) = prseap(—fe—pac) D

In this equation, Z(«) is a partition function:

Z(a) = / " cop(— (a0, 1)) ®)

—o0

The logarithmic of the partition function can be approxim-
ated using the cubic Hermit spline. The negative log likelihood
of the distribution can avoid skewing towards ignoring outlier
by forcing extra penalty for small errors. The details can be
found in paper (Barron, 2019). Therefore, the final objective
for cGAN with robust loss function can be expressed as:

argminmax = Legan (G, D) + Agobust (G) - (9)

3. EXPERIMENT

We use the multispectral images from SEN12MS dataset based
on Sentinel-1 and Sentinel-2 dataset (Schmitt et al., 2019). The
Sentinel-2 data from SEN12MS is level 1-C Top of Atmosphere
reflectance (TOA) product. The images have in total 13 band
with spatial resolution from 10m to 60 m. In our experiment,
we selected the red (R), green (G), blue (B) and near-infrared
(NIR) bands with 10 m resolution. The dataset encompasses
areas including desert, field, forests, urban areas, water bodies
etc. Example images are shown in Figure.4. The images in
SEN12MS are distributed across the world as can be seen from
Figure.3. It shows that the data are distributed globally, with
varying latitudes and climate conditions. The landcover type
also varies drastically in different locations. The dataset is cat-
egorised by seasons. In this paper, we used data acquired in
summer for training and testing to avoid problems incurred by
properties of multi-seasonal dataset. Details of band informa-
tion can be seen in Table.1.

Figure 3. Visualization of locations of images in the experiment.
Blue dots denote the location of clusters of smaller images.

Bands Wavelength(nm) Bandwidth  Resolution
S2A S2B (nm) (m)
Red 664.6 664.9 31 10
Green | 559.8 559.0 36 10
Blue | 4924  492.1 66 10
NIR 832.8 832.9 106 10

Table 1. Data Description from (European Space Agency, 2015).
S2A and S2B are the two satellites respectively. Wavelength is
the central wavelength

3.1 Data Pre-processing

We randomly selected 30000 images from the summer scenes
for training and 300 images for testing. In Sentinel-2 Level-1C
data, the digital number (DN) is TOA reflectance multiplied by
10000. We therefore converted the DN to physically meaning-
ful reflectance and zero-centered the pixel value for training. In
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Figure 4. Example images from different regions with various
landcover types. As can be seen from images, landcover is very
distinct from region to region.

generative models, data pre-processing is very crucial for learn-
ing, and we find this pre-processing strategy effective.

3.2 Training Settings

We test cGAN networks with pixel discriminator and patch dis-
criminator. We also test a U-net generator without cGAN set-
ting in order to verify if the cGAN objective facilitates better
learning. Among these models, we compare traditional L1 loss
and robust loss in the final objective. The experiment is per-
formed based on Pytorch framework. We used Adam optimizer
(Kingma, Ba, 2014) and learning rate of 0.0002. The parameter
of the robust loss function is optimized together with network
parameters. Batch size is set to 16. The input patch size is
256 x 256 without any cropping or rotation. The parameter
weights are initialized by uniform distribution between 0O to 1.
The A is set to 100 for the cGAN because the L1 loss is signi-
ficantly smaller than cGAN loss. We train the network for 200
epoch. In training process, dropout is employed in generator to
serve as random noise.

3.3 Inference

The discriminator is only active during training. During infer-
ence, discriminator is no longer involved. Dropout is also em-
ployed in generator to avoid deterministic results. The inference
is ran one image per batch. The output image pixel values are
converted back to reflectance using the pre-calculated statistics
from the dataset.

4. RESULT ANALYSIS

We evaluate the generated near-infrared band based on mean
absolute error (MAE), mean absolute percentage error (MAPE)
and structural similarity (SSIM). We also evaluate the MAE of
the resulting NDVI and NDWI. The MAPE is not calculated for
NDVI and NDWI because these indices can be zero sometimes,
causing undefined results. SSIM index is a method for evalu-
ating the perceived quality of generated images (Wang et al.,
2004). The SSIM index takes into consideration luminance (1),
contrast(c) and structure (s), making it a more comprehensive
metric. General forms of MAE, MAPE and SSIM are defined
as:

MAE(,y) — == 1% =i (10)
n
100% o~ |2 — yi
MAPE(z,y) = (1n
(@,y) = — Z; "

SSIM(m’y) = [l(‘r7y)]a : [C(xvy)]ﬁ : [S(Ivy)}’y (12)

In the above SSIM definition, «, 3,y are parameters that define
the relative importance of the three components. The mean in-
tensities are p, and p,, standard deviations are o, and oy, C1
and C are constants that are used to avoid zero denominator
instability, and are related to dynamic range of pixel values.
Mean intensity and standard deviation are weighted by a Gaus-
sian weighting function of o = 1.5. If we set a, 5 and ~y all
equal to 1, the equation becomes:

(2uapy + C1)(202y + C2)

13
(EEST RN eN =R ey B

SSIM (z,y) =

In addition to approximating the reflectance values, we expect
the near-infrared channel to correctly reflect the characteristic
of various landcover types. Specifically, the generated NDVI
should also have low value at water bodies and high values
at vegetation areas. We implement a simple classification rule
which performs quantization on the NDVI and derives four classes
that can be roughly summarized as water, baren, low veget-
ation, high vegetation. The classe definition is illustrated in
Equation.14. It should be noted that the classification is an over
generalization for all the landcover types in the dataset. But
as we only want to test if fake NIR is capable of separating
classes with distinctive spectral characteristics, the classifica-
tion scheme is still meaningful used in our evaluation.

Pixel = Water, if:
—1 <PizelValue < 0.1

Pizel = Barren, if:
0.1 <PizelValue < 0.1

Pizel = LowVegetation, if :
0.1 <PizelValue < 0.4

Pizxel = HighVegetation, if :
0.4 <PizelValue < 1.0

(14)

After performing quantization on NDVI, we evaluate this 4-
class classification map using Jaccard index, which is widely
used in semantic segmentation tasks. It is defined as:

g lznyl

— 15
2 Uy] (1%

The Jaccard Index is the area of intersection of prediction (x)
and ground truth (y) divided by the area of union of prediction
and ground truth. It can still give fair evaluation if class distri-
bution is unbalanced.

The results for MAE, MAPE and SSIM of generated NIR band
are shown in Table.2. In all 3 models the robust loss function
show some improvement over L1 loss. It should be noted that
patch discriminator might not be suitable for NIR generation
task where fine grained information should be retained. The
MAE of NDWI and NDVI, as well as the 4-class classification
mloU is illustrated in Table.3. Among all the network struc-
tures, the cGAN with Pixel Discriminator acquires the lowest
MAE and MAPE, as well as the highest SSIM. It also achieves
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the highest mIoU scores for NDVI classification. The cGAN-
PixelD model also acquires the lowest MAE and MAPE for
both NDWI and NDVI. As for loss function, robust loss shows
improvement over L1 loss function in every model variation.
On the other side, cGAN-PatchD with L1 loss function results
the worst performance in all the evaluation. In this model vari-
ation, robust loss has demonstrated the biggest improvement
over L1 loss.

Network Loss | MAE MAPE SSIM
(x107%) (%)

U-Net L1 10.70 5.54 93.08

Robust | 10.60 5.46 93.13

<GAN-PatchD L1 19.95 14.33 79.89

Robust | 10.85 5.19 92.28

<GAN-PixelD L1 9.99 4.82 93.43

Robust 9.67 4.73 93.63

Table 2. The result comparison of different methods. MAE,
MAPE and SSIM of generated NIR band is calculated.

Network Loss | MAE MAE mloU
(x1073) (x107%) (%)
NDWI NDVI
L1 21.85 20.76  95.39
U-net
Robust | 21.79 20.70 95.34
<GAN-PatchD L1 55.56 58.81 87.43
Robust | 21.80 20.11  95.41
<GAN-PixelD L1 21.97 18.85 95.68
Robust | 18.90 17.61  95.79

Table 3. The MAE results for NDWI and NDVI respectively,
and the mloU based on NDVI classification. The mloU score is
the average among all four classes.

In Figure. 5, 6 and 7 we present some example results from
various models. We find that the lowest MAE is always achieved
in noisy images due to the relative low absolute reflectance val-
ues. These NIR bands have even discrete values. Therefore we
exclude noisy images in visualization. We select some random
images to show the performance in different landcover types,
including water, forest, mountain, field and urban areas. We
present the result in false color for better visualization. NDVI
indices are shown in jet color map for visual comparison. We
plot the histograms of fake and real NIR bands to compare the
probability distributions. The blue one denotes the original NIR
while orange one is that of fake NIR band. Except for some
noisy images, almost all the fake NIR images demonstrate high
level of realness compared with the real ones. The cGAN-
PixelD model acquired best results in all evaluation metrics.
As can be seen in figure.5e and figure.5j, the histograms of the
generated NIR bands in general match reasonably well with the
histograms of the real NIR bands. Patch discriminator cGAN
model, on the other hand, shows decreased performance. It is
the only combination that has mIoU below 90 percent. As we
can see in figure.6e and figure.6j, the distributions show big dif-
ferences and shifts from that of the real NIR bands. The NDVI
values also have large difference in some specific areas. The
U-net model can also yield reasonable results without cGAN
objectives, but the result is not as good as cGAN-PixelD model.

However, the best results still show some degree of information
loss compared with the original NIR band. Specifically, the
generated images are relatively blurry in edges compared with
the original NIR band. The reduced texture is possibly caused
by the convolution operation and down sampling.

5. CONCLUSION

NIR band is important in remote sensing applications as it provides

additional information about landcover types. They have also
shown significance in many interdisciplinary researches. How-
ever, not every equipment is capable of capturing NIR bands, or
sometimes NIR bands are missing in time series dataset. Gen-
erating NIR band from RGB bands has very important practical
uses. Generative adversarial models have been proven to have
good performance in many generative tasks. They have been
transferred to many applications in remote sensing field such as
DSM refinement and monocular depth estimation. In this pa-
per, we have shown that cGAN is a viable method to be used in
NIR band generation from RGB bands. The quality of the gen-
erated NIR band is numerically good, with around 5 percent
of mean absolute percentage error. In addition, it can in gen-
eral reflect accurate land cover class information through vari-
ous NIR-based indices. However, the model still suffers from
some texture loss that could potentially harm the usability of
generated data. In the future, we will try to design a better gen-
erator structure that can retain more texture information, and a
stronger discriminator that can distinguish between more subtle
differences. In addition, imagery from different seasons will
later be tested in following research to verify if the method is
applicable when atmospheric property is distinct. Training and
testing on multi-sensor dataset will also be experimented.
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Figure 7. The result of cGAN-PixelD with robust loss.
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