
USE OF UAV IMAGERY FOR EELGRASS MAPPING IN ATLANTIC CANADA 

L. Aarts 1, A. LaRocque 2, *, B. Leblon 2, *, A. Douglas 3 

1 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton (NB), Canada 

- aarts.lauren@gmail.com
2 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton (NB), Canada 

- (larocque, bleblon)@unb.ca
3 Southern Gulf of St. Lawrence Coalition on Sustainability, Stratford (PEI), Canada - Coalition.sgsl@gmail.com 

Commission I, ICWG I/II 

KEY WORDS: Eelgrass mapping, Atlantic Canada, UAV, Drone, RGB imagery 

ABSTRACT: 

Eelgrass beds are critical in coastal ecosystems and can be useful as a measure of nearshore ecosystem health. Population declines 

have been seen around the world, including in Atlantic Canada. Restoration has the potential to aid the eelgrass population. 

Traditionally, field-level protocols would be used to monitor restoration; however, using unmanned aerial vehicles (UAVs) would be 

faster, more cost-efficient, and produce images with higher spatial resolution. This project used RGB UAV imagery and data acquired 

over five sites with eelgrass beds in the northern part of the Shediac Bay (New Brunswick, Canada). The images were mosaicked using 

Pix4Dmapper and PCI Geomatica. Each RGB mosaic was tested for the separability of four different classes (eelgrass bed, deep water 

channels, sand floor, and mud floor), and training areas were created for each class. The Maximum-likelihood classifier was then 

applied to each mosaic for creating a map of the five sites. With an average and overall accuracy higher than 98% and a Kappa 

coefficient higher than 0.97, the Pix4D RGB mosaic was superior to the PCI Geomatica RGB mosaic with an average accuracy of 

89%, an overall accuracy of 87%, and a Kappa coefficient of 0.83. This study indicates that mapping eelgrass beds with UAV RGB 

imagery is possible, but that the mosaicking step is critical. However, some factors need to be considered for creating a better map, 

such as acquiring the images during overcast conditions to reduce the difference in sun illumination, and the effects of glint or cloud 

shadow on the images. 

1. INTRODUCTION

Eelgrass beds are critical in coastal ecosystems as they provide 

vital ecological functions, including stabilizing sediment, 

providing fish habitat, influencing current dynamics, and 

contributing significant amounts of biomass to food webs (Heck 

et al., 1995). Eelgrass has the potential to serve as a sentinel of 

coastal environmental change associated with both natural and 

anthropogenic disturbances (Biber et al., 2004) and has proven 

useful as a measure of nearshore ecosystem health. While 

populations are stable under pristine conditions (Ward et al., 

1997), eelgrasses around the world are declining at an annual rate 

of 7% of existing communities as a result of various types of 

disturbances in coastal and estuarine environments (Short, 

Wyllie-Echeverria, 1996). Declines in the eelgrass population 

have also been observed in Canada (Morris et al., 2011).  

Restoration in areas with suitable habitat is a useful option to 

mitigate eelgrass decline and has the potential to re-establish the 

many essential ecosystem services eelgrass beds provide. 

Restoration success can be assessed using field-level protocols 

(Short et al., 2006), but they are time-consuming and labour-

intensive. A flexible and cost-effective approach is to use an 

unmanned aerial vehicle (UAV) images. After its development 

for military applications, UAV has become a popular tool for 

civil applications (Peasgood, Valentin, 2015). This new 

technology is mobile, fast, adaptable, and easy to use. UAVs can 

also operate at much lower altitudes, which leads to images with 

higher spatial resolution than the ones acquired from aircraft and 
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spacecraft platforms (Pajares, 2015). So far, there have been only 

a few studies using UAV images for mapping eelgrass beds in 

tropical/Mediterranean and temperate environments using mostly 

RGB cameras (Ventura et al., 2018; Konar, Iken, 2017). While 

UAV technology can be advantageous, it has the drawback to 

require image mosaicking given the small footprint of UAV 

imagery.  

The goal of this study is to compare the effect of two mosaicking 

packages (Pix4Dmapper and PCI Geomatica) on the 

classification accuracy obtained by applying a Maximum 

Likelihood classifier to RGB UAV imagery acquired over five 

eelgrass bed restoration sites, which are located inside a sheltered 

bay of Atlantic Canada.  

2. MATERIAL AND METHODS

2.1 Materials 

2.1.1 Study area: The experiment was conducted on five 

eelgrass sites located in the northern part of the Shediac Bay, 

New Brunswick, Canada (Latitude: 46° 16’ 30” N; Longitude: 

64° 34’ 10” W), specifically at the mouth of the Shediac River, 

near Shediac Bridge (Figure 1). Shediac Bay is an embayment of 

the Northumberland Strait, a narrow water body between the 

coast of eastern New Brunswick and Prince Edward Island. The 

Shediac Bay watershed area covers about 420 km2 of land area 

and stretches along approximately 36 km of coastline, from 

Caissie Cape to Cape Bimet, in south-eastern New Brunswick.  
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Figure 1.  Location of the eelgrass sites in Shediac Bay, New 

Brunswick, Canada 

 

With a length of about 63 km, Shediac River is an important 

tributary of the Shediac Bay. The name Shediac is derived from 

the Micmac name Esedeik, meaning "that goes back far", 

possibly by reference to the configuration of the Shediac Bay or 

the portage from the Shediac River to the Petitcodiac River 

(Rayburn, 1975: 252). According to Rémi Donelle (personal 

communication, 2019), manager of the Shediac Bay Watershed 

Association, the tide from the Shediac Bay goes far enough 

inland to provide a deep channel that allows small boats to 

navigate a certain distance on the river, from the Shediac Bay and 

the Northumberland Strait.  

 

2.1.2 Image acquisition: The UAV images were acquired 

with a DJI FC350 camera mounted on a fixed-wing UAV 

developed by A&L Labs. Canada Inc. (London, Ontario, 

Canada). Both the camera and UAV were connected to mission 

planner software to fly at 70 m above the ground with a 70 % 

overlap between adjacent images. Each image has a spatial 

resolution close to 5 cm.  

 

Table 1 summarizes the number of images collected at each site, 

together with the corresponding tide and wind conditions during 

image acquisition. The images were taken on August 31st, 2018, 

when the eelgrass was fully developed. According to the weather 

records of the Bouctouche CDA climatological station (Latitude: 

46° 25' 49" N; Longitude: 64° 46' 05" W), the air temperature 

was between 18,3˚C and 19,9˚C and the relative humidity was 

between 59% and 63% during the image acquisition.  

 

Site 

# 

Time 

(AST) 

Tide 

height (m) 

Wind speed 

(km/h) 

Wind 

orientation 

Number 

of images 

1 9:48 0.93 13 NNW 143 

2 10:09 0.96 13 NW 148 

3 10:42 0.99 13 N 133 

4 10:59 0.99 11 N 96 

5 11:15 1.03 11 N 147 

Table 2.  The number of images acquired and related 

environmental conditions in the northern part of the 

Shediac Bay on August 31, 2018, as a function of the 

site. 

 

2.1.3 Field data: GPS points of the eelgrass beds were 

collected by Rémi Donnelle and his team with a Garmin GPSMap 

78s®. GPS data were downloaded and converted to polygons. 

The GPS data was used to extract spectral values of the following 

classes: eelgrass, sand floor, deep water, and mud floor, to help 

to delineate the corresponding training areas. Because the GPS 

accuracy (about 3 m) is lower than the UAV image spatial 

resolution (5 cm), the spectral values were extracted from a 

11*11 pixel window and the training areas have a sufficient 

number of pixels to well represent the classes that were 

homogenous over a large area 

 

2.2 Image processing 

For each site, the individual images corresponding to the same 

band were first mosaicked together with the Pix4Dmapper® 

software (Pix4D Team, 2019) to produce one mosaic per band. 

The template used for the mosaicking was AgRGB under the 

advanced category in the processing options. Different settings 

were attempted to create the best mosaic, and the final processing 

options used were as follows. For the initial processing, the 

keypoints image scale, which defines the image size from which 

the points are extracted compared to the size of the image, was 

set to the original image size. For the point cloud and mesh, the 

point cloud densification was set to half, which indicates that 

half-size images were used to compute additional points. The 

point density was set to optimal, which set the density of the point 

cloud. Since the image scale is set to half, one point is computed 

for every 8 pixels of the initial image. For the DSM, the 

Orthomosaic, and the Index settings, the box for Google Maps™ 

tiles and KML was selected to produce a file suitable for Google 

Maps™. The Pix4Dmapper® software was also used to create 

one RGB mosaic that incorporates images from all five sites, as 

shown in Figure 2.  

 
Figure 2. RGB composite for the mosaic created using Pix4D 

with the images acquired over Shediac Bay on August 

31st, 2018. 

 

Images were also mosaicked using the PCI Geomatica® software 

(PCI Geomatics, 2018), after orthorectifying the images 

individually, using the Pix4D RGB mosaic as reference. After 

testing various settings, the most effective setting was to use the 

adaptive filter having the following parameters: filter size (% 

image) of 20.0 under normalization setting. The colour balance 

was set to the bundle method, and the cutlines were set to min 

square difference with a blending width of 5. The resulting RGB 

mosaic is showed in Figure 3.  

 

Further analysis was performed for both the Pix4Dmapper® and 

PCI Geomatica® RGB mosaics. Both mosaic types have a sptail 

resolution of 5 cm. First, image samples over five areas for each 

of the four classes (eelgrass bed, deep water channel, sand floor, 

and mud floor) were taken, and the related extracted digital 

numbers (DNs) were visually analyzed using bar graphs. The 

classes appeared to be distinct enough, and training areas of 

representative areas of each class (eelgrass, sand, deep water, and 

unknown dark areas) were then delineated. The spectral 
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signatures were then computed for each class using the three 

bands, and the corresponding spectral separability was computed 

by the Jefferies-Matusita (J-M) distance. The closer the J-M 

distance to 2, the better the spectral separability between two 

classes.  

 

 
Figure 3. RGB composite for the mosaic created using PCI 

Geomatica with the images acquired over Shediac 

Bay on August 31st, 2018. 

 

The training areas were then used into a Maximum likelihood 

classifier (MLC) using the MLC program of PCI Geomatica® 

(PCI Geomatics, 2018) that was applied to the three bands. The 

MLC is a parametric supervised classifier that assumes a 

Gaussian distribution of grey level values for each class and the 

same probability of occurrence for each class in the image. It 

classifies each pixel x in class i by maximizing the following 

discriminant function (Strahler, 1980):  

  

 𝑔𝑖(𝑥) = 𝑙𝑛(𝑝(𝑖)) −
1

2
(𝑋 − 𝑀𝑖)

𝑡  ∑ (𝑋 − 𝑀𝑖)
−1
𝑖 −

1

2
𝑙𝑛[|∑ 𝑖|] −

𝑘

2
𝑙𝑛(2𝜋) (1) 

 

where  gi(x) = discriminant function for class i and pixel x  

 p(i) = a priori probability for class I  

 X = grey level value of pixel x in each input image  

 Mi = mean vector for class i  

 ∑i = covariance matrix for any class 

  = determinant of the covariance matrix   

 
− = inverse of the covariance matrix I  

 (X-Mi) t = transposed matrix of (X-Mi)  

 k = number of input images used in the classification  

 

The classification accuracy was assessed using the confusion 

matrix and the related class User’s and Producer’s accuracies, 

average accuracy, overall accuracy, and Kappa coefficient. The 

average accuracy is the simple average of the class accuracies, 

whereas the size of the class in the image weights the overall 

accuracy. The Kappa coefficient is a weighted measure of 

agreement of the number of correctly classified pixels: the closer 

to one, the more accurate the classification. 

 

3. RESULTS 

3.1 Pix4D RGB mosaic 

3.1.1 Spectral separability: The potential separability of the 

four classes (eelgrass, deep water, sand floor, and mud floor) in 

the Pix4D® RGB mosaic was first assessed through a graphical 

comparison of the DN values of the four classes at each of the 

five selected areas of each class. Graphs were produced for 

channel 1 or blue band (Figure 4), channel 2 or green band 

(Figure 5), and channel 3 or red band (Figure 6). The four classes 

are separated in the blue band (Figure 4) for which the eelgrass 

has distinct DN values. This is not true for the green (Figure 5) 

and red bands (Figure 6). This is because the blue band radiation 

penetrates the water better than the other band radiation, therefore 

allowing better discrimination amongst the classes. 

 

 
Figure 4:  Channel 1 (blue band) comparison of the DN values 

for the four classes in the Pix4D RGB mosaic of 

Shediac Bay. The green dashes indicate the range of 

DN values that correspond to eelgrass.  

 

 
Figure 5:  Channel 2 (green band) comparison of the DN values 

for the four classes in the Pix4D RGB mosaic of 

Shediac Bay. 
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Figure 6:  Channel 3 (red band) comparison of the DN values 

for the four classes in the Pix4D RGB mosaic of 

Shediac Bay.  

 

Training areas were then delineated for each class of the Pix4D® 

RGB mosaic, and their related spectral signatures were then used 

to assess the class spectral separability using the J-M distance 

(Table 2). This table shows that the spectral separability between 

Eelgrass and Mud floor is excellent (above 1,9), and the spectral 

separability between the Eelgrass class and the Deep water or 

Sand floor classes is slightly lower, but near as good (above 1,8). 

 

Name Deep Water Sand floor Mud floor 

Sand floor 1,999 - - 

Mud floor 1,698 1,999 - 

Eelgrass 1,883 1,845 1,955 

Table 2. J-M distance computed with the class training areas 

delineated from the Pix4D RGB mosaic of Shediac 

Bay, for each class (eelgrass, deep water, sand, and 

unknown dark areas). 

 

3.1.2 Classification: The Pix4D® RGB mosaic was then 

classified using the MLC, and the related confusion matrix is 

presented in Table 3. The classification accuracy is high, with a 

very high average accuracy (98,33%) overall accuracy (98,17%) 

and Kappa coefficient (0,975). The related classified image is 

shown in Figure 7. 

 

Name 
Deep 

water 

Sand 

floor 

Mud 

floor 
Eelgrass 

User’s 

accuracy 

Deep 

water 
97,46 0,00 2,29 0,24 97,46 

Sand 

floor 
0,00 99,93 0,00 0,07 99,93 

Mud 

floor 
2,14 0,00 97,68 0,18 97,68 

Eelgrass 0,12 1,45 0,18 98,25  

Table 3. Confusion matrix (in %) computed for the MLC 

classified image produced from the Pix4D RGB 

mosaic of Shediac Bay. 

 

 
Figure 7. Classified image produced with the Maximum 

Likelihood Classifier (MLC) applied to the Pix4D® 

RGB mosaic of Shediac Bay. 

 

3.2 PCI Geomatica RGB mosaic 

3.2.1 Spectral separability: The potential for separability of 

the four classes in the PCI Geomatica RGB mosaic was assessed 

through a graphical comparison of the DN values of the four 

classes at each of the five selected areas of each class. Graphs 

were produced for channel 1 or blue band (Figure 8), channel 2 

or green band (Figure 9), and channel 3 or red band (Figure 10).  

 

 
Figure 8:  Channel 1 (blue band) comparison of the DN values 

for the four classes in the PCI Geomatica RGB 

mosaic of Shediac Bay. The green dashes indicate the 

range of DN values that correspond to eelgrass. 
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Figure 9:  Channel 2 (green band) comparison of the DN values 

for the four classes in the PCI Geomatica RGB 

mosaic of Shediac Bay. 

 

 
Figure 10. Channel 3 (red band) comparison of the DN values 

for the four classes in the PCI Geomatica RGB 

mosaic of Shediac Bay. 

 

The four classes are almost clearly separated in the blue band 

(Figure 8), and the eelgrass has distinct DN values, with only 

some values overlapping with the sand floor class. This is not true 

for the green and red bands (Figures 9 and 10). This is because 

the blue band radiation penetrates the water better than the other 

band radiation, therefore allowing better discrimination amongst 

the classes. 

 

Training areas were then delineated for each class of the PCI 

Geomatica RGB mosaic, and their related spectral signatures 

were used to assess the class separability using the J-M distance. 

Table 4 shows that the spectral separability between eelgrass and 

the dark areas is almost good (above 1,9) and the spectral 

separability between the eelgrass and the deep water or sand is 

quite poor 

 

Name Deep water Sand floor Mud floor 

Sand floor 1,999 - - 

Mud floor 1,458 1,996 - 

Eelgrass 1,144 1,645 1,856 

Table 4. J-M distances computed with the class training areas 

delineated from the PCI Geomatica RGB mosaic of 

Shediac Bay for each class (eelgrass, deep water, 

sand, and unknown dark areas). 

 

3.2.2 Classified image: The PCI Geomatica RGB mosaic was 

then classified using the MLC, and the related confusion matrix 

is presented in Table 5. The classification accuracy is relatively 

good, with an average accuracy at 89,47%, an overall accuracy 

of 87,91%, and a kappa coefficient of 0.83428. However, the 

accuracy is the lowest for the eelgrass class, mainly because of a 

confusion with the sand and deep-water classes (Table 5). The 

related classified image is shown in Figure 11.  

 

Name 
Deep 

water 

Sand 

floor 

Mud 

floor 
Eelgrass 

User’s 

accuracy 

Deep 

water 

87,41 0,00 6,37 6,22 87,41 

Sand floor 0,00 97,91 0,00 2,09 97,91 

Mud floor 6,10 0,00 92,88 1,02 92,88 

Eelgrass 12,14 8,01 0,18 79,67 79,67 

Producer’s 

accuracy 
82,74 92,44 93,41 89,52 

Table 5. Confusion matrix (in %) computed from the MLC 

classified image produced from the PCI Geomatica 

RGB mosaic of Shediac Bay. 

 

 
Figure 11. Classified image produced with the Maximum 

Likelihood Classifier (MLC) applied to the PCI 

Geomatica RGB mosaic of Shediac Bay. 

 

4. DISCUSSIONS AND CONCLUSIONS 

Our study indicates that the Pix4D mosaicking is superior to the 

PCI Geomatica mosaicking when the MLC classifier is applied 

to an RGB mosaic for mapping eelgrass beds. The Pix4D RGB 

mosaic has more spectrally separable classes (Table 2), resulting 

in high classification accuracies (Table 3). The PCI Geomatica 

RGB mosaic had lower separability for the four classes (Table 4), 

resulting in lower classification accuracy (Table 5). Although our 

study shows that mapping eelgrass beds with UAV RGB mosaics 

is possible, some techniques of image acquisition can be 

improved to create a better mosaic, which will lead to a more 

accurate classification. 

 

One problem that arose during the process was the difference in 

sun illumination over the image. The images over the five 

eelgrass sites were acquired at different times of the day, leading 

to differences across the RGB mosaic. In future work, the images 

could be taken in overcast weather as this will reduce the problem 

of the difference in sun illumination over the image. This would 

also eliminate the problem of cloud shadows seen in the image, 

which is evident in both RGB mosaics. Also, capturing the 

images in overcast may reduce sun glint seen in both RGB 

mosaics. If glint still occurs, some methods remove glint from 
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images. However, most of them use the NIR image (Kay et al., 

2009), and they cannot be applied to our images that were only 

acquired in the RGB bands. Future work should also incorporate 

a bathymetric map in the classification process. This would create 

more accurate results as it provides another level of information 

for the classification process.  

 

It is also important to note that the Pix4Dmapper ® program 

works best for coastal images with land present in the image. 

Problems with mosaicking arise when the image is acquired 

entirely over water. This is because the program has difficulties 

in creating a densified point cloud when the features on the 

imagery are homogenous, such as water or dense forests. This is 

a documented problem with the program, and the company 

suggests a few solutions by adjusting the settings. In this study, 

the suggestions were used to create the best possible mosaics. If 

this solution does not work, it is recommended to take new 

images that include land. For this reason, this software is better 

suited for mosaicking eelgrass images acquired close to shore, 

such as in this study, but not for the images acquired out in the 

bay.  

 

The high classification accuracy obtained with the Pix4D RGB 

mosaic is encouraging, but it is an assessment of the classified 

image accuracy that is different than the true mapping accuracy. 

A more robust and independent accuracy assessment is to 

compare the resulting classified image with an independent set of 

GPS field observation data acquired over the validation sites. We 

will perform such a comparison with an eelgrass map that was 

created from sonar measurements. The map we produced shows 

that there is more eelgrass in the river area than in the bay. This 

may be influenced by the depth of the water or other 

environmental factors. 

 

This study was beneficial to determine the best way to create an 

RGB mosaic using UAV images that will be successful in 

mapping eelgrass. If restoration efforts are made in these areas in 

the future, the map can be used as a base to compare the 

restoration progress. 
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