
TESTING A COMBINED MULTISPECTRAL-MULTITEMPORAL APPROACH FOR 

GETTING CLOUDLESS IMAGERY FOR SENTINEL-2 
 

 

N. Colaninno 1, *, A. Marambio 2, J. Roca 3 

 
1 Dept. of Architecture and Urban Studies, Politecnico di Milano, Laboratorio di Simulazione Urbana Fausto Curti, Milan, Italy - 

nicola.colaninno@polimi.it 
2 Universidad Nacional Autónoma de México, División de Estudios de Posgrado, Facultad de Arquitectura, DF, México - 

alejandro.marambio@gmail.com 
3 Universitat Politècnica de Catalunya, Center of Land Policy and Valuations, Barcelona, Spain - josep.roca@upc.edu 

 

Commission III, WG III/7 

 

 

KEY WORDS: Earth Observation, Optical RS, Masking Algorithms, Cloudless Imagery, Sentinel-2 

 

 

ABSTRACT: 

 

Earth observation and land cover monitoring are among major applications for satellite data. However, the use of primary satellite 

information is often limited by clouds, cloud shadows, and haze, which generally contaminate optical imagery. For purposes of hazard 

assessment, for instance, such as flooding, drought, or seismic events, the availability of uncontaminated optical data is required. 

Different approaches exist for masking and replacing cloud/haze related contamination. However, most common algorithms take 

advantage by employing thermal data. Hence, we tested an algorithm suitable for optical imagery only. The approach combines a 

multispectral-multitemporal strategy to retrieve daytime cloudless and shadow-free imagery. While the approach has been explored for 

Landsat information, namely Landsat 5 TM and Landsat 8 OLI, here we aim at testing the suitability of the method for Sentinel-2 

Multi-Spectral Instrument. A multitemporal stack, for the same image scene, is employed to retrieve a composite uncontaminated 

image over a temporal period of few months. Besides, in order to emphasize the effectiveness of optical imagery for monitoring post-

disaster events, two temporal stages have been processed, before and after a critical seismic event occurred in Lombok Island, 

Indonesia, in summer 2018. The approach relies on a clouds and cloud shadows masking algorithm, based on spectral features, and a 

data reconstruction phase based on automatic selection of the most suitable pixels from a multitemporal stack. Results have been tested 

with uncontaminated image samples for the same scene. High accuracy is achieved. 
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1. INTRODUCTION 

Today, the availability of remotely sensed data as provided by 

satellite missions is key information for Earth Observation (EO) 

and land use/land cover (LULC) monitoring. Moreover, the 

increasing concern about phenomena related to climate change 

and natural disasters such as flooding, drought, and seismic 

events, among others, is requiring more and more the availability 

and usability of such an information, either raw as well as 

processed. However, collecting primary remotely sensed 

information is not as immediate as desirable due to several 

atmospheric occurrences. Clouds, cloud shadows, and haze 

generally strongly contaminate optical remote-sensing images. 

Hence, for EO purposes, such contamination is intended as 

missing data and should be replaced or at least reduced 

(Colaninno, Marambio, & Roca, 2019). 

 

Different algorithms are available for automatically detect and 

mask clouds, and cloud shadows. As reported by Lin, Lai, Chen, 

& Chen (2014) reconstruction approaches are referred to three 

main categories. In-painting-based methods, which rely on data 

reconstruction by propagating the spectro-geometrical 

information of the same image to fill no-data from surrounding 

uncontaminated data (Lorenzi, Melgani, & Mercier, 2011). 

Multispectral-based methods, which rely on the analysis of 

spectral features of clouds across the visible, Near Infrared, and 

the thermal spectrum, for cloud detection and information 

restoration (Roy et al., 2008; Wang, Jin, Liang, Yan, & Peng, 

2005). The automated cloud-cover assessment (ACCA) 

algorithm (Irish, Barker, Goward, & Arvidson, 2006), and the 

FMask (Zhu, Wang, & Woodcock, 2015) that also uses the view 

angle of the satellite sensor and the illuminating angle to assess 

possible cloud shadows, are among the main multispectral-based 

methods. While, multitemporal-based methods rely on temporal 

and spatial coherence to combine information from different time 

periods based either on threshold approach (Min Li, Soo Chin 

Liew, & Leong Keong Kwoh, 2003), regression tree (Helmer & 

Ruefenacht, 2005), or a contextual prediction approach to 

determine spectro-temporal relationships among image 

sequences (Benabdelkader & Melgani, 2008). This allows to get 

cloud-uncontaminated and non-shadowed pixels from images 

acquired at different times and reconstruct a cloud-free image 

scene. Besides, for reconstructing clouds contaminated imagery, 

geostatistical methods have been investigated that rely, for 

instance, on independent component analysis (Shen, Wang, Lv, 

& Qian, 2015), or interpolation methods based on ordinary co-

kriging and standardized ordinary co-kriging (C. Zhang, Li, & 

Travis, 2009). However, some limitations such as handling large 

cloud covered and shadowed areas in a heterogeneous landscape, 

or small-scale applications, as well as issues related to thermal 

response, or the need for effective clouds detection and masking 

algorithms, make the matter still challenging and necessary. 
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For certain purposes, the availability of cloudless optical data is 

fundamental. It has been widely demonstrated the effectiveness 

of such an information in post-disaster monitoring for instance. 

From 2000 on, satellite data has been widely investigated for 

disaster risk management (Bessis, Béquignon, & Mahmood, 

2004; Kaku, 2019). Also, because over the last years, extreme 

earthquakes have struck extensive parts of the world, causing 

massive damages and destruction; monitoring earthquakes based 

on the use of satellite observations, both optical and radar, have 

gained interest globally (“Earthquakes from space: Earth 

observation for quantifying earthquake risks,” 2017). 

 

This work aims at testing the effectiveness of an approach that 

combines multispectral and multitemporal processes. First, 

masking clouds and cloud shadows is undertaken. Then, 

cloudless (uncontaminated) optical satellite images is obtained 

based on a multitemporal stack along one scene. We tested the 

suitability of the multispectral multitemporal cloud-free tool 

(M2CTool), as suggested by Colaninno, Marambio, & Roca 

(2019), and previously explored for Landsat data, for different 

mid-resolution satellite information. Here the test is assessed for 

Sentinel-2 MSI derived imagery. The accuracy of the masking 

step resulted quite high even at a higher spatial resolution with 

respect to Landsat data. Correlation with sample cloud-free 

image reveals high performance even for haze or thin clouds. 

 

2. CASE STUDY AND DATA 

The methodology is tested on multispectral imagery from the 

Multi-Spectral Instrument (MSI) on-board the satellite Sentinel-

2, which is a constellation of two twin satellites, Sentinel-2A and 

Sentinel-2B, operating since 2015 within the European 

Copernicus program for EO missions, coordinated by the 

European Space Agency (ESA). On the other hand, in order to 

emphasize potentials of optical satellite images for monitoring 

post-disaster events; we worked on the Lombok Island, in 

Indonesia, as case study, because on 5th of August 2018, a 

destructive and shallow earthquake heavily affected the island. 

 

2.1 Study Area 

As a case study, we worked on Lombok, an island in Indonesia, 

Southeast Asia, situated at 8°33'54"S and 116°21'04"E, and part 

of the chain of the Lesser Sunda Islands. The island is roughly 

circular, with 70 kilometers across, covering an area of around 

4,514 square kilometers. Census 2014 has recorded about 3.35 

million of inhabitants. Between July and August 2018, the Island 

was hit by different destructive earthquakes. On August 5, 2018, 

it was the most destructive. The epicenter was inland, near 

Loloan village, in the north of the island. The earthquake also 

caused tsunamis. Several facilities was severely damaged or 

destroyed. Hundreds of people died, injured, or displaced. Here, 

we emphasize the effectiveness of clouds- and shadow- 

uncontaminated data for monitoring post-disasters events. 

Therefore, we have considered the earthquake of the 5th of 

August in Lombok for testing an approach capable of getting 

cloudless imagery for pre- and post-monitoring event analysis. 

 

2.2 Sentinel-2 Multi-Spectral Instrument 

Within the EO Copernicus program, Sentinel-2 is a wide-swath, 

high-resolution, multi-spectral imaging satellite equipped with an 

optical instrument named Multi-Spectral Instrument (MSI). The 

mission addresses several operational applications including soil, 

vegetation, and water monitoring, and it is consistent with other 

EO missions, namely SPOT and Landsat (ESA, n.d.). Sentinel-2 

provides a high revisiting period, i.e. every 5 days under the same 

viewing angles. The MSI instrument is capable of systematically 

collecting optical data at mid- to high- spatial resolution in 13 

spectral bands along the visible, near, and short-wave infrared 

part of the spectrum. Different spatial resolutions are provided, 

namely 10, 20, and 60 meters per pixel, as reported in Figure 1. 

 Spectral Band 
Wavelength 
Range (nm) 

Center 
Wavelength 

(nm) 

Band 
Width 
(nm) 

Spatial 
Resolution 

(m) 

B1 Coastal Aerosol 433-453 443 20 60 
B2 Blue (B) 458-523 490 65 10 
B3 Green (G) 543-578 560 35 10 
B4 Red (R) 650-680 665 30 10 
B5 Red-Edge 1 (Re1) 698-713 705 15 20 
B6 Red-Edge 2 (Re2) 733-748 740 15 20 
B7 Red-Edge 3 (Re 3) 773-793 783 20 20 
B8 Near Infrared (NIR) 785-900 842 115 10 

B8a Near Infrared narrow (NIRn) 855-875 865 20 20 
B9 Water Vapor 935-955 945 20 60 

B10 Shortwave Infrared/Cirrus 1360-1390 1380 30 60 
B11 Shortwave Infrared 1 (SWIR1) 1565-1655 1910 90 20 
B12 Shortwave Infrared 2 (SWIR2) 2100-2280 2190 180 20 

 
 

 Figure 1. Main spectral bands specifications for Sentinel-2 MSI 

 

Data acquired by MSI instrument are systematically processed to 

Level-1C, which provides orthorectified Top-Of-Atmosphere 

(TOA) reflectance, with sub-pixel multispectral registration. 

Then, all images have been processed in SNAP, using the 

Sen2Cor tool, which performs atmospheric-, terrain and cirrus 

correction, of TOA Level 1C data, to get Level-2A Bottom-Of-

Atmosphere (BOA) reflectance processed images. 

 

For this study, 24 images, for the same scene, have been 

downloaded and processed, of which 12 refer to the pre-disaster 

(before August 5, 2018), and 12 refer to the post-disaster 

situation (after August 5, 2018). Sentinel-2 image scenes are 

defined by granules, or tiles, which are 100x100 km2 ortho-

images in UTM/WGS84 projection (ESA, n.d.). The tile used for 

this experiment is identified by the TILE_ID: 50LMR, and 

EPSG: 32750. For pre-disaster situation the selected images are: 

May 28; June 02, 07, 12, 17, and 22; July 02, 07, 12, 17, and 27; 

and August 01 (Figure 2). For post-disaster, the 12 additional 

images employed are: August 06, 11, 21, and 26; September 05, 

10, 15, 20, 25, and 30; and October 10 and 30 (Figure 3). 

 

 

Figure 2. Sentinel-2 MSI dataset for PRE-disaster observation. 

From top left, to bottom right image: May 28; June 02, 07, 12, 

17, and 22; July 02, 07, 12, 17, and 27; August 01, 2018 
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Figure 3. Sentinel-2 MSI dataset for POST-disaster observation. 

From top left, to bottom right image: August 06, 11, 21, and 26; 

September 05, 10, 15, 20, 25, and 30; and October 10 and 30 

 

3. METHODOLOGY 

The M2CTool, as experimented on Landsat imagery (Colaninno 

et al., 2019), relies on different steps. After data pre-processing, 

an algorithm is designed for masking clouds and cloud shadows. 

Hence, masked images are combined to reconstruct a composite 

cloud- and shadow-free image scene based on multitemporal 

uncontaminated pixels. A multitemporal correction is applied to 

reduce seasonal variation along the stack. 

 

When working with multitemporal data, even if for the same 

scene, and despite orthorectification procedure, a slight shift can 

occur among some images alternately. So, pixels may be not 

perfectly aligned. Such a concern is more relevant as the spatial 

resolution increases. In this study, we overlooked this problem 

and mainly focused on the testing the M2CTool methodology. At 

any rate, when the objective is of analyzing more images in a 

time series, although images refer to the same sensor and same 

spatial resolutions, images co-registration, based on selected 

Ground Control Points (GCP), should be performed (Gao, 

Zhang, & Gu, 2017; Scaioni, Barazzetti, & Gianinetto, 2018). 

 

3.1 The Masking Algorithm 

Recognized cloud masking algorithms rely on the use of thermal 

images for discriminating clouds. Instead, we tested an automatic 

algorithm for masking both clouds and cloud-shadows by means 

of spectral properties, for optical imagery. The approach is 

designed on the evidence that clouds are highly reflective at 

wavelength in the blue slice of the electromagnetic spectrum. 

Hence, for optical data, blue band is the best source for clouds 

detection. Similarly, near infrared (NIR) band is reported as the 

best source for detecting cloud shadows (Song & Civco, 2002). 

Consequently, as indicated by Lymburner (2010), if clouds are 

present in a stack of multitemporal images, blue band pixel with 

values smaller than the mean of all pixels at the same point along 

the stack, is plausibly clouds-free. While, if shadows are present 

in a multitemporal stack, NIR band pixel greater than the mean 

less the standard deviation of all pixels at the same point along 

the stack, is reasonably shadows-free (Colaninno et al., 2019; 

Lymburner, 2010). Based on such an assumption, an algorithm 

for automatically masking clouds and cloud-shadows has been 

set up. As outlined in Figure 4, and according to the previous 

statements, the algorithm relies on a statistical approach built 

upon the use of the Blue and NIR bands. For both bands, per-

pixel mean, and standard deviation are calculated, at each point 

of the image scene, through the stack of multitemporal images. 

Therefore, the mean image for the Blue and NIR stack, and 

standard deviation image for the NIR stack are obtained. Under 

the assumption that, along a multitemporal stack, clouds do not 

keep the same geographical position from one image to another, 

if clouds are present at any point, per-pixel mean, and standard 

deviation values increase significantly. Such an assumption 

allows identifying those pixels that are covered by clouds and 

cloud-shadows by comparing the covered pixels with same pixels 

at different time period. In other words, significant difference in 

terms of mean, and standard deviation, allow effectively 

identifying and masking clouds- and cloud- shadows 

contaminated pixels (Colaninno et al., 2019). 

 

 

Figure 4. Workflow of the M2CTool masking algorithm (Source: 

Colaninno et al., 2019) 

 

The masking algorithm has been implemented as a script model 

in QGIS, setup on Sentinel-2 data, thus providing an automatic 

tool for masking clouds and cloud-shadow for optical imagery. 

 

 

Figure 5. Script model implemented in QGIS for the automatic 

masking tool 
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3.2 Reconstruction phase of the cloudless image 

In this study we used 10 meters spatial resolution data, i.e. Blue, 

Green, Red, and NIR bands. Once masked all spectral bands, for 

each image scene, at the different time periods, a reconstruction 

phase is undertaken to achieve a cloud-free image for pre- and 

post-disaster situation. The reconstruction relies on two 

assumption (Colaninno et al., 2019), i.e. along the visible and the 

near infrared spectrum, high range values reasonably signify 

clouds, snow, thick haze, cirrus, and cumulus (Lymburner, 

2010); while, because low range values signify high light 

absorption, it can be assumed that they can signify shadows. 

Based on this, for both pre- and post-disaster images, a stack of 

each band has been made and ordered depending on reflectance 

values, i.e., from the highest to the lowest. By ordering the 

images, we get a shaded stack ranging from the image of 

maximum to the image of minimum reflectance. 

 

Because the maximum image along the stack can capture clouds, 

while the minimum image capture shadows, we have analyzed, 

by photointerpretation, all the images between maximum and 

minimum. We divided the ordered stack into percentiles, and 

selected the 30th percentile as the most suitable, for this study, 

for reducing the possibility of keeping cloud contaminated and 

shadowed pixels. This allows discarding both high-ranges and 

low-ranges reflectance pixels, which have been not completely 

masked through the previous masking step. 

 

However, because at this latitude images are strongly affected by 

cloud cover, the effect of masking caused areas of no-data to 

arise. On the other hand, thin clouds persist at the 30th percentile. 

So, in order to recover both empty areas, as well as for replacing 

remaining thin clouds, the minimum image retrieved from the 

original unmasked images, is used to fill-in, and replace 

undesired pixels. The minimum image is completely, or almost 

completely free of clouds, although strongly affected by 

shadows, so it is only partially practical. Therefore, the 

reconstruction process, as depicted in Figure 6, aims at 

combining the minimum of the original unmasked images, with 

the 30th percentile of the masked image stack per each band. 

 

 

Figure 6. Workflow of the M2CTool reconstruction process 

 

The reconstruction algorithm (Figure 6) is organized as follow: 

the minimum of the original image stack is first obtained, then 

the 30th percentile of the stack of the masked images is provided. 

Because the 30th percentile still shows small and thin clouds, the 

standard deviation image is calculated among the minimum of 

the original images, and the 30th percentile. Hence, on a threshold 

value, pixels with high standard deviation are further masked, 

together with the no-data caused by the masking process. An 

enhanced masked 30th percentile is obtained and overlapped to 

the minimum image, which is used to fill-in gaps. Then, the 

overlay is made by mosaicking the two images in ENVI, where 

the minimum image is put behind the 30th percentile. A color 

balancing for reducing seasonal variation, and a feathering buffer 

is applied to obtain the most homogeneous result. Figure 7 and 

Figure 8 show the obtained multispectral cloudless image scenes 

for both pre- and post-disaster situation, respectively. 

 

 

Figure 7. Pre-disaster cloudless image: natural color combination 

(at the top), infrared color combination (at the bottom) 
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Figure 8. Post-disaster cloudless image: natural color (at the top), 

and infrared color combination (at the bottom) 

 

4. ANALYSIS OF RESULTS 

In order to assess the effectiveness of the method, we consider 

either the capability of the masking algorithm, as well as the 

goodness of both pre- and post-disaster cloudless image scenes, 

obtained by applying the whole process. A statistical approach is 

employed for assessing the results. 

 

4.1 The effectiveness of the masking algorithm 

In order to evaluate the effectiveness of the employed approach 

for clouds/shadows masking, we provide a 20 square kilometers 

sample, of image scene taken at July 17, 2018 (Figure 9), where 

the original image is compared, by photointerpretation, with the 

mask (red color) achieved by applying the automatic algorithm. 

 

 

Figure 9. Squared sample of 20 km upon the sample image taken 

at July 17, 2018. (Left) Image before the masking algorithm; 

(right) Image masked based on the M2CTool 

 

Besides, the effectiveness of the algorithm is revealed by the 

analysis of the histograms of the frequency distribution (Shen et 

al., 2015) at each band (Figure 10). Either for high reflectance 

values (clouds), as well as for low values (shadows), which 

reasonably contaminate the scene, the tool shows good 

performance in terms of capability for masking clouds and cloud-

shadows. Indeed, the solid line, i.e. the masked image, shows a 

significant decrease of the frequency at both sides (low and high 

values), and at each wavelength, with respect to the original 

unmasked image. However, the effect is most visible at the NIR 

band. 

 

 

Figure 10. Histograms of reflectance values at each band for a 

squared sample of 20 km along the image taken at July 17, 2018. 

Frequency distribution is given for the original image (dot line), 

and the image after masking (solid line). From top left, to bottom 

right image: Blue, Green, Red, and NIR band 

 

Although here we roughly estimate the effectiveness of the 

algorithm in terms of clouds/shadows masking, it has been 

already widely explored. Indeed, a deep analysis is provided by 

Colaninno et al. (2019), where the M2CTool is systematically 

compared with the FMask algorithm (Zhu et al., 2015). The 

FMask is a widely recognized algorithm, which shows the best 

overall accuracy among many other algorithms they have tested 

(Foga et al., 2017). 
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4.2 Assessment of the cloudless image scenes 

In order to assess the performance of the approach for obtaining 

a clouds- and shadow-free imagery, pre- and post-disaster case 

studies have been tested. The objective is to validate the results 

with respect to a cloud-free (original) image. However, because 

image scenes completely uncontaminated are not available, 

samples of 20 km square have been considered along the less 

contaminated portions of the images selected for the test. A 

statistical approach is provided for estimating the goodness of 

the results. In particular, we analyzed scatterplots of reflectance 

values among bands, and the profile of reflectance along the blue 

band for emphasizing the effect of thin clouds and haze (Shen et 

al., 2015; Sun, Latifovic, & Pouliot, 2017). 

 

4.2.1 Pre-disaster image scene analysis: The image selected 

for assessing the result obtained for pre-disaster scene, is a 

sample of 20 km from the image July 02, 2018 (Figure 11). 

 

 

Figure 11. Squared sample of 20 km along the Pre-disaster 

image scene. (Left) Original image taken at July 02, 2018; 

(Right) Cloudless image obtained by means of the M2CTool 

 

The performance of the M2CTool has been assessed first by 

analyzing scatterplots of reflectance values. In particular, the 

reconstructed cloudless image has been compared (band-by-

band) with an uncontaminated squared sample of the Sentinel-2 

image. Scatterplots for the four bands are given in Figure 12. 

 

 

Figure 12. Scatterplots of reflectance values, along the 20 km2 

sample, among the cloudless image and the reference Sentinel-2 

image. From top left, to bottom right image: Blue, Green, Red, 

and NIR band 

Linear regression, including slope and intercept, and coefficient 

of determination (R2) are provided. Correlation among bands is 

not very high, except for the Red band, while decreases 

considerably for the NIR band. Red band is less sensitive to 

vegetation (green light) than the other bands, such as in 

particular the NIR. Hence, because low percentiles of the stack 

(we used the 30th percentile) are incline to emphasize more the 

vegetation, as is quite evident if we look at the image, we have 

the highest and lowest correlation for the Red and the NIR band, 

respectively. 

 

It has also to be taken into account that, optical imagery (mostly 

along the visible spectrum) are often contaminated by thin clouds 

and haze, which are not easy to identify and will always be 

challenging to mask (Foga et al., 2017). In this sense, because 

the reconstruction approach relies on low percentile values, it 

reduces the probability of getting thin clouds and haze. In order 

to assess this, and based on the assumption that at clear sky 

conditions Blue and Red bands are highly correlated for most 

land cover types (Shen et al., 2015; Sun et al., 2017; Tupas, 

2015; Y. Zhang, Guindon, & Cihlar, 2002), we provide a 

regression analysis between the two bands, both for the reference 

image, as well as for the reconstructed image (Figure 13). 

 

 

Figure 13. Correlation analysis between Blue band (y axis) and 

Red band (x axis), for the 20 km sampling area. (Left) Original 

image taken at July 02, 2018; (Right) Cloudless image obtained 

by means of the M2CTool 

 

With respect to the reference image, the reconstructed image 

shows a slightly higher coefficient of determination. This 

accounts for an improved clear sky condition. In fact, if we 

analyze the spectral profile of reflectance at the Blue band (thin 

clouds and haze particularly affect the Blue spectrum),  along an 

area supposedly covered by those atmospheric concerns, the 

reconstructed image shows lower values with respect to the 

reference Sentinel-2 image (Figure 14). 

 

 

Figure 14. Spectral profile of the Blue band reflectance along a 

transect for both reconstructed image and reference Sentinel-2 
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4.2.2 Post-disaster image scene analysis: The image 

selected for assessing the post-disaster scene, is a square sample 

of 20 km from the image taken October 10, 2018, as shown in 

Figure 15. 

 

 

Figure 15. Squared sample of 20 km along the Post-disaster 

image scene. (Left) Original image taken at October 10, 2018; 

(Right) Cloudless image obtained by means of the M2CTool 

 

Scatterplots of reflectance values (band-by-band) among the 

reconstructed cloudless image, in comparison with an 

uncontaminated squared sample of the Sentinel-2 image, is also 

provided, for the image taken at October 10, 2018, as provided 

in Figure 16. 

 

 

Figure 16. Scatterplots of reflectance values, along the 20 km2 

sample, among the cloudless image and the reference Sentinel-2 

image. From top left, to bottom right image: Blue, Green, Red, 

and NIR band 

 

In this case, correlation among bands is considerably higher. 

However, as stated for the previous case, low percentiles of the 

stack emphasize more the vegetation. Hence, highest and lowest 

correlation are provided, for Red and NIR band, respectively. 

 

Thin clouds and haze contamination are also assessed for this 

case study, by means of a regression analysis among Blue and 

Red bands, for both reconstructed image and reference Sentinel-2 

(Figure 17). In this sense, the reconstruction approach further 

reduced the probability of getting thin clouds and haze, thus 

increasing clear sky conditions. In fact, correlation here provides 

a slightly higher R2 for the reconstructed image, in comparison 

with the previous case. 

 

Figure 17. Correlation analysis between Blue band (y axis) and 

Red band (x axis), for the 20 km sampling area. (Left) Original 

image taken at October 10, 2018; (Right) Cloudless image 

obtained by means of the M2CTool 

 

Also, the spectral profile of reflectance at the Blue band, reveals 

that, even for this case, at certain points of the image some thin 

clouds or haze is present. Again, the reconstructed image shows 

lower values with respect to the reference image, along a transect 

supposedly affected by atmospheric concerns (Figure 18). 

 

 

Figure 18. Spectral profile of the Blue band reflectance along a 

transect for both reconstructed image and reference Sentinel-2 

 

5. CONCLUSIONS 

In this work we tested an accurate and cost/time-effective 

algorithm for masking and obtaining cloud-free optical satellite 

imagery, particularly useful for large and heterogeneous 

landscapes. The experiment is undertaken upon high resolution 

Sentinel-2 imagery, at a spatial resolution of 10 meters. Actually, 

because the methodology does not rely on the use of thermal data 

to mask clouds, it has been demonstrated the suitability for 

different optical satellite derived data (Colaninno et al., 2019). 

 

However, we report that, depending on the availability of data, 

the methodology effectively allows obtaining effective images 

free, or almost completely free, of clouds/shadows. Indeed, the 

more the available images, the more is the capability of getting 

uncontaminated images. In fact, the availability of a stack of 

images for the same image scene, increases the possibility of 

selecting the most useful data. Here, we have experimented the 

possibility of working with percentiles along the stack, instead of 

quartiles as previously investigated. This increases the 

probability of further reducing thin clouds and haze. In this 

sense, we have demonstrated that, the effectiveness of the 

approach is obtained even when the images, supposedly 

uncovered by clouds, are affected by thin clouds and/or haze. 

 

According to the analysis of the results provided at chapter 3, the 

approach appears quite effective in most of the areas along the 
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whole image scene. However, we report that other sample areas 

have been tested, besides those presented here, and in some 

samples the results do not provide same improvements, with 

respect to the original uncontaminated image. We assume that it 

is reasonable because if an uncontaminated image already exists, 

there is not the need for producing further information. 

 

At any rate, main encountered limits are mostly due to a higher 

difficulty to handle with shadows more than clouds, and because 

the algorithm is based on a statistical approach. In fact, as 

suggested by Lymburner (2010), a moving window approach 

should be explored in order to provide site-specific statistics.  

 

REFERENCES 

Benabdelkader, S., & Melgani, F. (2008). Contextual 

Spatiospectral Postreconstruction of Cloud-Contaminated 

Images. IEEE Geoscience and Remote Sensing Letters, 5(2), 

204–208. 

 

Bessis, J. L., Béquignon, J., & Mahmood, A. (2004). The 

International Charter “Space and Major Disasters” initiative. 

Acta Astronautica, 54(3), 183–190. 

 

Colaninno, N., Marambio, A., & Roca, J. (2019). Exploring a 

combined multispectral multitemporal approach as an effective 

method to retrieve cloudless multispectral imagery. Journal of 

Applied Remote Sensing, 13(02), 1. 

 

Earthquakes from space: Earth observation for quantifying 

earthquake risks. (2017). International Journal of Remote 

Sensing, 38(sup1), 80–99. 

 

ESA. (n.d.). Sentinel-2 - Data Products - Sentinel Handbook. 

Retrieved January 24, 2020, from 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-

products 

 

Foga, S., Scaramuzza, P. L., Guo, S., Zhu, Z., Dilley, R. D., 

Beckmann, T., … Laue, B. (2017). Cloud detection algorithm 

comparison and validation for operational Landsat data products. 

Remote Sensing of Environment, 194, 379–390. 

 

Gao, G., Zhang, M., & Gu, Y. (2017). Object manifold 

alignment for multi-temporal high resolution remote sensing 

images classification. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences - ISPRS Archives, 42(1W1), 325–332. 

 

Helmer, E.H., Ruefenacht, B. (2005). Cloud-Free Satellite Image 

Mosaics with Regression Trees and Histogram Matching. 

Photogramm. Eng. & Remote Sensing, 71(9), 1079-1089. 

 

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). 

Characterization of the Landsat-7 ETM+ Automated Cloud-

Cover Assessment ( ACCA ) Algorithm. Photogrammetric 

Engineering & Remote Sensing, 72(10), 1179–1188. 

 

Kaku, K. (2019, February 1). Satellite remote sensing for 

disaster management support: A holistic and staged approach 

based on case studies in Sentinel Asia. International Journal of 

Disaster Risk Reduction. Elsevier Ltd. 

 

Lin, C. H., Lai, K. H., Chen, Z. Bin, & Chen, J. Y. (2014). Patch-

based information reconstruction of cloud-contaminated 

multitemporal images. IEEE Transactions on Geoscience and 

Remote Sensing, 52(1), 163–174. 

 

Lorenzi, L., Melgani, F., & Mercier, G. (2011). Inpainting 

Strategies for Reconstruction of Missing Data in VHR Images. 

IEEE Geoscience and Remote Sensing Letters, 8(5), 914–918. 

 

Lymburner, L. (2010). Removing cloud from moderate 

resolution imagery NEO cloud removal methodology, (Landsat 

Data Products Workshop II), https://landsat.usgs.gov/november- 

1-3-2010 (2010). 

 

Min Li, Soo Chin Liew, & Leong Keong Kwoh. (2003). 

Producing cloud free and cloud-shadow free mosaic from cloudy 

IKONOS images. In IGARSS 2003. 2003 IEEE International 

Geoscience and Remote Sensing Symposium. Proceedings 

(IEEE Cat. No.03CH37477) (Vol. 6, pp. 3946–3948). IEEE. 

 

Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., & 

Lindquist, E. (2008). Multi-temporal MODIS–Landsat data 

fusion for relative radiometric normalization, gap filling, and 

prediction of Landsat data. Remote Sensing of Environment, 

112(6), 3112–3130. 

 

Scaioni, M., Barazzetti, L., & Gianinetto, M. (2018). Multi-

image robust alignment of medium-resolution satellite imagery. 

Remote Sensing, 10(12). 

 

Shen, Y., Wang, Y., Lv, H., & Qian, J. (2015). Removal of Thin 

Clouds in Landsat-8 OLI Data with Independent Component 

Analysis. Remote Sensing, 7(9), 11481–11500. 

 

Song, M., & Civco, D. L. (2002). A Knowledge-based approach 

for reducing cloud and shadow. ASPRS-ACSM Annual 

Conference and FIG XXII Congress, 1–7. 

 

Sun, L., Latifovic, R., & Pouliot, D. (2017). Haze removal based 

on a fully automated and improved haze optimized 

transformation for landsat imagery over land. Remote Sensing, 

9(10). 

 

Tupas, M. E. A. (2015). Haze optimized transform on Landsat 8 

imagery for thin cloud detection and removal. Philippine 

Engineering Journal, 36(2), 69–86. 

 

Wang, Z., Jin, J., Liang, J., Yan, K., & Peng, Q. (2005). A new 

cloud removal algorithm for multi-spectral images. In L. Zhang, 

J. Zhang, & M. Liao (Eds.), Proceeding of SPIE (Vol. 6043, p. 

60430W). International Society for Optics and Photonics. 

 

Zhang, C., Li, W., & Travis, D. J. (2009). Restoration of clouded 

pixels in multispectral remotely sensed imagery with cokriging. 

International Journal of Remote Sensing, 30(9), 2173–2195. 

 

Zhang, Y., Guindon, B., & Cihlar, J. (2002). An image transform 

to characterize and compensate for spatial variations in thin 

cloud contamination of Landsat images. Remote Sensing of 

Environment, 82(2–3), 173–187. 

 

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and 

expansion of the Fmask algorithm: cloud, cloud shadow, and 

snow detection for Landsats 4–7, 8, and Sentinel 2 images. 

Remote Sensing of Environment, 159, 269–277. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-293-2020 | © Authors 2020. CC BY 4.0 License.

 
300




