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ABSTRACT: 

Several maps of wetland areas in central New Brunswick, Canada, were produced by applying the Random Forests classifier to different 

combinations of optical Landsat-5 TM images, dual-polarized (HH, HV) Radarsat-2 C-band and Alos-1 PalSAR L-band Synthetic 

Aperture Radar (SAR) images and digital elevation data. The resulting maps were compared to 199 GPS wetland sites that were visited 

between 2012 and 2018 as well as to a combination of two wetland maps currently used by the Province of New Brunswick. The 

number of correctly identified GPS wetland sites was the highest when both the Alos-PalSAR and Radarsat-2 images are used (97.9%). 

This percentage of correctly identified sites were well above the accuracy of the official New Brunswick wetland maps (44.7 %). With 

the best-classified image, the misidentifications were due to wetlands not being classified in the right wetland class, and just one case 

was a wetland site being classified in a non-wetland class. For the NB wetland map, about a quarter of the wetland validation sites 

were classified in a non-wetland class, and about the same number of sites were classified in the wrong wetland class. 

 

 

1. INTRODUCTION 

Wetlands are important ecosystems that perform a variety of 

services that are beneficial to society and the environment. They 

are crucial for groundwater recharge, flood control, water quality 

improvement, and mitigation of erosion (Li, Chen, 2005). 

Understanding the distribution and dynamics of wetlands is 

essential for understanding ecosystem diversity and function and 

how human practices and global changes impact it. There is 

increasing global importance of wetlands, as there has been an 

extensive wetland loss in the last half-century due to 

anthropogenic pressures for land-use changes and development 

(Henderson, Lewis, 2008). A detailed and accurate wetland 

inventory would be a useful tool to protect them (Reimer, 2009).  

 

Developing a mapping method to extract information about 

wetland areas from satellite imagery is essential for mapping 

large scale regions such as the Province of New Brunswick 

(Canada). Satellite remote sensing has several advantages over 

other methods for large area mapping, such as aerial photograph 

interpretation and ground surveys, as they provide multi-

temporal data with large footprints and moderate resolution. 

Most satellite images are readily available from multiple dates, 

allowing multi-seasonal analysis, which improves mapping 

accuracy and is more cost-effective than other mapping methods 

(Li, Chen, 2005). Satellite images provide a practical approach to 

mapping wetlands in New Brunswick, given the remoteness of 

some parts of the province. Optical images like those acquired by 

Landsat, SPOT or Sentinel-2 satellites were already tested for 

mapping wetlands (e.g., Amani et al. 2017). However, accuracy 

was quite low. Optical imagery has the additional inconvenience 

of having an availability, which is limited to clear sky conditions.  

 

By contrast, Synthetic Aperture Radar (SAR) images are of 

longer wavelengths (cm-scale vs. nm-scale), which penetrate 

clouds and, therefore, can be acquired whatever the weather 

conditions. SAR imagery has long been known as suitable for 

wetland mapping because radar waves can more easily penetrate 

the vegetation canopy for the detection of flooded areas and are 

sensitive to moisture conditions (Brisco et al., 2011; 2013b; 

White et al., 2014; Mahdianpari et al., 2017). Both L- and C-band 

images were shown to be appropriate for wetland mapping. L-

band can penetrate the forest canopies and detect standing water 

(Henderson, Lewis, 2008). C-band data have also been useful in 

detecting standing water in the case of short vegetation (Li, Chen, 

2005; Henderson, Lewis, 2008), and in some forested wetlands 

with low-density canopies or leaf-off conditions (Townsend, 

2002). The best approach will be to combine both optical and 

SAR imagery. There are several studies on wetland mapping that 

use this approach (e.g., Li, Chen 2005; Bourgeau-Chavez et al. 

2009; 2015; 2016; Corcoran et al. 2012, 2013; LaRocque et al. 

2014, Amani et al. 2018; Jahncke et al. 2018; Mahdianpari et al. 

2020), but the accuracy achieved by these studies was rarely 

above 90%.  

 

In this study, a combination of optical Landsat5-TM images with 

Radarsat-2 C-band and/or the Alos-PalSAR L-band SAR dual-

polarized (HH, HV) images was tested for mapping wetlands in 

central New Brunswick, Canada. To take account of the local 

topography, a digital elevation model (DEM) was also used in 

the classification. The maps were produced using the Random 

Forests (RF) classifier applied to various image combinations. 

By contrast to the standard supervised maximum likelihood 

classifier (MLC), RF is a supervised non-parametric classifier 

that does not require normal data distribution (Breiman, 2001). 

Also, compared to the classical MLC, RF was showed to 

outperform in several land cover studies (Pal, 2005; Gislason et 

al., 2006; Waske, Braun, 2009; LaRocque et al., 2014). For 

assessing the map accuracy, the resulting maps were compared 

to GPS field data as well as to a combination of two wetland maps 

used by the Province of New Brunswick.  
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2. MATERIALS AND METHODS 

2.1 Study area 

The Greater Fredericton area is in the heart of the Province of 

New Brunswick (Canada), lying between Lat 45° 40’ and 46° N 
and Long 66° 15’ and 66° 50’ W (Figure 1). This area 

(approximately 2,700 km2) is relatively easy to access and 

contains all the wetland classes that can be found in Eastern 

Canada, such as peatlands (which include bogs and fens), 

marshes, aquatic beds, shrub wetlands, and forested wetlands. 

The drainage network is dominated by the St. John River, with 

some major tributaries. As indicated by the 1:50,000 DEM 

(Figure 1), the elevation in the study area ranges from 1 m above 

mean sea level (AMSL) in the downstream portion of the St-John 

River to 225 m AMSL in the highlands of the western part of this 

region. The topography is rolling in most of this area, except in 

the lowest portion of the St. John River valley and the Grand Lake 

basin (east part of the study area) where the surface is mostly flat.  

 
Figure 1.  Location of the Greater Fredericton area in Central 

New Brunswick (Canada).  

 

Sixteen land cover classes were considered in this study; namely, 

(1) Urban dense, (2) Urban sparse, (3) Cultivated, (4) Pasture, 

(5) Grass, (6) Softwood forest, (7) Hardwood forest, (8) Mixed 

forest, (9) Scrub Shrub, (10) Bare land, (11) Peatland, (12) 

Marsh, (13) Shrub wetland, (14) Forested wetland, (15) Aquatic 

bed, and (16) Water. The non-wetland classes are defined 

according to land cover classification scheme from NOAA 

(2017), and the wetland classes are defined following the 

Canadian Wetland Classification System (National Wetland 

Working Group, 1997) and DNR (2006).  

 

2.2 Data 

Three types of satellite imagery were used in the classification 

(Table 1): (1) Landsat-5 Thematic Mapper (TM) optical imagery 

(pixel size of 30 m, and swath of 185 km); (2) Alos-1-PalSAR 

dual-polarization (HH and HV) L-band (23.62 cm wavelength) 

SAR imagery (pixel spacing of 12.5 m, nominal resolution of 20 

m, and swath of 70 km); and (3) Radarsat-2 SGF Standard dual-

polarization (HH and HV) C-band (5.54 cm wavelength) SAR 

imagery (pixel spacing of 12.5 m, nominal resolution of 25 m, 

and swath of 100 km). Images used in this study were acquired 

during high-water levels (May to early June) and low-water 

levels in the wetlands (Mid-August to Mid-September) (Table 1). 

All images were collected during ice-free and snow-free periods, 

and the soil was completely unfrozen. 

 

Two georeferenced Landsat-5 TM level 1 GeoTiff images (with 

less than 0.1% cloud cover) were obtained from the USGS 

Landsat archive (glovis.usgs.gov). The six optical bands of 

Landsat-5 TM were used in the classification. The wavelengths 

of these bands are as follows: TM1 (0.45-0.52 µm, blue), TM2 

(0.52-0.60 µm, green), TM3 (0.63-0.69 µm, red), TM4 (0.76-

0.90 µm, near-infrared), TM5 (1.55-1.75 µm, short-wave 

infrared), and TM7 (2.08-2.35 µm, short-wave infrared).  

 

Six Alos-1 PalSAR L-band dual-polarized images were acquired 

during three different dates (Table 1), with an incident angle at 

about 38°, from an ascending orbit looking east. For each date of 

acquisition. Three Radarsat-2 dual-polarized images were also 

acquired (Table 1) with a Standard beam mode (S6), and an 

ascending (A) or descending (D) orbit. The S6 beam mode 

corresponds to incident angles ranging from 41° to 46°. The 

images were acquired with an ascending east-looking orbit and 

with a descending west- looking orbit. The ascending orbit occurs 

during the evening hours and the descending orbit during the 

early morning. Both types of SAR imagery were acquired under 

different moisture conditions, as shown by the precipitation data 

recorded at the Fredericton Airport weather station (Table 1). 

Satellite 
Acquisition 

Date 

Local 

Time 

Precipitations 

[mm] 1 

Wetland 

Water Level 

Landsat-5 

TM 

01/09/2010 11h03 0.0 low 

31/05/2011 11h02 2.6 high 

Radarsat-2 

06/05/2008 19h25 2.0 flooding 

04/06/2010 7h28 62.2 high 

08/09/2010 7h28 15.6 low 

Alos-1 

PalSAR 

04/05/2008 23h45 0.6 flooding 

10/05/2010 23h49 12.8 high 

10/08/2010 23h48 27.2 low 

1 Millimetres of rain equivalent recorded at the Fredericton Airport 

weather station during three days before image acquisition.  
Table 1.  List of the imagery used for this study 

 

Ancillary data included a 1:50,000 DEM that was used to terrain 

correct and to georeference the SAR images and to consider the 

topographic effects in the image classification. This DEM was 

obtained from Natural Resources Canada’s website 
(http://ftp.maps.canada.ca/pub/nrcan_rncan/elevation/cdem_mn

ec/). Ground elevations are recorded in meter relative to Mean 

Sea Level (MSL), based on the North American Datum 1983 

(NAD83) horizontal reference datum. 

 

Finally, the wetland map extracted from the classified image was 

compared to the wetland map derived from the combination of 

two maps currently in use by the Province of New Brunswick: 

(1) the wetland map from the Department of Environment, and 

(2) the wetland classes in the forest map of the Department of 

Natural Resources. Both maps were downloaded in a shapefile 

format from the GeoNB website 

(www.snb.ca/geonb1/e/DC/catalogue-E.asp). The map produced 

from the combination of these two maps will be called hereafter 

“NB wetlands map”. The image-based maps and the NB wetland 

map were compared to GPS that were collected during summers 

between 2012 and 2018. 830 field sites that were spread 

throughout the study area were visited (Table 2). Less than half 

of these sites (340) were used to delineate training areas for the 

image classification. The remaining sites (490) were used as 

validation sites to assess the mapping accuracy of each classified 

image and the NB wetland map. These sites were selected 

according to various criteria, among them a relatively large extent 

(at least 10 pixels or 9000 m2) of the related land cover class.  
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Land cover class Training sites Validation sites Total 
Urban dense 21 28 49 

Urban sparse 20 31 51 

Cultivated 22 27 49 
Pasture and Hay 23 31 54 

Grassland 15 31 46 

Softwood forest 17 25 42 
Hardwood forest 13 27 40 

Mixed forest 14 27 41 

Scrub shrub 25 35 60 
Bare land 23 29 52 

Peatland 21 24 45 

Marsh 21 29 50 
Shrub wetland 20 30 50 

Forested wetland 37 59 96 

Aquatic Bed 28 34 62 
Water 20 23 43 

Total 340 490 830 

Table 2.  Number of sites per land cover class used for the image 

classification (training sites) and the accuracy 

assessment of each classified image (validation sites). 

 

Among all the visited sites, 346 sites (147 training sites and 199 

validation sites) were considered as a wetland site, according to 

Tiner (1999)’s criteria: the water table was close to (less than 10 

cm) or at the surface, or we found indicator plants, soil 

hydromorphy, or other evidence of an area that is very often 

saturated with water. Most of the wetland sites were found by 

interpretation of aerial photographs, and some of them were 

previously mapped as a wetland on the NB wetlands map. On 

each field site, GPS location, elevation, class identification, and 

ground photographs were recorded. 

 

2.3 Image processing 

Most of the image processing was performed in PCI Geomatica® 

(PCI Geomatics, 2018). The DEM tiles were first imported and 

checked for holes, where holes were filled using interpolated 

values and then mosaicked together using the PCI OrthoEngine® 

module of PCI Geomatica®. The digital numbers of the Landsat-

5 TM images were first converted into top of atmosphere (TOA) 

reflectance values using the equations of Chander et al. (2009). 

Such a conversion also removes some of the atmospheric 

interference. 

 

The Radarsat-2 dual-polarized (HH/HV) images were filtered for 

removing speckle, using a Gaussian filter developed by Eric 

Grunsky (Geological Survey of Canada, Ottawa), as in LaRocque 

et al. (2012). Speckle can be considered as noise, and its intensity 

must be attenuated to enhance fine details on SAR images 

(Goodman, 1976). Each image was then orthorectified with the 

“Radarsat-2 Rational Function Model” in the PCI OrthoEngine® 

module of PCI Geomatica® using the DEM and ground control 

points (GCP’s). Between 100 and 200 GCP’s (depending on the 
image) were extracted from orthorectified Landsat-5 TM data 

(NAD83 – UTM, zone 19, row T) for geo-correction. On average, 

the orthorectification process achieved a root mean square error 

(RMSE) of less than 1 pixel in the x-direction and less than 1 

pixel in the y-direction. 

 

All the Alos-1 PalSAR images were imported, calibrated and 

orthorectified using the ASF MapReady® software (Alaska 

Satellite Facility Engineering Group, 2013). Each orthorectified 

image was then imported into PCI Geomatica® and filtered for 

speckle reduction, using a Gaussian filter, as for the Radarsat-2 

images. The filtered and orthorectified Alos-1 PalSAR images 

were then mosaicked together using the "Automatic Mosaicking" 

processing in PCI Geomatica OrthoEngine® that requires the use 

of the DEM. Radiometric differences between adjacent images 

were minimized using a tonal-balancing histogram-matching 

method that compares the histogram of the image to be inserted 

in the mosaic with the mosaic histogram for each polarization. 

 

Finally, all the datasets (Landsat-5 TM, Alos-1 PalSAR, 

Radarsat-2, and DEM) were re-projected to the New Brunswick 

Double Stereographic NAD83 (CanNBnad83) datum. All the 

input data were converted to the pixel spacing of 30 m of the 

Landsat5-TM imagery, allowing a direct superposition of all 

layers. 

 

2.4 Image classification  

Representative training areas of each of the sixteen land cover 

classes, based on 340 training sites (Table 2), were delineated 

over the orthorectified Landsat-5 TM. Training areas included at 

least ten sites per class for adequate class representation and were 

delineated within relatively large features, having exactly 10 

pixels each in size. The training areas were randomly drawn 

throughout the study area, but the number of training areas by 

class reflected the relative frequency of the different land cover 

classes in the study area.  

 

A non-parametric decision tree type classifier, Random Forests 

(RF), was applied to various combinations of DEM, Landsat-5 

TM images, HH and HV polarization SAR images either from 

Alos-1-PalSAR L-band and/or Radarsat-2 C-band. RF does not 

assume a normal distribution of the input data (Breiman, 2001), 

The algorithm used in this study is an adaptation of the code of 

Horning (2010) by the first author. We used as settings a forest 

of 500 independent decision trees with the default value for the 

mtry variable, which is the number of variables randomly 

sampled as candidates at each node split. The default value 

includes all input features, i.e., all pixels are randomly sampled 

as candidates at each node split. RF randomly selects two third 

of the training data (that are referred as “In Bag” data) to develop 

one decision tree. This tree is then validated using the remaining 

third of the training data referred to as “Out of Bag data”. The 

process is repeated for the 500 individual decision trees and 

produces 500 independent classifications. These independent 

classifications are then combined into the final classification 

(Waske, Braun 2009). When there are relatively limited training 

data for some classes, RF allows bootstrap aggregating of the “In 
Bag” data to increase the number of training pixels. RF is not 

sensitive to noise or over-classifying.  RF gives an estimate of the 

importance of each input image for the classification (Pal, 2005; 

Gislason et al., 2006; Waske, Braun, 2009) under the form of a 

"Mean Decrease Accuracy" plot. The higher the image is on the 

"Mean Decrease Accuracy" plot Y-axis, the more useful the 

image was in the classification (Strobl et al., 2008; Louppe et al., 

2013). 

 

2.5 Accuracy assessment 

Classification accuracy was assessed first by comparing training 

areas with the equivalent classified land use in the imagery. Such 

comparison was performed under the form of a “confusion” or 

“error matrix”, where each cell expresses the number of pixels 

classified with the class defined by the training areas. The 

confusion matrix also allows computing the overall accuracy and 

the Kappa coefficient. The overall accuracy is the average of 

individual User’s class accuracy, i.e., the probability that a pixel 

in the classified image belongs to the right class, weighted by the 

size of the class in the classified or reference image (Congalton, 

1991). Finally, the Kappa coefficient of Cohen (1968) is defined 

as a weighted measure of agreement between the number of well-

classified pixels, while a value close to 0% corresponds to poor 
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classification accuracy and a value closer to 100% indicates a 

good classification accuracy.   

 

The image classification accuracy only assesses the classified 

image accuracy, which is different than the field accuracy. A 

more robust accuracy assessment is to compare the resulting 

classified image with an independent set of field validation sites 

that have a GPS location. If the image returns the same class as 

the one observed at the validation sites, then the classified image 

is considered as correct, and the pixel related to this validation 

site is associated with a value of 1; otherwise, its value will be 

zero. A percentage of correct identification was then computed 

as a function of the total number of validation sites. Such a 

comparison was not made using a classical confusion matrix 

because we only use the validation sites for the wetland classes, 

and some misidentifications are due to confusion with non-

wetland classes. 

 

3. RESULTS 

3.1 Effect of wetland water level on the images 

The effect of the different water levels (high-water and low-water 

levels) in the wetlands is visible in the true-colour composite of 

the Landsat-5 TM images (Figure 2), as well as in the false-colour 

composites of the Radarsat-2 (Figure 3) and of the Alos-PalSAR 

images (Figure 4).  

 
Figure 2.  True-colour composite of the Landsat-5 TM image 

acquired (a) during a high-water level, and (b) during a 

low-water level. Each composite is made as follows: 

TM3 in red, TM2 in green, and TM1 in blue. 

 

 
Figure 3.  False-colour composite of the Radarsat-2 dual-

polarized C-HH and C-HV images acquired (a) during 

a high-water level, and (b) during a low-water level. 

Each composite is made as follows: HH in red, HV in 

green, and HH in blue. 

 

 
Figure 4. False-colour composite of Alos-1 PalSAR L-HH and 

L-HV mosaics acquired (a) during a high-water level, 

and (b) during a low-water level. Each composite is 

made as follows: HH in red, HV in green, and HH in 

blue. 

Also, during the flood event, forested wetlands appear 

distinctively bright (light green) on both SAR images (Figure 5), 

as the interaction between the water and the trees produce a 

double-bounce scattering resulting to a bright return. In the case 

of the Landsat5-TM, no usable image acquired during a flood 

event was available because of the presence of an intermediate to 

high cloud cover during this event. 

 

 
Figure 5. False-colour composite of the SAR images acquired 

during a flood event (a) Radarsat-2 dual-polarized C-

HH and C-HV image, and (b) Alos-1 PalSAR dual-

polarized L-HH and L-HV image. Each composite is 

made as follows: HH in red, HV in green, and HH in 

blue. 

 

3.2 Image classification 

The overall accuracy and the Kappa coefficient are compared for 

the various image combinations of optical and both SAR images 

(Table 3). This table shows that, whatever the combination, the 

image classification accuracies are very often better when the 

images acquired during a flooding event are added to the image 

combination. The highest classification overall accuracy is 

achieved by using either the Landsat-5 TM and DEM data 

(94.9%) or when both Radarsat-2 and/or Alos-1 PalSAR dual-

polarized SAR images are added to the classification (94.3%).  

Data combination 1 
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TM + DEM X X  94.9 94.6 

TM + AP1 X X  86.3 85.2 

TM + AP1 X X X 87.5 86.6 
TM + RS2 X X  88.2 87.4 

TM + RS2 X X X 90.6 89.9 

TM + AP1 + DEM X X  91.1 90.5 
TM + AP1 + DEM X X X 91.0 90.3 

TM + RS2 + DEM X X  92.8 92.3 

TM + RS2 + DEM X X X 93.7 93.2 
TM + RS2 + AP1 + DEM X X  92.8 92.2 

TM + RS2 + AP1 + DEM X X X 94.3 93.9 

1 TM: Landsat-5 TM; RS2: Radarsat-2; AP1: Also-1 PalSAR; DEM: 

Digital Elevation Model. 

Table 3. Classification accuracies (%) as a function of the image 

combination 

 

In RF, the importance of each input data in the classification 

using all the dataset is ranked on the “Mean Decrease Accuracy” 
plot (Figure 6). It shows that the DEM is the most important input 

data in the image classification. The middle infrared (TM5) and 

the near-infrared (TM4) bands of Landsat-5 TM come in second 

place, the optical images acquired during low-water-levels being 

more important than the ones taken during high-water levels. The 

Radarsat-2 C-band images are in the top ten of the most effective 

input datasets. The other optical Landsat-5 TM bands and the 

Alos-1 PalSAR L-band images have lower importance in the 

image classification. However, SAR images acquired during a 
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flooding event are more important in the classification than the 

other SAR images. 

 

The classified images produced with the data combination having 

the two best classification accuracies are presented in Figure 7 

and Figure 8. While both classifications have similar overall 

accuracies, using only the Landsat-5 TM and DEM data produces 

an image where there is an apparent large extent of the forested 

wetlands across the study area (Figure 7).  

 
Figure 6.  Variable importance produced by the Random Forests 

classifier applied to the full dataset of Landsat-5 TM, 

Alos-1 PalSAR, and Radarsat-2 images, and DEM.  

 

 
Figure 7. Classified image produced with the combination of 

Landsat-5 TM and DEM.  

 

By contrast, the image produced with the addition of both SAR 

image types shows a less extent for the forested wetland (Figure 

8). Therefore, the overall classification accuracy is not a good 

indicator of the accuracy, and it is the need to validate the 

classification using data acquired over GPS sites that were not 

used in the classification. 

 

 
Figure 8. Classified image produced with the full combination of 

Landsat-5 TM, Alos-1 PalSAR, and Radarsat-2, and 

DEM.  

 

3.3 Validation accuracies 

Analyzing the performance of each image combination based 

solely on the image classification accuracies is not enough, and 

it is necessary to compare the classified images with independent 

validation data sets. This validation accuracy should come from 

the comparison between the classified image and independent 

sites identified on the base of field observations.  

 

Out of the 199 wetland sites, only 74.1% were correctly identified 

from the Landsat-5 TM and the DEM classified image (Table 5). 

Adding SAR images in the classification, the number of correctly 

identified wetland validation sites is higher, particularly when the 

image acquired during a flooding event is also considered, the 

difference being higher when the Alos-1 PalSAR images are used 

alone or in combination with the Radarsat-2 images. The number 

of correctly identified sites is the highest when all the dataset is 

used (195 sites or 97.9%). When only one type of SAR images is 

used, the number of correctly identified sites is higher with Alos-

1 PalSAR (180 sites or 90.5%) than with the Radarsat-2 images 

(176 sites of 88.2%). In all cases, these percentages of correctly 

identified wetland sites are well above the 89 correctly identified 

sites wetland sites (44.7%) using the NB wetlands map coming 

from the two maps produced by the Province of New Brunswick.  

Input Data 1 

With 

flood 

event 

Correctly 

identified 

Poorly 

identified 

  N % N % 
TM & DEM  147 74.1 52 25.9 
TM + AP1 + DEM  170 85.3 29 14.7 

TM + AP1 + DEM X 180 90.5 19 9.5 

TM + RS2 + DEM  173 86.9 26 13.1 
TM + RS2 + DEM X 176 88.2 23 11.8 

TM + AP1 + RS2 + DEM  185 93.0 14 7.0 

TM + AP1 + RS2 + DEM X 195 97.9 4 2.1 
NB wetlands map  89 44.7 110 55.3 

1 TM: Landsat-5 TM; RS2: Radarsat-2; AP1: Also-1 PalSAR; DEM: 

Digital Elevation Model. 
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Table 5.  Overall statistics about the correct identification of the 

199 wetland validation sites on the classified images, 

related with each image combination, or on the NB 

wetlands map 

 

When either Radarsat-2 and/or Alos-1 PalSAR data are used in 

the image classification, most of the misidentifications are related 

to wetland sites not being classified in the correct wetland class, 

and very few are wetland sites being classified into a non-wetland 

class (Table 6). 

 

Input Data 1 With 

flood 

event 

Non-

wetland 

class 

Wrong 

wetland class 

Total 

  N % N % N 

TM + DEM  12 5.8 40 20.1 52 

TM + AP1 + 

DEM 

 8 4.1 20 10.3 29 

TM + AP1 + 

DEM 

X 2 1.2 17 8.5 19 

TM + RS2 + 

DEM 

 8 4.1 18 8.9 26 

TM + RS2 + 

DEM 

X 7 3.8 16 8.0 23 

TM + AP1 + 

RS2 + DEM 

 9 4.7 4 2.1 14 

TM + AP1 + 

RS2 + DEM 

X 1 0.6 3 1.5 4 

NB wetlands 

map 2 

 56 28,2 54 27,1 110 

1 TM: Landsat-5 TM; RS2: Radarsat-2; AP1: Also-1 PalSAR; DEM: 

Digital Elevation Model. 
2 When observation sites do not belong to any class in the NB wetlands 

map, they are recorded as belonging to the “non-wetland” class 

Table 6. Distribution of the poorly identified wetland validation 

sites as a function of the source of error 

 

When all the dataset is used, only four sites are poorly identified. 

Three sites are not in the proper wetland class, and the last one is 

mapped as a non-wetland class. Their rather small width 

characterizes these four sites, close the spatial dimension of one 

pixel. For the NB wetlands map, about half of the 100 poorly 

identified sites are associated with wetland validation sites not 

being mapped as a wetland, the remaining half being sites that 

are not classified in the right wetland class. 

 

4. DISCUSSION 

In the present study, the RF classifier was applied to multi-

temporal SAR and optical images combined with DEM data. Our 

study also showed that combining optical, C-band and/ or L-band 

SAR, and DEM data strongly improved the wetland mapping 

accuracies, particularly when using validation sites. The benefit 

to use images from multi-sensors for wetland mapping was 

already shown by Li and Chen (2005), Bourgeau-Chavez et al. 

(2009; 2015; 2016), Corcoran et al. (2012, 2013), LaRocque et 

al. (2014), Amani et al. (2018), Jahncke et al. (2018) and 

Mahdianpari et al. (2020). SAR and optical images are 

complementary. SAR has a unique ability to detect surface 

texture and provides information on scattering mechanisms that 

are related to surface roughness (and thus to the presence or 

absence of vegetation as well as to the vegetation type) and soil 

moisture content. Optical images, such as Landsat-5 TM, allow 

acquiring information on the reflective properties that are related 

to the presence or absence of vegetation, the vegetation type, and 

the surface moisture content if the canopy is sparse enough.  

 

The variable importance plot (Figure 6) shows that the DEM is 

the most important input data in the classification. A similar 

result was obtained by Jahncke et al. (2018). It can be explained 

by the fact that wetlands are usually found in lowlands. The 

second and third most important input variables are the Landsat-

5 TM shortwave-infrared (TM5) and near-infrared (TM4) 

images. Harris et al. (2006) and Meingast et al. (2014) already 

showed that these bands are suitable for mapping wetlands, 

particularly those with low vegetation. However, both SAR 

images are less important in the classification than the Landsat-5 

TM-4 and TM-5 bands. Finally, the Alos-1 PalSAR bands are 

less important in the classification than the Radarsat-2 images. 

The highest validation accuracy is achieved for all the wetland 

classes when both C-band and L-band images are used (Table 5). 

If only one of the two types of SAR images is used in the dataset, 

the number of well-identified GPS wetland validation sites is 

higher when the Alos-1 PalSAR L-band images are included in 

the image combination. Both SAR-type images used in the study 

have HH and HV polarizations. Figure 6 indicates that the cross-

polarization (HV) is more important than the HH polarization for 

the Radarsat-2 C-band images, but not for the Alos-1 PalSAR L-

band images. Therefore, the volume scattering, as measured by 

the HV polarization, seems to be more critical for the wetland 

mapping with the C-band. The highest penetration of the L-band 

Alos-1 PalSAR image induces a double-bounce scattering from 

the wetland areas that can be captured by the HH polarization. 

Such double-bounce scattering makes wetlands very distinct on 

the images (Figures 4a and 5b). L-HH images were already found 

to be suitable for mapping forested wetlands (Hess et al., 1990; 

Whitcomb et al., 2009) and peatlands (Yamagata, Yasuoka, 

1993).  

 

Our study used not only a multi-sensor approach but also a multi-

temporal data approach, as the satellite imagery was acquired 

during three different periods of water level inside wetlands 

(high-water level, low-water level and flooding) as well as in two 

different seasons (spring and summer). Combining multi-

temporal and multi-sensor approaches have already been shown 

to produce highly accurate wetland maps (Bourgeau-Chavez et 

al., 2009; 2015; Corcoran et al., 2013). Such an approach allows 

capturing seasonal differences in vegetation and water level 

conditions, helping for better discrimination between different 

wetland types. Figure 6 also shows that the Landsat TM images 

acquired during low-water levels are more important than the 

ones acquired during high-water levels. This is probably because 

the information input in the classification from the optical images 

is more related to the vegetation status than to the water level in 

the wetlands. Whatever the SAR sensor, the SAR images 

acquired during the flooding event are more important than those 

acquired at another time, indicating that the presence of water in 

the wetlands as observed on the SAR images is critical for the 

classification.  

 

This study produced a classified image using multi-sensor and 

multi-temporal satellite images. By contrast to the NB wetlands 

map, all the classified images produced are in better agreement 

with the validation sites. The few misidentifications of the GPS 

wetland validation sites are mainly due to some wetland sites not 

being classified in the right wetland class, and there are very few 

confusions with the non-wetland classes. In the case of the NB 

wetlands map, there is a lot of misidentifications of the GPS 

wetland validation sites. These worst results are coming mostly 

from the interpretation of panchromatic air photos where wet 

areas are difficult to be detected. About half of the 

misidentifications are associated with sites mapped into a non-

wetland class, the remaining half being sites not classified in the 

right wetland class.  
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5. CONCLUSION 

This study showed that using a dataset including Radarsat-2 (C-

HH, C-HV), Alos-PalSAR (L-HH, L-HV) and Landsat-5 TM 

images acquired during different water levels in the wetlands, and 

a DEM improves the mapping of wetland areas in the Greater 

Fredericton area. This good result is confirmed by the evaluation 

of the classified images produced with the validation sites. The 

few misidentifications of the GPS wetland validation sites are 

mainly due to wetlands not being classified in the right wetland 

class. There are very few confusions with non-wetland classes.  

 

In this study, the selection of satellite images considers the 

hydrological conditions in the wetlands (high-water level, low-

water level, and flooding), and the leaf-on conditions. Corcoran 

et al. (2012) previously showed that leaf-on/leaf-off conditions 

could influence the mapping accuracy of wetlands. Further work 

is needed with images acquired on leaf-off conditions, but the 

good accuracies obtained in this study may indicate that there 

would be perhaps not the need to add such images.  

 

This study was limited to SAR images acquired using large 

incident angles (38° for the Alos-1 PalSAR and between 41° and 

46° for the Radarsat-2 S6 images). Further work should be done 

by testing steeper incident angles since these angles allow better 

penetration of the wetland vegetation to detect flood conditions 

because of the shorter path-length, as already shown in Sokol et 

al. (2004). Also, using multi-beam mode images has been shown 

to provide better classification results than single beam modes 

(LaRocque et al., 2012; 2014). In this study, SAR images were 

also limited to two polarizations (HH and HV). Both Radarsat-2 

and Alos-1 PalSAR polarimetric images are available that allow 

advanced polarimetric analysis, including target decomposition 

techniques, to better model the various scattering mechanisms. 

Several studies already showed that polarimetric variables could 

be helpful for wetland mapping (Touzi et al., 2007; Corcoran et 

al., 2013; Brisco et al., 2013).  

 

The availability of the new Sentinel-1 C-band SAR satellite and 

the Sentinel-2 optical satellite should facilitate the mapping of 

land cover and wetlands, thanks to their better spatial resolution. 

Such data can be useful to produce a map for the wetland 

inventory for a large country like Canada, as suggested by 

Mahdianpari et al. (2020). Nevertheless, such mapping needs to 

consider also the non-wetland classes as well as wetlands can be 

different from one region to another, as well as the comparison 

between resulting the classified image with validation sites.  
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