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ABSTRACT: 

 

Real-time change detection and analysis of natural disasters is of great importance to emergency response and disaster rescue. Recently, 

a number of video satellites that can record the whole process of natural disasters have been launched. These satellites capture high 

resolution video image sequences and provide researchers with a large number of image frames, which allows for the implementation 

of a rapid disaster procedure change detection approach based on deep learning. In this paper, pixel change in image sequences is 

estimated by optical flow based on FlowNet 2.0 for quick change detection in natural disasters. Experiments are carried out by using 

image frames from Digital Globe WorldView in Indonesia Earthquake took place on Sept. 28, 2018. In order to test the efficiency of 

FlowNet 2.0 on natural disaster dataset, 7 state-of-the-art optical flow estimation methods are compared. The experimental results 

show that FlowNet 2.0 is not only robust to large displacements but small displacements in natural disaster dataset. Two evaluation 

indicators: Root Mean Square Error (RMSE) and Mean Value are used to record the accuracy.  For estimation error of RMSE, FlowNet 

2.0 achieves 0.30 and 0.11 pixels in horizontal and vertical direction, respectively. The error in horizontal error is similar to other 

algorithms but the value in vertical direction is significantly lower than them. And the Mean Value are 1.50 and 0.09 pixels in horizontal 

and vertical direction, which are most close to the ground truth comparing to other algorithms. Combining the superiority of computing 

time, the paper proves that only the approach based on FlowNet 2.0 is able to achieve real-time change detection with higher accuracy 

in the case of natural disasters.  

 

 

1. INTRODUCTION 

Rapid detection and visualization of change in natural disaster 

regions are vital for swift response to rescue and relief. As one of 

the key technologies in disaster evaluation, change detection 

refers to identifying the set of pixels that are significant and 

possibly subtle changes between the image sequences 

(Fernàndez-Prieto et al., 2011). The basic principle of change 

detection methods takes multi-temporal images as input and 

outputs a binary image B, where a set of different pixels x 

between the pre- and post-image of the sequence would be valued 

according to the following generic rule: If there is a distinct 

change at pixel x in the last sequence, B(x) could be assigned a 

value of 1, otherwise, it is 0. 

 

Change detection can be divided into two categories: appearance 

detection and motion detection. Appearance change includes 

newly built objects and destroyed objects, while motion change 

detection means that the appearance of the object remains the 

same but the position of the object has been changed. In general, 

changes happen continuously and gradually, therefore motion 

change can lead to appearance change owing to the different time 

intervals. 

 

According to our literature review, most change detection studies 

focus on appearance change (Hussain et al., 2013; Jin et al., 2013; 

Tomowski et al., 2010). Because the time difference between two 

satellite images is usually quite long and the appearance of 

objects has been greatly altered in that period of time. Due to the 

development of video satellites and small satellites constellation 
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technologies, the temporal resolution of remote sensing images 

have been greatly increased, which enables the record of whole 

change process during natural disasters (Toth et al., 2016) and 

allows us to do motion detection in these cases. Thus, it has 

brought a great challenge to traditional appearance change 

detection methods. 

 

In this paper, the optical flow estimation method based on 

FlowNet 2.0, an end-to-end algorithm based on deep learning 

will be introduced to do motion change detection based on video 

data. The pixels’ changes in image sequences are extracted by 

optical flow estimation methods from frame to frame and then a 

change map can be generated. Specially, this paper will focus on 

two key issues: 

 

 How to implement deep learning based optical flow 

estimation for disaster change detection from high 

resolution video satellite sequence data? 

 

 Can deep learning based optical flow estimation 

achieve the efficiency and accuracy for quick response in 

natural disasters? 

 

2. RELATED WORK  

Various motion detection methods have been studied for several 

years, whose main purpose is to divide the changed object from 

unchanged part and then track the movement. The most famous 
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methods can be classified into background subtraction and 

optical flow estimation methods. 

 

Background subtraction is a widely used real-time method for 

moving object detection, which generally builds an appropriate 

model for a reference background based on pixel distribution by 

averaging frames over time and then compare the model with 

objects in the current frame to detect the differences (Sun et al., 

2006), that is to say these techniques separate the image into 

background (unchanged parts) and foreground (changed parts) 

and then segment the changed ones. Based on this idea, many 

adaptive background model methods have been proposed with 

segmentation strategies, for example, using MOG 

(Mixture of Gaussians) to construct the model, applying a linear 

predictive model in the buffer, non-parametric model, 

eigenvectors combining with PCA (Principal Component 

Analysis) and the universal ViBe (Visual Background Extractor) 

collecting background samples to process the background 

subtraction (Barnich and Van Droogenbroeck, 2010; Stauffer and 

Grimson, 1999; Toyama et al., 1999). These methods are simple 

and easy to realize, also do not require previous knowledge of 

moving objects such as land cover types or movements (Prajapati 

and Galiyawala, 2015). However, they are sensitive to the change 

of the so-called background so that they are difficult to 

discriminate changed objects from backgrounds being 

significantly changes. But this is most frequent in natural disaster 

scenes (Suresh et al., 2014). Therefore, it is difficult to put this 

kind of methods to use in our research. 

 

Optical flow, which represents change of the pixels’ 

displacement vectors between image frames, is the most widely 

used in motion estimation. The optical flow can be regarded as 

instant velocity of each pixel on imaging plane and then obtain 

approximately motion field which is unable to directly get from 

image sequences. Horn and Schunck (1981) have introduced the 

optical constraint equation based on the combination of velocity 

field and grey to build a basic algorithm of optical flow 

estimation(Horn and Schunck, 1981). For nearly 40 years of 

research, optical flow estimation methods have obtained 

improvements in reliability and accuracy based on the original 

Horn and Schunck (HS) formulation(Sun et al., 2010). Thus, it 

has been widely used in various areas such as, gait recognition 

(Lam et al., 2011), visualization of 3D cell migration (Kappe et 

al., 2015), reconstruction of dynamic objects in medical images 

(Ruymbeek et al., 2020).  

 

Given that optical flow estimation methods have great 

advantages in continuous changing background, this paper have 

a try to adopt optical flow estimation based on deep learning to 

detect the motion change in natural disasters. 

 

3. OPTICAL FLOW ESTIMATION FOR CHANGE 

DETECTION  

Optical flow estimation, which regards the change in multiple 

remote sensing images of the same scene taken at different times 

as a movement, utilizes a new correlation to describe the ground 

feature change and allows to achieve both the efficiency and 

accuracy in critical situations (Wan et al., 2018; Ye et al., 2016). 

 

3.1  Optical Flow Estimation 

The optical flow estimates the displacement of every pixel in a 

sequence of images or from a video frame to another and the most 

common method is Horn Schunck (HS) (Horn and Schunck, 

1981).  The computation of the displacement in X and Y direction 

is as Figure 1 showed. 

 

Figure 1. The illustration of the displacement’s computation 

 

To compute the optical flow, the following optical flow 

constraint must be solved as equation (1) showed: 

 

𝐼𝑥𝑢 + 𝐼𝑦𝑣 + 𝐼𝑡 = 0                          (1) 

 
where Ix, Iy and It are the spatial-temporal image brightness 

derivatives and u and v are the horizontal and vertical optical 

flow to be estimated, respectively. For HS, the optical flow is 

assumed to be smooth over the entire images. The method 

minimizes the equation (2) to compute an estimate of the velocity 

field [u, v]T. 
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where 
𝜕𝑢

𝜕𝑥
  and 

𝜕𝑢

𝜕𝑦 
 are the spatial derivatives of the optical 

velocity component, u and 𝛼 scales the global smoothness term. 

HS method further minimizes equation (2) to compute the 

velocity field [u, v], as follows: 
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In these equations, [𝑢𝑥,𝑦  

𝑘  𝑣𝑥,𝑦
𝑘 ] is the velocity estimate for the 

pixel at (x, y), and [�̅�𝑥,𝑦
𝑘  �̅�𝑥,𝑦

𝑘 ] is the neighborhood average of 

[𝑢𝑥,𝑦  
𝑘  𝑣𝑥,𝑦

𝑘 ]. For k=0, the initial velocity is 0. When achieving the 

estimated optical flow filed, the next step is the visualization 

using the color coding by Butler et al. (Butler et al., 2012). In this 

rule, hue is for the direction of the motion vector, the intensity of 

colors mean the magnitude grades of the displacement vector and 

white corresponds to no motion. 

 

The majority of state-of-the-art methods are derived from the 

original formulation of HS. Sun et al have synthetically defined 

a series of baseline algorithm, named began with ‘Classic’, which 

methodically change the model and method with different 

techniques from the art  (Sun et al., 2014). These models include 

Classic+NL-Fast, Classic+NL, Classic+NL-Full, Classic++, 

Classic-C, Classic-L and it is worthwhile to mention that these 

classic optical flow estimation algorithms retain powerful 

competitive results on the Middlebury optical flow benchmark. 

 

3.2 FlowNet 2.0 based optical flow for change detection 

Booming deep neural network technology in recent years, 

established approaches have shown that optical flow estimation 

can be naturally regarded as a supervised learning problem and 

can be directly solved with a simple convolutional neural 
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networks (CNN). FlowNet is the first end-to-end optical flow 

estimation model with CNN in 2015 (Dosovitskiy et al., 2015). 

It uses an encoder-decorder architecture, where the encorder 

module, consisting of 9 convolutional layers and ReLU 

(Rectified Linear Unit) active function layer, computes abstract 

features from receptive fields of increasing size and the decorder 

module, including 4 deconvolutional layer and ReLU active 

function layer, reestablishes the original resolution via an 

expanding upconvolutional architecture. The whole network, 

resembling fully convolutional networks (FCN), is made up of 

convolutional and deconvolutional layer with additional 

crosslinks between these contracting and expanding networks 

rather than any fully connected layer. However, this first new 

idea is not unmatched by the fine-tuned existing methods like all 

new ideas, which greatly limits its widespread use. In the winter 

of 2016, the research team has modified and advanced the 

network, generating an enhanced version FlowNet 2.0, as shown 

in Figure 2 (Ilg et al., 2017).      

 

Figure 2. Schematic view of FlowNet 2.0 (Ilg et al., 2017)         

 

The key improvements of FlowNet 2.0 are made in the following 

areas: adding multiple dataset and a learning schedule of the 

training dataset order, stacking two networks for flow refinement, 

specified network for small displacement and fusion. These 

contributions play an important role in the close accuracy with 

state-of-the-art methods while running orders of magnitude faster 

and the new-born network has been marked as a milestone by 

using CNN for optical flow estimation (Hui et al., 2018; Sheng 

et al., 2019). 

 

For motion change detection during natural disasters, the input 

images for FlowNet 2.0 are video satellite image frames. If the 

area remains unchanged in some natural crisis, the pixel will have 

zero displacement, nevertheless, the corresponding pixels would 

hold none-zero values in the optical flow estimation results. Then, 

the displacement data from FlowNet 2.0 would be divided into 

changed and unchanged part based on Otsu (Khan and 

Communication, 2014; Vala et al., 2013). 

 

 

4. EXPERIMENTS AND RESULTS 

4.1  Data 

The study area is located in Petobo, Indonesia where a 7.5 

magnitude earthquake trigged a tsunami that killed 1600 people 

and destroyed more than 70,000 homes on Sept.28, 2018. Digital 

Globe’s WorldView captured these before and after satellite 

images and transformed into a video (Digital, 2018). The video 

gives a glimpse at the damage in the worst-hit area where soil 

liquefaction causes the ground to boil. 58 frames of the video 

have been extracted as the input image sequence for change 

detection and visualization. In the following sections, we will 

present the optical flow estimation result and change map taking 

two frames as an example. 

 

4.2 Flow field visualization 

In this section, the selected image frames are tested based on 

classic optical flow estimation methods and FlowNet 2.0. The 

requirement of using FlowNet 2.0 is the input image size must be 

an integer multiple of 64, thus a subset of 1920 x 1024 pixel are 

clipped (the original image size is 1920 x 1080 pixel). Afterwards, 

the optical flow of the image sequence can be generated by 

different optical flow estimation methods as shown in Figure 3. 

In order to demonstrate the detailed difference between the used 

optical flow estimation methods in Figure 3, one area, shown 

using a red box in Figure 3(a), is extracted and compared in 

Figure 4. From Figure 3 and 4, we can get that optical flow 

estimation results generated by most of the classic optical flow 

methods are not satisfactory. However, the result based on 

FlowNet 2.0 has a clear advantage in producing smooth flow 

fields with crisp motion boundaries and is enough robust to show 

motion blur, which can satisfy the goals of change detection. 

 

 

 

     

Input Frame 1 a. HS b. Classic+NL-Fast c. Classic+NL d. Classic+NL-Full 
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Input Frame 2 d. Classic++ e. Classic-C f. Classic-L g. FlowNet 2.0 

Figure 3. Initial flow fields from optical flow estimation methods on images from Digital Globe’s WorldView 

 

    

HS Classic+NL-Fast Classic+NL Classic+NL-Full 

    

Classic++ Classic-C Classic-L FlowNet 2.0 

Figure 4. Zoom-in areas of the initial optical flow fields based on the red box in Figure 3(a)  

 

4.3   Accuracy comparison 

To evaluate the accuracy of the optical flow estimation results, 

105 corresponding feature points 𝑖 have been manually selected 

as shown in Figure 5, and their image coordinates XY, X’Y’ are 

recorded to generate the ground truth data. The ground truth data 

U, V for displacements are generated by the difference of the 

corresponding points’ coordinate:    

     

𝑈𝑖 = 𝑋𝑖 − 𝑋𝑖
′                             (5) 

 

𝑉𝑖 = 𝑌𝑖 − 𝑌𝑖
′                              (6) 

 
U and V represent horizontal and vertical displacement of each 

feature point and the mean U and V of all feature points is 1.53 

and 0.05 pixel, respectively.   

 

 

a. Frame 1 

 

b. Frame 2 

Figure 5. Profiles of feature points on experimental images 

 

Meanwhile, different optical flow estimation results generated by 

7 state-of-the-art methods and FlowNet 2.0 are compared by 

using two indexes of RMSE and Mean Value and the results are 

shown in Table 1. A comparison of RMSE data in horizontal and 

vertical direction shows that RMSE values in vertical direction 

of all optical flow estimation methods are significantly lower 

than their counterparts along the horizontal direction, wherein the 

values are at least 0.1 lower than their horizontal counterparts. 

Along the horizontal direction, all the RMSE of the classic 

optical flow estimation methods have values of 0.29, while the 

FlowNet 2.0 method has a horizontal RMSE value of 0.30 and 

the basic HS method has a slightly higher horizontal RMSE value 

of 0.31. The vertical RMSE of the optical flow estimation 

methods have values that range from 0.11 to 0.18, where 

FlowNet 2.0 has the lowest value of 0.11 and the HS method has 
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the highest value of 0.18. Generally, the basic HS method has 

both the highest horizontal and vertical RMSE value, therefore it 

is the least accurate optical flow estimation method. Meanwhile, 

the FlowNet 2.0 method is just as accurate as, if not more 

accurate than, the classic optical flow estimation methods that are 

studied in this paper because it has the lowest vertical RMSE 

value and its horizontal RMSE value is similar to the values of 

the other classic optical flow estimation methods. The Mean 

Values of the 105 corresponding feature points are 1.50 and 0.05 

pixels in horizontal and vertical direction, respectively. From 

Table 1, the Mean Value calculated by FlowNet 2.0 is 

approximately similar to other optical estimation methods in 

horizontal direction, however, is the most close to the ground 

truth in vertical direction. The advantage of optical flow 

estimation results based on FlowNet 2.0 benefits from the 

introducing a subnetwork donated by FlowNet2-CSS-ft-sd 

specializing on small displacement or subpixel motions, which 

does not lose performance on large displacements at all. Thus 

FlowNet 2.0, for the natural disaster video data, can reach 

optimal performance on arbitrary displacements and can be 

compared to other state-of-the-art classic optical flow estimation 

algorithms. 

   

Method 
RMSE Mean Value 

X 

direction 

Y 

direction 

X 

direction 

Y 

direction 

HS 0.31 0.18 1.50 0.15 

Classic+NL-

Fast 
0.29 0.13 1.49 0.10 

Classic+NL 0.29 0.12 1.49 0.10 

Classic+NL-

Full 
0.29 0.12 1.49 0.10 

Classic++ 0.29 0.14 1.50 0.12 

Classic-C 0.29 0.12 1.49 0.10 

Classic-L 0.29 0.15 1.50 0.13 

FlowNet 2.0 0.30 0.11 1.50 0.09 

Table 1. The comparison of RMSE and Mean Value for 

different optical flow estimation methods (unit is pixel) 

 

4.4  Running time comparison 

Except for the accuracy, the time complexity is also important for 

real-time change detection of natural disasters. In the 

experiments, the mean operating time are recorded in Table 2, 

which shows that FlowNet 2.0 using CNN for optical flow 

estimation runs orders of magnitude faster than the other classic 

methods. Benefiting from the deep learning and GPU, FlowNet 

2.0 is the ideal optical flow estimation algorithm in this research.  

 

Method 
Average Running 

time(s/f) 

Operation 

environment 

HS 4052.63 

Intel Xeon(R) 

CPU E5-2407 

96G 

Classic+NL-Fast 4871.98 

Classic+NL 5852.56 

Classic+NL-Full 9565.48 

Classic++ 3608.74 

Classic-C 3765.46 

Classic-L 3356.96 

FlowNet 2.0 12.04 
TITAN X (Pascal) 

Mem 100G 

Table 2. Speed comparison for all methods 

 

4.5 Binary image 

Although the optical flow estimation result based on FlowNet 2.0 

is clear to distinguish the changed and unchanged area, we should 

finish the final result according to the basic rule of change 

detection.  Firstly, the actual displacement based on the 

displacements on horizontal and vertical direction from FlowNet 

2.0 can be calculated by the following equation: 

 

D = √𝑈2 + 𝑉2                                         (7) 
 

Then OTSU, a typical global threshold selection method, is used 

to evaluate the optimal threshold for dividing the changed and 

unchanged part. Afterwards, binarization processing of images is 

processed based on the rule, namely the changed part is valued 

by 1 and the other is given the value of 0 as showed in Figure 6. 

 

 

Figure 6. Image binarization for change detection 

 

5.  CONCLUSION 

In this paper, a deep learning based optical flow estimation 

method, FlowNet 2.0, is used for change detection in 2018 

Indonesia Earthquake using image sequence from Digital Globe 

WorldView. Comparison experiments are carried out using 

FlowNet 2.0 and the 7 typical optical flow estimation methods, 

wherein the results show that only FlowNet 2.0 can achieve 

change detection in real time while maintaining equivalent 

optical flow estimation accuracy. Based on the optical flow 

estimation results of all video sequence, it is possible to track the 

dynamic change of the whole crisis area or the motion of some 

critical buildings and further evaluate the anti-risk capability in 

certain natural disasters.  
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