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ABSTRACT: 

 

Characterizing the spatiotemporal dynamics of population exposure to fine particulate matter (PM2.5) and the underlying external 

forcing can provide proactive implication for public health precautions. In this study, satellite-derived surface-level PM2.5 

concentration as well as landscape factors and socioeconomic data are collected to identify the inter-annual variations and potential 

driving forces of population exposure to fine particulate matter (PM2.5) in Wuhan, China from 2000 to 2015. The fine-scale PM2.5 

exposures in 2000, 2005, 2010 and 2015 were first estimated. Then the contributions of landscape factors and socioeconomic forcing 

are quantified by a machine learning method (i.e. Random Forest). The results revealed that the population in Wuhan faced increasing 

and more clustering PM2.5 threats from 2000 to 2010. Then a weakened and dispersed health threat of PM2.5 was witnessed in 2015. 

In general, the Gross Domestic Product (GDP) contributed the most to high-level PM2.5 exposure in the period of 2000-2015, i.e. 

variable importance (VIM) equalled to xxx. Among all the biophysical and landscape characteristics, the percentage of urban landscape 

(PLAND_UA) and urban area fraction were attributed the most to the PM2.5 population exposure. In parallel, precipitation played a 

crucial part in the mitigation of PM2.5 exposure. The identification of inter-annual dynamics of population PM2.5 exposure and the 

underlying forcing can facilitate the decision making and epidemiological precautions in the evaluation and alleviation of population 

exposure risks. 

 

 

1. INTRODUCTION 

1.1 General Instructions 

With the unprecedented socioeconomic development, there are 

more serious air pollution has been witnessed in mainland China. 

In 2015, only 21.6% municipalities (73of 338) in China achieved 

the second-level ambient air quality, and most municipalities 

(78.4%) exposed to the worse ambient air quality (Cheng et al., 

2017). The primary air pollutants in China has been characterized 

as fine particulate matter (PM2.5, 66.8% of all the pollutants), 

particulate matter (PM10, 15.0%) and ozone (O3, 16.9%). 

 

PM2.5 (particle size less than 2.5μm in the aerodynamic diameter) 

has been explored to be associated with numerous adverse health 

outcomes, e.g. lung cancer (Guo et al., 2019), hypertension (Li et 

al., 2019), neonatal jaundice (Zhang et al., 2019a), pregnancy 

abortion (Zhang et al., 2019b) and even premature death (Cohen 

et al., 2017). In 2014, nearly all the population in China exposed 

to high-level PM2.5 concentration, which exceeded the World 

Health Organization (WHO) Air Quality PM2.5 Interim Target-

1 level (IT-1, annual mean of 35 mg/m3) (Fang et al., 2016; Ma 

et al., 2014; Song et al., 2019). Furthermore, the high level PM2.5 

concentration (15-35μg/m3) and potentially associated premature 

death (up to 1.2 million) has been witnessed in China (Peng et al., 

2016). With this in mind, it has become urgent to estimate 

population exposure to PM2.5 with the aim of ensuring the 

environmental sustainability in China by establishing responses 

to serious air pollution. 

 

Numerous epidemiological studies has been implemented to 

explore and establish associations between PM2.5 concentration 

and underlying health outcomes, especially with geographical 

focus on China. However, such studies are limited in China for 

the lack of spatially and temporally dense in-site PM2.5 

observations. There was no nationwide official in-site PM2.5 

observations prior to 2013 and only exists scattered sites 

established and operated by research groups. In this, the PM2.5 

population exposure was conventionally estimated by assigning 

the spatially sparse observations within neighbouring 

communities (kilometres to tens of kilometres) (Hu et al., 2014; 

Song et al., 2019). Such coarse estimation may cause 

underestimation or overestimation of health risks posed by 

PM2.5 concentration (Geng et al., 2015; He and Huang, 2018; 

Ma et al., 2014). A nationwide PM2.5 monitoring network has 

been established in China since 2013 to provide more spatially 

and temporally continuous PM2.5 measurements covering nearly 

all the municipalities. Nevertheless, even the spatial and temporal 

coverage of this point-observation network is incapable to 

provide regional PM2.5 concentration (Kloog et al., 2011; Li et 

al., 2017b). Therefore, more supporting measurements are 

needed to support the further investigation of PM2.5 

concentrations and underlying health risks (van Donkelaar et al., 

2016; van Donkelaar et al., 2006). 

 

Satellite remote sensing opens the door for the insights into 

spatially and temporally continuous surface-level PM2.5 

concentration. Satellite-derived aerosol optical depth (AOD), 

which measures aerosol caused scattering and absorption light 

extinction in the column, has been examined to empirically and 

physically related to surface-level PM2.5 concentration. The 
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estimation of surface-level PM2.5 concentration based on 

column AOD and point PM2.5 measurements are mainly 

achieved in two approaches: (1) the statistical models (Li et al., 

2017a; Li et al., 2017b; Yao et al., 2019) and (2) chemical 

transportation model (CTM) based methods (Geng et al., 2015; 

van Donkelaar et al., 2016). The statistical method can achieve 

simple but relatively accurate PM2.5 estimation by introducing 

spatially explicit model and advanced regression model. 

However, the statistical AOD-PM2.5 relationship relies on the 

emissions and meteorological factors, thus limiting the 

extendibility of statistical methods in other sites (Geng et al., 

2015; van Donkelaar et al., 2006). The CTM-based methods can 

provide spatial and temporal PM2.5 patterns considering 

AOD/PM2.5 ration and chemical components transformation and 

transportation. Nevertheless, the spatial scales of CTM-estimated 

PM2.5 patterns are usually coarse (He and Huang, 2018; van 

Donkelaar et al., 2006). To combine the merits of statistical and 

CTM-based methods, van Donkelaar et al. (2016) publish a 

global surface-level 0.01° × 0.01°  PM2.5 estimation datasets 

estimated by combining multi-source satellite AOD product 

(including MODIS, MISR and SeaWiFS) and GEOS-Chem 

model. 

 

Numerous studies have explored the associations between PM2.5 

concentration with natural and socioeconomic factors using 

spatially explicit models and machine learning methods. Yang et 

al. (2018b) quantified the impacts of climatic and socioeconomic 

factors on PM2.5 pollution in China using in-site PM2.5 

measurements. Yang et al. (2018a) established the association 

between fine-resolution  PM2.5 patterns and impact factors using 

random forest (RF). However, only a few attempts have been 

made to examine the underlying forcing of population PM2.5 

exposure. Thus, urban planning counter measures and 

epidemiological precautions can not be properly established to 

reduce health risks. Keeping this in mind, this study aimed to 

characterize the temporal dynamics of surface-level PM2.5 

concentration and identify the driving mechanisms and principle 

determinants in Wuhan, China, which may contribute to the 

PM2.5 pollution reduction and mitigation from a local 

perspective. 

2. MATERIALS AND METHODS 

2.1 Study case 

In this study, Wuhan, the economic and industrial center of 

central China, has been selected as the study case. Wuhan is 

famous for its convenient transportation and outstanding 

industrial achievements. In 2018, the Gross Domestic Product 

(GDP) of Wuhan was up to 1484.73 billion China Yuan (CNY), 

ranking the first in central China and 9th in mainland China. In 

parallel, Wuhan has experienced the sever air pollution in the last 

decade. In 2018, the air quality in Wuhan is "mediate" or "poor" 

on nearly a third of the days (116 days) of the year 

(http://sthjt.hubei.gov.cn/hjsj/). Up to December 2019, there are 

ten in-situ PM2.5 observations within Wuhan (Figure 1). The 

hourly PM2.5 observations are available at the China National 

Environmental Monitoring Centre (CNEMC) website 

(http://106.37.208.228:8082/). 

 

 

Figure 1. Study area and 10 in-situ PM2.5 observations 

 

2.2 PM2.5 dataset 

The annual mean PM2.5 patterns in Wuhan were collected from 

the public dataset of Global Annual PM2.5 Grids from MODIS, 

MISR and SeaWiFS Aerosol Optical Depth (AOD) with 

Geographically Weighted Regression (GWR), v1 (1998 – 2016) 

provided by the Socioeconomic Data and Applications Centre, 

National Aeronautics and Space Administration (NASA). In this 

datset, the AOD products from Moderate Resolution Imaging 

Spectroradiometer (MODIS, Multi-angle Imaging 

Spectroradiometer (MISR) and Sea Viewing Wide Field-of-

View Sensor (SeaWiFS) are combined with GOES-Chem model 

to establish the AOD-PM2.5 linkage, and GWR has been 

introduced to adjust the bias of satellite-derived PM2.5 

concentration using Aerosol Robotic Network (AERONET) 

measurements. This dataset is claimed to have an ideal accuracy 

and has been used in many PM2.5 related studies (Guo et al., 

2019; Peng et al., 2016; van Donkelaar et al., 2016). 

 

2.3 Population distribution 

In this study, 1km resolution LandScan population data was used 

to delineate the population distribution within Wuhan from 2000 

to 2015. The LandScan population data produced with census 

data and other multiple source spatial data 

(https://landscan.ornl.gov/documentation). 

 

2.4 Gross Domestic Product (GDP) 

The 1km gridded GDP data was collected from the website of 

Resource and Environment Data Cloud Platform 

(http://www.resdc.cn/Default.aspx). The gridded GDP was 

estimated based on the prefecture-level GDP census data and 

night-time light (NTL) as well as land cover maps (Liu et al., 

2005). 

2.5 Natural factors 

In this study, elevation characters (Digital Elevation Model, 

DEM), annual mean precipitation, annual mean land surface 

temperature (LST), as well as urban landscape composition and 

configuration metrics are adopted to investigate the impacts of 

natural forcing on PM2.5 exposure. 
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2.5.1 Digital Elevation Model: The 90-meter Shuttle Radar 

Topography Mission (SRTM) DEM product released by NASA 

was collected as the elevation independent variables of PM2.5 

concentration in 2000, 2005, 2010 and 2015. To be consistent 

with PM2.5 data, the 90-meter DEM was aggregated into 1-

kilometer resolution in ArcGIS 10.6 software platform. 

 

2.5.2 Precipitation: To obtain the annual mean precipitation 

in 2000-2015, the precipitation of more than 2400 meteorological 

station are annually averaged at first. Then the spine line 

interpolation in ANUSPLIN software was used to interpolate the 

point measurements into 1km resolution spatial continuous 

annual mean precipitation patterns. 

 

2.5.3 Land Surface Temperature: Daily Terra MODIS 

Collection 6 LST products (MOD11A1) was collected from 

Level-1 and Atmosphere Archive & Distribution System 

Distributed Active Archive Centre (LP DAAC), NASA. The 

poor quality LST observations and null pixels are first eliminated 

from the raw data according to the Quality Control (QC) flag, and 

the annual mean LST was derived from the screened LST 

products. 

 

2.6 Urban Landscape Composition and Configuration:  

To derive the urban landscape composition and configuration 

metrics, the 300-meter resolution land cover dataset provided by 

European Space Agency (ESA) Climate Change Initiative (CCI) 

was collected. The ESA CCI land cover (LC) maps were derived 

from Medium Resolution Imaging Spectrometer (MERIS) 

Surface Reflectance (SR) time series with the aid of multisource 

satellite imageries (including AVHRR, SPOT-VGT and 

PROBA-V). This dataset provides global maps describing the 

land surface into 22 classes, which have been defined using the 

United Nations Food and Agriculture Organization’s (UN FAO) 

Land Cover Classification System (LCCS). In this study, this 

dataset has been reclassified into three categories: urban areas, 

vegetation and water bodies. 

 

Category Meaning Landscape 

type 

Metric 

Composition Percent 

coverage of 

landscape-

PLAND 

Urban areas PLAND_UA 

Vegetation PLAND_VEG 

Water bodies PLAND_WB 

Configuration Aggregation 

and 

dispersion 

degree of 

landscape-

Aggregation 

Index (AI) 

Urban areas AI_UA 

Vegetation AI_VEG 

Water bodies AI_WB 

Density of 

landscape 

edges within 

a window-

Edge Density 

(ED) 

Urban areas ED_UA 

Vegetation ED_VEG 

Water bodies ED_WB 

Shape index 

of landscape-

Shape Index 

(SI) 

Urban areas SI_UA 

Vegetation SI_VEG 

Water bodies SI_WB 

Table 1. Landscape metrics used in this study 

 

In this study, 12 class-level landscape metrics have been 

calculated in the FRAGSTATS 4.2 software using moving-

window analysis with a window size of 1000m× 1000m 

(McGarigal et al., 2012). The details of landscape metrics are 

reported in Table 1. 

 

2.7 Population weighted PM2.5 exposure 

Since the surface-level PM2.5 concentration (He and Huang, 

2018; Kloog et al., 2011) and potential population exposure 

(Chen et al., 2018; Song et al., 2019) are both claimed to spatially 

and temporally varied, the population weighted PM2.5 exposure 

is believed to be more persuasive in representation of PM2.5 

caused health risks (Chen et al., 2018; Lin et al., 2016; Song et 

al., 2019). The population weighted PM2.5 concentration is 

calculated as (Aunan et al., 2018; Chen et al., 2018): 

  𝑃𝑀𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
𝑃𝑂𝑃𝑖×𝑃𝑀𝑖

∑ 𝑃𝑂𝑃𝑖
𝑁
𝑖=1

                    (1) 

where the 𝑃𝑂𝑃𝑖  is the population of a specific pixel 𝑖 , 𝑃𝑀𝑖 

indicates the surface-level of a pixel, N is the total number of 

pixels within Wuhan. 

 

2.8 Random Forest (RF) regression 

In this study, to explore the driving forces of PM2.5 population 

exposure in Wuhan, the RF regression has been adopted to 

quantify the impacts of external drives. As a robust and common-

used machine learning method, RF has been widely adopted in 

environment-related studies (Yang et al., 2019; Yang et al., 

2018a; Zhang et al., 2018). As an extension of the decision tree 

regression, the samples of each decision tree in the RF are 

obtained from the training set through the relocation sampling. 

To minimize the out-of-bag error (OOB Error), RF is capable to 

evaluate the importance of each variable in a specific regression 

using the increase of mean squared error (%IncMSE) as an 

quantitative measurement (Breiman, 2001). 

 

3. RESULTS AND DISCUSSION 

3.1 Validation of satellite PM2.5 data 

In this study, the precision of satellite-based PM2.5 estimation 

has been evaluated by 10 in-situ PM2.5 observation. The root 

mean square error (RMSE) is adopted as the accuracy 

measurement of PM2.5 estimation. The overall RMSE of PM2.5 

estimation in 2015 is 5.32μg/m3. Furthermore, in 2015, the 

absolute error has been calculated at every monitoring sites. 

 

 

Figure 2. The absolute error of satellite PM2.5 estimation at 

each site 
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As revealed in Figure 2, the satellite derived PM2.5 concentration 

data demonstrated higher accuracy in sub-urban areas (2.08μg/m3) 

than in urban areas (6.22μg/m3). In addition, along the south-

north direction, the absolute errors of PM2.5 estimation gradually 

increased. 

 

3.2 The inter-annual dynamics of PM2.5 exposure in 

Wuhan 

As shown in Figure 3, the areas high-level PM2.5 concentration 

in Wuhan significantly expanded from 2000 to 2015. The high-

level PM2.5 concentration area in Wuhan has been expanded 

from the urban center (downtown Hankou and downtown 

Wuchang) and two sub-centers (downtown Huangpi and 

downtown Yangluo) to the rural surroundings. From 2000 to 

2015, the PM2.5 concentration in Wuhan decreased gradually 

from the southwest corner to the northeast corner, especially in 

2015. In addition, according to Table 2, the data ranges (19.1, 

20.0, 24.3 and 21.3), minimums (31.4, 50.6, 51.9 and 45.8), 

standard deviation (3.06, 3.35, 3.57 and 3.19) and maximums 

(50.5, 70.6, 76.2 and 67.1) of PM2.5 concentration decreased 

from 2000 to 2015. 

 

 

Figure 3. PM2.5 concentration of Wuhan in (a) 2000, (b) 2005, 

(c) 2010 and (d) 2015. 

 

Year Maximum 

value 

Minimum 

value 

Data range Standard 

deviation 

2000 50.5 31.4 19.1 3.06 

2005 70.6 50.6 20.0 3.35 

2010 76.2 51.9 24.3 3.57 

2015 45.8 67.1 17.3 3.19 

Table 2. Statistics of PM2.5 concentration in Wuhan from 2000 

to 2015 

 

The spatial patterns of population exposure to PM2.5 in Wuhan 

has been shown in Figure 4 and the corresponding statistical 

information is listed in Table 3. 

 

 

Figure 4. Population exposure to PM2.5 concentration within 

Wuhan in (a) 2000, (b) 2005, (c) 2010 and (d) 2015. 

 

Year Maximum 

value 

Minimum 

value 

Data 

range 

Standard 

deviation 

2000 50.5 31.4 19.1 3.06 

2005 70.6 50.6 20.0 3.35 

2010 76.2 51.9 24.3 3.57 

2015 45.8 67.1 17.3 3.19 

Table 3. Details of PM2.5 exposure in Wuhan 

 

From Figure 4, we can see that people who live in downtown 

Wuhan (especially in Wuchang, Hongshan, Jiangan, Jianghan 

and Qiaokou district) suffer more from PM2.5 exposure. In 2000 

and 2005, population in Hangkou (including Jiangan, Jianghan 

and Qiaokou district) did not suffered severe PM2.5 pollution. 

But in 2010 and 2015, the health risk by PM2.5 exposure poped 

up into the most serious level within Wuhan. In 2010, people live 

in Wuhan threatened by PM2.5 pollution more than in 2000, 2005 

and 2015. The maximum and minimum population weighted 

PM2.5 concentration are the highest in the study period (Table 3). 

On the one hand, as one of the most developed areas in Wuhan, 

Hankou has the largest population and the highest population 

density. On the other hand, Hankou also acts as the economic and 

commercial center of Wuhan. More socioeconomic activities can 

be seen in Hankou than other district, which may be partly 

attributed to the sever PM2.5 exposure in 2010. In parallel, more 

severe PM2.5 exposure has been witnessed within Hankou in 

2010 and 2015 compared with 2000 and 2005. The spatial  

distributions of PM2.5 exposure risk in 2010 and 2015 are quite 

resemble. Particularly, in 2005, although the downtown area in 

Wuchang and Hankou did not suffer with serious PM2.5 

pollution, Hanyang and sub-urban areas exposed most to PM2.5 

in the study period. Overall, PM2.5 exposure in Wuhan 

significantly increased from 2000 to 2010 and then decreased in 

2015. 

 

3.3 Impacts of natural and socioeconomic factors on PM2.5 

exposure 

To comprehensively and quantitatively explore the impacts of 

natural and socioeconomic factors on population exposure to 

PM2.5 in Wuhan, three categories factors are included in this 

study: (1) natural variables, including annual mean precipitation 

(PRE), annual mean LST and digital elevation model (DEM); (2) 

landscape metrics (composition, aggregation index, edge density 

and shape index) of urban built-up areas, vegetation and water 
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bodies; (3) socioeconomic factors (GDP). The statistics of impact 

factors (including natural, socioeconomic and landscape factors) 

in 2000-2015 are respectively reported in Table 4-7. 

 

Year Factor Minimum 

value 

Maximum 

value 

Average 

2000 PRE (mm) 1101.11 1261.55 1166.56 

LST (℃) 19.98 29.48 24.61 

DEM (m) -11.00 627.00 40.05 

PLAND_UA 1.24 100.00 38.60 

PLAND_VEG 11.11 100.00 84.45 

PLAND_WB 0.00 100.00 35.79 

AI_UA 0.00 100.00 81.45 

AI_VEG 0.00 100.00 94.01 

AI_WB 0.00 100.00 82.71 

ED_UA 0.00 13.33 3.98 

ED_VEG 0.00 11.12 1.78 

ED_WB 0.00 11.12 4.07 

SI_UA 1.00 2.00 1.07 

SI_VEG 1.00 2.00 1.04 

SI_WB 1.00 2.00 1.06 

GDP (10,000 

CNY/km2) 

121.72 8418.69 1369.99 

Table 4. Details of impact factors in 2000. 

 

Year Factor Minimum 

value 

Maximum 

value 

Average 

2005 PRE (mm) 1044.55 1292.86 1137.04 

LST (℃) 16.48 26.65 21.06 

DEM (m) -11.00 627.00 40.05 

PLAND_UA 0.00 100.00 39.33 

PLAND_VEG 0.00 100.00 83.51 

PLAND_WB 0.00 100.00 35.43 

AI_UA 0.00 100.00 83.95 

AI_VEG 0.00 100.00 93.56 

AI_WB 0.00 100.00 83.07 

ED_UA 0.00 10.00 3.72 

ED_VEG 0.00 11.11 1.87 

ED_WB 0.00 11.12 4.05 

SI_UA 1.00 2.00 1.05 

SI_VEG 1.00 2.00 1.05 

SI_WB 1.00 2.00 1.06 

GDP (10,000 

CNY/km2) 

118.10 16050.46 1611.78 

Table 5. Details of impact factors in 2005. 

 

Year Factor Minimum 

value 

Maximum 

value 

Average 

2010 PRE (mm) 1222.72 2011.91 1588.36 

LST (℃) 16.54 25.46 21.01 

DEM (m) -11.00 627.00 40.05 

PLAND_UA 0.00 100.00 43.72 

PLAND_VEG 0.00 100.00 82.24 

PLAND_WB 0.00 100.00 35.46 

AI_UA 0.00 100.00 82.48 

AI_VEG 0.00 100.00 92.88 

AI_WB 0.00 100.00 83.10 

ED_UA 0.00 11.12 3.85 

ED_VEG 0.00 11.12 1.99 

ED_WB 0.00 11.12 4.04 

SI_UA 1.00 2.00 1.07 

SI_VEG 1.00 2.00 1.05 

SI_WB 1.00 2.00 1.06 

GDP (10,000 

CNY/km2) 

145.78 17321.62 1399.16 

Table 6. Details of impact factors in 2010. 

 

Year Factor Minimum 

value 

Maximum 

value 

Average 

2015 PRE (mm) 1263.49 1651.65 1491.52 

LST (℃) 16.86 26.81 21.59 

DEM (m) -11.00 627.00 40.05 

PLAND_UA 0.00 100.00 49.19 

PLAND_VEG 0.00 100.00 81.25 

PLAND_WB 0.00 100.00 35.68 

AI_UA 0.00 100 81.36 

AI_VEG 0.00 100 92.39 

AI_WB 0.00 100 83.30 

ED_UA 0.00 11.12 3.87 

ED_VEG 0.00 11.12 2.10 

ED_WB 0.00 11.12 4.04 

SI_UA 1.00 2.00 1.06 

SI_VEG 1.00 2.00 1.05 

SI_WB 1.00 2.00 1.06 

GDP (10,000 

CNY/km2) 

506.00 349983.00 9439.32 

Table 7. Details of impact factors in 2015. 

 

As reported in Table 4-7, Wuhan has experience significant 

economic urbanization (average GDP increased from 1369.99 to 

9439.32 in 2000-2015) and landscape urbanization (PLAND_UA 

increased from 39.60 into 49.19 in 2000-2015). However, 

inconsistent with the common sense, the annual maximum 

surface temperature decreased (from 19.98℃ to 16.86℃) with 

the urbanization. In addition, the temporal variations of urban 

landscape aggregation index (AI_UA) indicate the distributed 

expansion of urban landscape in Wuhan from 2000 to 2015. 

 

To quantify the impact of natural and socioeconomic factors on 

PM2.5 population exposure, the RF regression has been 

introduced to establish the association between population 

weighted PM2.5 concentration and external factors. The variable 

importance (VIM) has been quantified in the RF regression. A 

high VIM value indicate that the corresponding variables exert 

significant impacts on the dependent factors (Yang et al., 2018a; 

Yao et al., 2017; Zhang et al., 2018). The calculation of VIM can 

be checked in the references (Yang et al., 2018a; Zhang et al., 

2018). The VIMs (%IncMSE) of natural and socioeconomic 

factors are shown in Table 8. 

 

 Factors 200

0 

200

5 

201

0 

201

5 

Natural PRE 0.27 0.01 0.2 0.22 

LST 0.05 0.01 0.07 0.07 

DEM 0.04 0 0.02 0.02 

Landscape PLAND_UA 0.01 0.00 0.01 0.07 

PLAND_VE

G 

0.01 0.00 0.02 0.01 

PLAND_WB 0.01 0.00 0.02 0.03 

AI_UA 0.01 0.00 0.01 0.00 

AI_VEG 0.00 0.00 0.01 0.01 

AI_WB 0.00 0.00 0.01 0.00 

ED_UA 0.00 0.00 0.01 0.01 

ED_VEG 0.00 0.00 0.01 0.01 

ED_WB 0.01 0.00 0.01 0.01 

SI_UA 0.00 0.00 0.01 0.00 

SI_VEG 0.00 0.00 0.01 0.01 

SI_WB 0.00 0.00 0.00 0.00 

Socioeconom

ic 

GDP 0.58 1.00 0.59 0.53 

Table 8. The increase of mean squared error (%IncMSE) of 

natural and socioeconomic factors in (a) 2000, (b) 2005, (c) 

2010 and (d) 2015. 
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As listed in Table 8, precipitation exerted the most significant 

impacts on PM2.5 pollution, and annual mean LST also 

influenced the PM2.5 concentration. However, inconsistent with 

our previous work (Yang et al., 2018a), the topographical 

features did not associate with PM2.5 pollution at the 

municipality scale. Such results might be explained that 

downtown areas are more flat and locate in lower elevation 

compared with rural surroundings.   

 

The %IncMSE of landscape factors listed in Table 4-7 indicated 

that PLAND_UA had more significant impact on PM2.5 

exposure in Wuhan. However, PLAND_VEG and PLAND_WB 

have stronger association with PM2.5 concentration than 

PLAND_UA in 2015. In addition, in 2005, not all the landscape 

metrics had association with PM2.5. In general, a conclusion can 

be draw according to the results recorded in Table 4 that percent 

cover of landscapes have more significant effects on PM2.5 

pollution. However, GDP is a much stronger driver of PM2.5 

exposure in Wuhan (Table 8) than natural and landscape factors. 

 

4. CONCLUSION 

This study synchronously examine the impacts of natural factors 

(precipitation, land surface temperature, elevation), landscape 

metrics (shape index, edge density, aggregation index and 

landscape percent cover) and socioeconomic driver (GDP) on 

satellite-derived PM2.5 population exposure. The impacts of 

external factors on PM2.5 health risks has been quantified using 

a machine leaning method, i.e. Random Forest (RF) regression. 

The main findings can be summarized as: 

 

1. The health risk posed by PM2.5 exposure in Wuhan 

increased from 2000 to 2010, especially in downtown areas 

of Hankou and Wuchang. Moreover, the PM2.5 population 

exposure decreased in 2015. 

2. The socioeconomic development (characterized as 

GDP increase) in Wuhan from 2000 to 2015 was 

accompanied with sever PM2.5 pollution. 

3. Among the natural factors, precipitation had the 

strongest association with PM2.5 population exposure. The 

topographical features did not exert significant influence on 

PM2.5 exposure in Wuhan. 

4. Although the relationships between PM2.5 and 

landscape metrics were quite weak, the composition of 

urban landscape did have impacts on PM2.5 exposure. 

 

In the future works, the spatial and temporal big data (such as 

social media data (Song et al., 2019)) can be introduced to 

improve the veracity and reliability of PM2.5 exposure 

assessment. Furthermore, more insightful climatic factors, 

including boundary layer, air pressure, wind direction and wind 

speed, can be helpful the external forcing identification of PM2.5 

dynamics. 
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