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ABSTRACT: 

 

Air pollution has been a crucial issue affecting human health and has drawn more and more attention in the world. The assessment of 

exposure to PM2.5 of urban residents based on remote sensing is challenging because of the data deficiency in aerosol optical depth 

(AOD) and the low spatial resolution. This article is devoted to adopt an approach with 2 gradient boosting decision tree (GBDT) 

models to fill the gaps in AOD and derive continuous PM2.5 distribution at urban scale. Then, the assessment of exposure to PM2.5 

in Beijing was conducted. First, Simplified High Resolution MODIS Aerosol Retrieval Algorithm (SARA) was employed to obtain 

daily AOD from September 2016 to February 2017 at 500m resolution. Then we used the first GBDT to derive the gap-filled SARA 

AOD and the second GBDT to estimate PM2.5 spatial distribution based on multi-source data. Furthermore, population weighted 

exposure (PWE) levels of PM2.5 and population proportion exposed to PM2.5 concentration were estimated by PM2.5 distribution 

and population density data. The result demonstrates that both two GBDT models performed well with cross validation (CV) R2 of 

0.86 and 0.85 on AOD gap-filling and PM2.5 concentration estimation respectively. The areas with high PM2.5 concentration are 

mainly distributed in the east and south of the city but the areas with higher PM2.5 exposure are mainly distributed in the urban centre. 

Moreover, it is found that over 80% people in Beijing are affected by PM2.5 pollution in autumn and winter. Overall, the approach 

this article applied and the analysis results are very useful for epidemiological investigation and air pollution control policy formulation. 

 

 

1. INTRODUCTION 

As the rapid development of urbanization and economy in 

recent decades, air pollution in urban areas is getting worse 

and worse. Due to more and more people aggregate to cities, 

more than 90 percent people in the world are exposed to air 

pollution(Shi et al., 2019). In urban areas, fine particulate 

matter (with aerodynamic diameters less than 2.5 μm, PM2.5) 

has been viewed as one of the most serious air pollutants due 

to its convenient transmission and easy inhalation by 

human(Sun et al., 2016). Exposure to ambient PM2.5 has an 

adverse impact on human health with increasing the risk of 

cardiovascular problems, respiratory problems, stroke and 

many other diseases (Brauer et al., 2015; Dominici et al., 2006; 

Huang et al., 2018; Thurston et al., 2015). In addition, the 

premature death of 8.9 million people had relationship with 

PM2.5 in 2015(Burnett et al., 2018). Therefore, it is of a great 

significance to estimate PM2.5 concentration and investigate 

PM2.5 exposure especially in urban areas. 

Satellite-based PM2.5 concentration estimations are applied 

more and more widely. AOD data that remote sensing 

satellites offer has been proved to be closely correlated with 

PM2.5 concentration(Li et al., 2005; Lin et al., 2015). Hence, 

it is available to obtain widely spread PM2.5 distribution 

through AOD products. For example, Hu et.al (2017) derived 

spatial PM2.5 distribution of the conterminous United States 

based on moderate-resolution imaging spectroradiometer 

(MODIS) AOD products (MYD04_L2) of 10km resolution. 

Wei et.al (2019) applied multi-angle implementation of 

atmospheric correction (MAIAC) AOD data obtain the PM2.5 

distribution of China with high accuracy. Whereas, there are 

numerous data deficient gaps in satellite-based AOD products 

due to clouds(Yu et al., 2015). It is also a big challenge for 

accurate PM2.5 estimation because the missing of AOD will 

cause the data deficiency of PM2.5 samples and induce biases 

to the result furthermore. Some studies used some simple 

methods such as spatial interpolation and imputation to fill the 

gaps in AOD(Kloog et al., 2011; Liang et al., 2018). Although 

these methods are convenient to be applied, the results were 

poor when there is too much missing neighbourhood data. 

Thus, complicated and robust methods like machine learning 

may be considered in AOD gap-filling. 

Due to large energy consumption caused by urbanization, 

Chinese PM2.5 pollution is particularly serious in the world 

(Van Donkelaar et al., 2014). Through the efforts on 

environmental policies of Chinese government, the overall 

average PM2.5 concentration in China is 45 μg/m3 in 2017 

which decreased from 67 μg/m3 in 2013(Xue et al., 2019). 

However, compared with the “good” level national standard in 

GB3095-2012 (China's National Ambient Air Quality 

Standard, CNAAQS) of 35 μg/m3, China still has a long way 

to go(China, 2012). In addition, it is noted that the exposure to 

PM2.5, i.e. population weighted exposure (PWE) with 

considering the distribution of population can better depict the 

negative effects of PM2.5 on human health than using PM2.5 

concentration. Donkelaar et.al (2014) combined three satellite-

derived PM2.5 sources to evaluate PM2.5 exposure world 

widely. He and Huang (2018) used geographically and 

temporally weighted regression (GTWR) to derive PM2.5 

distribution and calculate the exposure to PM2.5. It was found 

that over 92% people in China are facing the threat of PM2.5 

pollution. The PM2.5 exposure in Australia was estimated and 

only 17% population lived in the areas with PM2.5 

concentration higher than 8 μg/m3(Knibbs et al., 2018). 

However, the information these studies provided is only 

adaptive at large scale. There were few studies conducted at 
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urban scale due to the limitation of spatial resolution. The 

resolution of PM2.5 data most studies adopted is higher than 

1km but the studies in urban-scale requires data with finer 

resolution. 

Our work is aimed to use the SARA AOD products with 500m 

resolution to assess the exposure to PM2.5 with taking Beijing 

as the example. GBDT, a good machine learning method, was 

applied to fill the gaps in SARA AOD and estimate PM2.5 

concentration. Then, the PWE to PM2.5 and population 

proportion exposed to PM2.5 concentration was calculated 

further based on population density.  

 

2. MATERIALS AND MATHODS 

2.1 Study Area 

Beijing (as Figure 1 shows) is the capital of China, located in 

the North China Plain (NCP) with total area of 16410.54 km2 

and population of 21.54 million. Due to the rapid economic 

development and urbanization, Beijing has been the area with 

the most serious air pollution burden in China(Wang et al., 

2018). 

 
 

Figure 1. The location of Beijing. 

 

2.2 SARA AOD 

Simplified Aerosol Retrieval Algorithm (SARA) is a stable 

AOD retrieval algorithm with good reliability under complex 

atmospheric environment(Bilal et al., 2013; Bilal et al., 2014). 

More importantly, the spatial resolution of SARA AOD is 

500m, which is much higher than other AOD products and 

more adaptive for urban scale. SARA have three assumptions: 

(1) The surface is Lambertian. (2) Single scattering 

approximation. (3) The single scattering albedo and 

asymmetric factor do not vary spatially over the region on day 

of retrieval(Bilal et al., 2013). In addition, traditional retrieval 

lookup table is not required in the retrieval process so it is 

convenient to implement this AOD retrieve method. It directly 

obtains AOD results based on AOD ground observation data, 

topography and angle data, Top of Atmosphere (TOA) 

radiance data and surface reflectance data. Here, we used 

ground AOD data from Aerosol Robotic Network (AERONET, 

https://aeronet.gsfc.nasa.gov/) and downloaded TOA product 

MOD02HKM, topography and angle product MOD03 and 

surface reflectance product MOD09 from the NASA website 

(https://ladsweb.nascom.nasa.gov/). 

SARA AOD is also deeply affected by clouds like other AOD 

products. The existing of clouds disturbs the acquaintance of 

correct data. We used MOD35, the cloud mask product of 

MODIS, to remove the pixels covered by clouds. However, 

this approach conducted many gaps in SARA AOD so we 

would use a GBDT to fill them and obtain the full-covered 

SARA AOD. 

 

2.3 PM2.5 Concentration 

Ground-level PM2.5 observation data used in this article was 

downloaded from Ministry of Environmental Protection of 

China (MEPC). The hourly PM2.5 data spanned from 

September, 2016 to February, 2017 (basically the autumn and 

winter in Beijing) in 35 ground monitoring sites of Beijing was 

collected and calculated further for daily average PM2.5 

concentrations. Among the 35 sites, there are 17 sites located 

in core urban area (Haidian district, Dongcheng district, 

Xicheng district, Chaoyang district, Shijingshan district and 

Fengtai district) and 18 sites evenly distributed in suburb areas. 

 

2.4 Auxiliary Data 

Meteorological field data, digital elevation model (DEM) data 

and Normalized Difference Vegetation Index (NDVI) were 

applied for the SARA AOD gap-filling and PM2.5 

concentrations estimating. Meteorological field data including 

temperature at 2m (TEM), relative humidity (RH), surface 

pressure (SP), planetary boundary layer height (PBLH), 

eastward wind at 10m above displacement height (U10M) 

and northward wind at 10m above displacement height 

(V10M) were downloaded from European Centre for Medium-

Range Weather Forecasts (ECMWF, http://www.ecmwf.int/). 

The daily meteorological field were averaged based on the 

data at 2:00, 8:00, 14:00 and 20:00. MODIS NDVI 16-day 

products (MOD13A1) were obtained from LAADS website 

(https://ladsweb.nascom.nasa.gov/). The DEM data used in 

this article was downloaded from Shuttle Radar Topographic 

Mission (SRTM) (http://srtm.csi.cgiar.org/). Each auxiliary 

raster data was re-projected and resampled to a grid with 500m 

followed by SARA AOD.  

 

2.5 Population Density 

For assessing the exposure to PM2.5, population density raster 

data with 1km was obtained from the Data Center for 

Resources and Environmental Sciences (DCRES) 

(http://www.resdc.cn). The population density raster product 

was derived based on land use data, night light remote sensing 

data and the distribution of residential density. It was also re-

projected and resampled to the defined 500m grid mentioned 

in 2.4. 

 

2.6 Gradient Boost Decision Tree (GBDT) 

GBDT is one of the boosting learning methods in machine 

learning family. It is an ensemble learning method containing 

a series of based learners. The parameters of GBDT is 

complicated compared with other ensemble learning methods 

which ensure its outstanding performance on processing multi-

dimensioned and massive data(Friedman, 2001; Reid et al., 

2015). Thus, GBDT is a good option for AOD missing data 

recovering and PM2.5 concentration estimation. 

In terms of model structure, the form of based learner in GBDT 

is decision tree which is similar to Random Forest (RF). 

However, unlike RF, these based learners are not independent 

due to each one is generated based on the residues of the 

previous one. The predicted result is the weighted addiction of 

all based decision trees. The form is as (1) shows. Here, 𝑇𝑖 is 

the addictive result of all previous 𝑖 − 1  trees. 𝐻𝑖  is the 

decision tree trained based on the former learner. 𝑊𝑖  is the 

weight of 𝐻𝑖. 
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𝑇𝑖 =  𝑇𝑖−1 + 𝑊𝑖𝐻𝑖                  (1) 

 

We constructed 2 GBDT models for AOD gap-fill and PM2.5 

estimation respectively. In the model for AOD gap-fill (call it 

model 1), all auxiliary data mentioned in 2.4 and the day of 

year (DOY) were used as the independent variables. 

Compared with model 1, the model for PM2.5 estimation (call 

it model 2) added the full-covered AOD obtained from model 

1 as the major independent variable. Some key parameters in 

both two models were selected, which is shown in Table 1. 

GBDT can evaluate the importance of all predictors by its 

variable importance measure. Due to there were 2 GBDT 

models for AOD gap-fill and PM2.5 estimation, the variable 

importance measures (VIM) of the two models were calculated 

separately. VIM was evaluated by the variable using frequency 

in model construction, which is to say the more the variable 

are adopted, the more its contribution to the model. 

A sample based 10-fold CV was adopted for validating the 

performance of two GBDT models. Three measurements 

including R square (R2), mean predictive error (MPE), root 

mean square error (RMSE) are used for the evaluation. Both 

the construction of GBDT and the CV evaluation were done 

based on the Python 3.7 environment. 

 

Parameters Model 1 Model 2 

Number of trees 300 200 

Max depth 3 4 

Learning rate 0.1 0.08 

Alpha 0.9 0.9 

Table 1. Some key parameters selection in two models 
 

2.7 Ambient PM2.5 Population Weighted Exposure 

Assessment 

For investigating the impact of PM2.5 on urban residents, 

ambient PM2.5 population exposure was assessed based on the 

PM2.5 estimation results. The total PWE was calculated based 

on (2)(Liu et al., 2017; Zhan et al., 2017). Here, 𝑃𝑖 and 𝐶𝑖 are 

the population and the PM2.5 concentration in grid 𝑖 
respectively.  

 

𝑃𝑊𝐸𝑡𝑜𝑡𝑎𝑙 =
∑ 𝑃𝑖𝐶𝑖

𝑁
𝑖=1

∑ 𝑃𝑖
𝑁
𝑖=1

  (2) 

 

Furthermore, we calculated the PWE of each grid as (3) shows.  

 

𝑃𝑊𝐸𝑖 =
𝑃𝑖𝐶𝑖

∑ 𝑃𝑖
𝑁
𝑖=1

    (3) 

 

3. RESULT AND DISCUSSION 

3.1 Model Performance  

The CV performance of two GBDT models are shown in Table 

2 and Table 3. For model 1, the result shows a good 

performance with CV R2 of 0.86, MPE of 0.10 and RMSE of 

0.12. The performance in October is the best with CV R2 of 

0.91 while that in November is the worst with CV R2 of 0.77. 

For model 2, the performance is also good with CV R2 of 0.85, 

MPE of 22.47 μg/m3 and RMSE of 30.94 μg/m3. CV R2, 

calculated based on test sets, is an important indicator related 

to overfitting with higher value indicating weaker overfitting 

relevantly. Overall, the performance of both models are good 

despite some tolerated overfitting with CV R2 lower than 0.8 

in few months. The best performance and the worst 

performance are in January and November respectively. The 

reason for the different performance among months may be 

related to the sample size. The good performance of two 

models suggests that GBDT can capture the characteristics of 

both AOD and PM2.5 at urban scale. Zhang et.al applied RF 

in MODIS 3km AOD gap filling and PM2.5 estimation using 

Sichuan basin as the study area with CV R2 of 0.95 and 0.86 

respectively(Zhang et al., 2018). Though the accuracy of two 

GBDT models in our work is a little lower in contrast, it is 

acceptable because of the differences in study area and period 

range.  

Table 4 shows the VIMs of two models. PBLH plays a very 

significant role in both two models. That is because AOD is 

the attribution of aerosol in the vertical structure and PBLH 

determines the range of vertical aerosol distribution, In 

addition, PBLH affects the ratio of PM2.5 to AOD with a 

negative relationship so it is also important for PM2.5 

estimation models(Sun et al., 2018). DOY is another important 

factor which is also demonstrated in some other studies (Guo 

et al., 2017; Zhao et al., 2019; Zheng et al., 2017). Both AOD 

and PM2.5 vary greatly temporally and sometimes there is a 

big difference between two continual days. In addition, there 

is a huge difference on performance between winter and 

autumn. On one hand, in the winter (includes December, 

January and February) of Beijing, aerosol accumulates in the 

low height which can aggregate the PM2.5 pollution. On the 

other hand, due to the requirement of heating, more energy 

consuming are conducted in winter which also produces many 

pollutants. In addition, some scholars have found that other 

pollutants are also helpful for the improvement of model 

accuracy(Wang et al., 2020). It is worth trying to apply other 

pollutants such as SO2 and NO2 as the independent variables 

in our future research. 

 

Model 1 R2 MPE RMSE 

September 0.86 0.10 0.17 

October 0.91 0.10 0.14 

November 0.77 0.08 0.12 

December 0.85 0.07 0.10 

January 0.83 0.07 0.10 

February 0.81 0.05 0.08 

Overall 0.86 0.10 0.12 

Table 2. CV performance of the first GBDT for AOD gap-

filling 

 

Model 2 R2 MPE (μg/m3) RMSE (μg/m3) 

September 0.77 15.86 22.76 

October 0.78 22.08 29.60 

November 0.73 28.01 37.08 

December 0.88 26.23 36.77 

January 0.89 23.83 32.32 

February 0.80 21.54 32.93 

Overall 0.85 22.47 30.94 

Table 3. CV performance of the second GBDT for PM2.5 

estimation 

 

Variable Model 1 Model 2 

AOD - 0.23 

TEM 0.17 0.06 

RH 0.07 0.08 

SP 0.02 0.06 

U10M 0.04 0.02 

V10M 0.05 0.06 

PBLH 0.24 0.36 

NDVI 0.01 0.01 

DEM 0.03 0.01 

DOY 0.36 0.18 

Table 4. VIM of two models 
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3.2 Gap-filled SARA AOD 

Figure 2 shows the differences between the average cloud-

removal AOD and the average gap-filling AOD. It can be 

obviously found that both of them approximately share the 

same value range from 0.16 to 0.57 while the average gap-

filled AOD is smoother. The reason for this phenomenon is the 

random disturbance of clouds which cause the non-continuous 

change of average AOD in space. Without AOD gap-filling 

process, these gaps will not only cause the unavailability of 

daily estimation but also eventually induce some biases to the 

average estimation which inevitably affects the accuracy of 

human health investigations such as PWE level assessment. In 

terms of space, AOD values are low in western and northern 

mountains and high in eastern and southern flatten plains. 

Other than terrain factor, socioeconomic factors also play 

important roles affecting AOD distribution. For example, most 

populations and industries are concentrated on the southern 

and eastern areas conducting much emissions. 

 
 

Figure 2. Average AOD in autumn and winter of Beijing 

(The left one is the cloud-removal SARA AOD and the right 

one is the gap-filled SARA AOD). 

 

3.3 Spatial Distribution of PM2.5 Concentrations and 

Population Density Weighted Exposure 

PM2.5 concentration spatial distribution was retrieved based 

on the second GBDT model with using the full-covered AOD 

as the major predictor. The average PM2.5 spatial distribution 

is shown in Figure 3. The spatial distribution pattern of 

average PM2.5 demonstrates a decreasing trend from 

southeast to northwest which is similar to AOD. This also 

proves the strong relationship between AOD and PM2.5. The 

range of average PM2.5 in autumn and winter of Beijing is 

from 47 μg/m3 to 144 μg/m3. According to CNAAQS, when 

PM2.5 concentration is higher than 75 μg/m3, the environment 

quality can be defined as ‘pollution’. Thus, it can be seen that 

the PM2.5 pollution issue in autumn and winter of Beijing is 

extremely serious with most areas of PM2.5 concentration 

higher than that level. 

 
 

Figure 3. Estimated average PM2.5 concentration distribution 

in autumn and winter of Beijing. 

 

Furthermore, we obtained the PWE combined with population 

density data and PM2.5 average distribution. We used Natural 

Breaks (Jenks) method divide it into 7 levels (higher levels, 

heavier exposure to PM2.5) as Figure 4 shows. From the 

perspectives of spatial PWE distribution, it demonstrates that 

the high level PWEs are mainly distributed in urban central 

areas. This is different from the distribution pattern of PM2.5 

concentration that southeast areas of Beijing suffer heavier 

PM2.5 pollution. It suggests that Beijing government should 

pay more attention to the pollution transmission from 

southeast areas to urban central areas. Total PWE of the whole 

period and six months were calculated as Table 5 shows. 

Among all six months, residents in Beijing are most affected 

by PM2.5 pollution in December with PWE of 124 μg/m3. 

Moreover, there is no month’s average PWE reaches the “good” 

air quality in CNAAQS (less than 35 μg/m3). Figure 5 shows 

the population proportion in Beijing exposed to PM2.5 

concentration over the six months. On the whole, more than 

80% people of Beijing suffered from PM2.5 pollution (higher 

than 75 μg/m3). In addition, it is noted that there are 16% and 

6% people living in the areas with PM2.5 concentration 

exceeding 150 μg/m3 (the standard of “serious pollution” in 

CNAAQS) in December and January respectively. Thus, the 

series of analysis results above underline the importance and 

the urgency of air pollution reduction in Beijing. 

 

Period PWE (μg/m3) 

September 54 

October 83 

November 101 

December 124 

January 112 

February 71 

Overall 91 

 

Table 5. Total PWE of the whole period and all month. 
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Figure 4. PWE level spatial distribution in autumn and winter 

of Beijing. 

 

 
 

Figure 5. Beijing population proportion exposed to PM2.5 

concentration in different months. 

 

4. CONCLUSION 

To summary, this article applied two GBDT models to derive 

the gap-filled SARA AOD and PM2.5 concentration 

distribution with 500m resolution. Based on the result of 

PM2.5 estimation, PWE and population proportion exposed to 

PM2.5 in Beijing are derived. The performance is good with 

CV R2 of 0.86 and 0.85, MPE of 0.10 and 22.47 μg/m3 and 

RMSE of 0.12 and 30.94 μg/m3 for AOD gap-filling (model 1) 

and PM2.5 concentration estimation (model 2) respectively. 

Through the results of exposure to PM2.5, it is found that high 

levels of PWE mainly assemble in urban central areas. Overall, 

over 80% people in Beijing live in the areas with PM2.5 

concentration higher than 75 μg/m3 which meets the standard 

of “pollution” in CNAAQS and the pollution situation is 

serious in December and January. This work also has some 

disadvantages. First, the population density data doesn’t vary 

temporally thus the dynamic changes of exposure to PM2.5 

may not be captured precisely. Second, the PM2.5 

observations in our study are relatively low which causes a 

little overfitting in few months. Thus, we will extend the study 

period and obtain more observations in the future. In addition, 

the PM2.5 estimation model’s accuracy may be improved by 

introducing other pollutants as independent variables. In 

general, the approach and the information this article provide 

are valuable for air pollution abatement in the future. 
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