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ABSTRACT: 

 

Land cover map is widely used in urban planning, environmental monitoring and monitoring of the changing world. This paper 

proposes a framework with convolutional neural network (CNN), object-based voting and conditional random field (CRF) for land 

cover classification. Both very-high-resolution (VHR) remote sensing images and digital surface model (DSM) are inputs of this 

CNN model. To solve the “salt and pepper” effect caused by pixel-based classification, an object-based voting classification is 

performed. And to capture accurate boundary of ground objects, a CRF optimization using spectral information, DSM and deep 

features extracted through CNN is applied. Area one of Vaihingen datasets is used for experiment. The experimental results show 

that method proposed in this paper achieve an overall accuracy of 95.57%, which demonstrate the effectiveness of proposed method. 
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1. INTRODUCTION 

Land cover classification using remote sensing imagery was 

widely used in the past decades (Friedl et al., 2002). With the 

development of remote sensing technology and computer vision 

technology, land cover mapping using remote sensing imagery 

has also developed significantly. 

 

In the beginning, pixel-based methods with handcrafted features 

were used for land cover classification, such as maximum 

likelihood method, decision tree method, random forest, and 

support vector machine (Otukei and Blaschke, 2010; 

Rodriguez-Galiano et al., 2012). For these methods, the 

definition of handcrafted features is critical. The quality of 

classification results largely depends on the quality of 

handcrafted features definition. However, handcrafted features 

are not enough to effectively distinguish different categories in 

most cases. With the advent of neural networks and deep 

learning, artificial neural network (ANN) based multilayer 

perceptron (Kavzoglu and Mather, 2003) and CNN based 

convolution operation (Scott et al., 2017) were adopted. Both 

ANN and CNN can extract features automatically and get 

classification results through training samples. However, ANN 

loses spatial information of pixels because of the inputs of ANN 

are spectral features or other features of pixels, which may 

reduce the classification accuracy of land cover. Fortunately, the 

inputs of CNN are image patches and the spatial information of 

pixels are retained. Although fully convolutional network (FCN) 

(Shelhamer et al., 2017) can get an end-to-end classification 

result and has been used in aerial scenes (Mao et al., 2019), 

fully labelled samples which are hardly obtained in many cases 

are needed for FCN training. Therefore, pixel-based CNN is 

more effective for land cover classification with few samples. 

 

Nevertheless, those pixel-based methods will cause “salt and 

pepper” effect and cannot capture the precise outline of ground 

objects. However, Object-based image analysis (OBIA) 

methods (Blaschke, 2010; Blaschke et al., 2014) can greatly 

reduce “salt and pepper noise” and get a rough boundary of 

ground objects. Unfortunately, image objects are irregular 

polygon and the inputs of CNN are regular patches. So far, 

there is not an excellent way to use CNN to classify image 

objects directly. Therefore, combining pixel-based CNN method 

and object-based voting method is an appropriate way for land 

cover classification (Zhao et al., 2017a). Additionally, 

contextual information is critical for land cover classification, 

especially for capturing precise outline of ground objects. Many 

researchers have utilized CRF to take advantage of contextual 

information (Albert et al., 2017). 

 

In addition to optical remote sensing data, DSM acquired by 

LiDAR or some other sensors is also very helpful for land cover 

classification (Wai et al., 2015; Szostak et al., 2020.). From 

height information contained in DSM, extra information can be 

obtained, and this information can be obtained from spectral 

features. For example, spectral features of the same roof may be 

different, but the height will not be much different. Another 

example, spectral features of building and road may be 

extremely similar, but the heights of these two ground objects 

are totally different. Therefore, DSM is a very important data 

source for land cover classification. 

 

This paper proposes a simple framework for land cover 

classification using VHR image and DSM. First of all, CNN is 

trained using samples obtained from VHR image and DSM. 

Then, initial pixel-based classification result and deep features 

are acquired. Subsequently, VHR image is segmented to image 

objects and object-based voting is performed to get intermediate 

result. Finally, a CRF optimization using spectral features, 

DSM and deep features is utilized to refine intermediate result, 

and final result is obtained. 

 

The rest of this paper is organized as follows. Section 2 will 

introduce the details of proposed framework. Experimental 

results will be shown in Section 3. And the last section is the 

conclusion. 
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2. METHODOLOGY 

 
Figure 1. The framework of proposed method. 

 

The proposed method consists of 4 steps, as is illustrated in 

Figure 1. 

(1) CNN training: Train CNN with training samples obtained 

from VHR images and DSM. 

(2) Pixel-based classification and deep features extraction: 

Input VRH images and DSM into the trained CNN to get 

the initial classification result and pixel-based deep 

features. 

(3) Object-based voting: Get image objects by multiresolution 

segmentation, and intermediate result is obtained by voting 

based image objects. 

(4) CRF optimization: Optimize intermediate result using CRF 

with spectral features, DSM and deep features. 

 

2.1 CNN training 

2.1.1 The structure of proposed CNN: The most basic 

CNN structure consists of convolutional layers, pooling layers 

and fully connected layers (Krizhevsky et al., 2017). 

Convolutional layers are used to extract multilayer features 

from inputs, and one convolutional layer is represented as 

follow formula: 

 

  1l l l lX f X W B   (1) 

 

where the Xl denotes output of lth convolutional layer, the Wl 

and the Bl denotes convolutional kernels and bias of lth 

convolutional layer respectively, the f denotes activation 

function which can be sigmoid, tanh and rectified linear units 

(ReLU). Pooling layers are used to compress features extracted 

by convolutional layers to reduce computational cost. And fully 

connected layers are used to get classification results using 

features extracted by convolutional layers and pooling layers. 

Because of loss of information caused by pooling layers, the 

pooling layers in proposed CNN structure are replaced by 

convolutional layers with stride two. Additionally, batch 

normalization layers are utilized after each convolutional layer 

and fully connected layer (except the last fully connected layer) 

in proposed CNN structure. Batch normalization layers 

guarantee that the distribution of features extracted by each 

layer is the same, which is helpful for classification. And the 

activation functions of all layers used in this CNN structure are 

ReLU (except the last fully connected layer utilizes softmax). 

 

 
Figure 2. The structure of proposed CNN. 

 

To be able to input VHR images and DSM simultaneously, 

proposed CNN structure has two inputs. The structure of 

proposed CNN is show in Figure 2 (Batch normalization layers 

are not shown). This CNN consists of a concatenation layer 

before convolution layers, which is used to combine VHR 

images and DSM. Additionally, there are five convolutional 

layers, two fully connected layers and six batch normalization 

layers. The KaSbNc denotes that the kernel size, the stride and 

the number of filters are a, b and c respectively. And the number 

of neurons of the first fully connected layer and the last fully 

connected layer are 256 and number of category respectively. 

 

2.1.2 Parameters of CNN training: Samples for CNN 

training are image patches with patch size of 32, including VHR 

image patches and DSM patches. The training optimizer, the 

training batch size and the learning rate are Adam, 32 and 

0.0001, respectively. Furthermore, early stopping method is 

used to prevent overfitting (Yao et al., 2007). 

 

2.2 Pixel-based classification and deep features extraction 

The output of the last fully connected layer is probability that a 

pixel belongs to each class, and the output of the first fully 

connected layer is a 256-dimensional features. Take each pixel 

as the center to capture an image patch with patch size of 32 

and input it to the trained CNN, the category and a 256-

dimensional features of each pixel can be obtained. For image 

boundary, pixels in image patches without values are set to zero. 

Therefore, initial classification result by pixel-based 

classification and pixel-based deep features are obtained, and 

they will be used in next step. 

 

2.3 Object-based voting 

2.3.1 Image segmentation: To reduce the “salt and pepper” 

effect caused by pixel-based classification, an object-based 

voting is performed. VHR image first is segmented into image 

objects. The segmentation algorithm used in this paper is 

multiresolution segmentation (MRS) (Baatz and Schape, 2000), 

which uses spectral heterogeneity and shape heterogeneity to 

segment images. There are three main parameters in this 

algorithm, including scale, shape weight and compactness 

weight. In this paper, these three parameters are 10, 0.1 and 0.5 

respectively. 

 

2.3.2 Voting based image objects: Through initial result and 

image objects, object-based voting can be performed. Consider 

the number of categories is M, then the category is 

 | 1, 2, ,kC C k M  . An image object O contains N pixels, 

and initial labels of these pixels are  | 1, 2, , & &i il i N l C  . 

Then label of the image object can be obtained by: 
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  arg max ,o cl p c C   (3) 

 

where the pc is the probability that the image object belongs to 

category c, and lo is the category of image object O. Thus, 

categories of all image objects can be obtained. 

 

2.4 CRF optimization 

To capture precise outline of ground objects, CRF optimization 

based pixels with spectral features, DSM and deep features is 

performed (Zhao et al., 2017b). The energy function is defined 

as follow: 

 

          
 

, ,
,

,p p p qp q p q
p P p q N

E l D l w V l l
 

    (4) 

 

Where the  p pp P
D l

  and        , ,,
,p qp q p qp q N

w V l l
  denote 

unary and pairwise terms, respectively. The l denotes all land 

cover categories. The goal is to assign each node p (a pixel) a 

label lp. The unary term Dp(lp) can be formulated as: 

 

    logp p pD l P l   (5) 

 

where the P(lp) denotes the probability of pixel p belonging to lp 

which is the output of last fully connected layer of CNN. w(p,q) 

encourages discontinuities to coincide with intensity edges, 

which has a significant impact on optimization. In this 

framework, spectral features, height information obtained from 

DSM and deep features extracted through CNN are combined to 

construct it. w(p,q) can be formulated as: 
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   2, 2D dist p q    (7) 

 

where the sp,q, the hp,q and the dp,q denote heterogeneities of 

spectral features, height features and deep features between 

pixel p and pixel q, respectively. The dist(p,q) denotes the 

Euclidean distance between pixel p and pixel q. And σ is used 

to adjust value range. V(p,q)(lp,lq) is defined as: 

 

 
   ,

0,
,

1,
p q

p qp q
p q

l l
V l l

l l


  

 (8) 

 

Finally, category of each pixel can be inferred by minimizing 

the energy function (4) using α-expansion algorithm (Boykov et 

al., 2001). 

 

3. EXPERIMENTS 

3.1 Datasets 

The experimental datasets used in this paper is area one of 

Vaihingen datasets, including a VHR image, a DSM image and 

a ground truth image, as is shown in Figure 3. The image size of 

these three images are 1919×2569 and the VHR image contains 

near infrared, red and blue three bands. There are five 

categories in experimental area, including impervious, building, 

low vegetation, tree and car. Five percent of pixels of each 

category are selected as samples for CNN training, and the rest 

95 percent of pixels of each category are used for accuracy 

assessment. 

 

 
(a) VHR image      (b) DSM image        (c) Ground truth 

Figure 3. Datasets for experiments. 

 

3.2 Experimental results 

  
(a) Initial result. (b) Intermediate result. 

  
(c) Final result (d) Ground truth. 

 
Figure 4. Classification results. 

 

  
(a) Initial result. (b) Intermediate result. 

  
(c) Final result. (d) Ground truth. 

 
Figure 5. Classification results of red box  

in Figure 4. 

 

Initial result, intermediate result and final result are shown in 

Figure 4. And classification results of red box in Figure 4 are 
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illustrated in Figure 5. It can be seen from Figure 5(a) that 

severe “salt and pepper” effect is occurred in classification 

result obtained by pixel-based CNN, and the outline of ground 

objects is not clear. After object-based voting, intermediate 

result is obtained and is shown in Figure 5(b). It can be seen 

that “salt and pepper” effect is almost not exist. To capture 

precise outline of ground objects, CRF optimization is 

performed and the result is shown in Figure 5(c). Comparing 

with initial result and intermediate result, the outline of ground 

objects is indeed more accurate. 

 

To further verify the effectiveness of object-based voting and 

CRF optimization. F1 scores for each class and overall 

accuracies of initial result, intermediate result and final result 

are shown in Table 1. It is illustrated in Table 1 that object-

based voting and CRF optimation are critical in proposed 

method. Especially classification accuracies have been greatly 

improved after object-based voting. As for the decline in F1 

score of Car, it is mainly due to the car is too small, which leads 

to inaccurate segmentation boundaries. Smaller segmentation 

scale can get higher classification accuracies. CRF optimization 

is mainly used to capture accurate boundary, that is why there is 

no major change in classification accuracies after CRF 

optimization. However, precise outline of ground objects can be 

captured after CRF optimization, which can be seen in Figure 5. 

the decline in F1 score of Car after CRF optimization is also 

caused by the car is too small. Overall, object-based voting and 

CRF optimization are still essential steps of the proposed 

method. 

 

 Initial Intermediate Final 

Impervious 95.69 95.75 95.73 

Building 97.56 97.67 97.63 

Low vegetation 91.09 92.36 92.43 

Tree 93.01 93.34 93.64 

Car 82.93 82.79 81.57 

Overall 95.27 95.54 95.57 

Table 1. F1 scores for each class and overall accuracies of 

classification results (%). 

 

Additionally, to validate the importance of DSM, pixel-based 

CNN classification and object-based voting without DSM data 

was performed. F1 scores for each class and overall accuracies 

are illustrated in Table 2. It is obvious that F1 scores of all 

categories except Car and overall accuracy of approach with 

DSM are higher than these accuracies of approach without 

DSM. As for Car, DSM has basically no effect on its 

classification accuracy. From this, DSM is very helpful for land 

cover classification. 

 Without DSM With DSM 

Impervious 95.06 95.75 

Building 97.45 97.67 

Low vegetation 90.57 92.36 

Tree 91.98 93.34 

Car 82.80 82.79 

Overall 94.82 95.54 

Table 2. F1 scores for each class and overall accuracies 

comparison between approach without DSM and approach with 

DSM (%). 

 

3.3 Comparison with the state-of-the-art methods 

There are many researchers evaluating their land cover 

classification methods with Vaihingen datasets. To verify the 

effectiveness of the proposed method, a comparison of 

classification accuracy is performed. Two approaches are 

selected to compare with our method. One approach was 

proposed by Audebert et al. (Audebert et al., 2018), the other 

approach was proposed by Sun et al. (Sun et al., 2020). 

Audebery proposed two architectures to fusion RGB image and 

DSM. These two architectures are V-FuseNet (Early fusion) and 

SegNet-RC (Later fusion), respectively. Sun et al. utilized an 

effective deep FCN ensemble and fully connected CRF for 2D 

Semantic Labeling Contest of Vaihingen dataset. F1 scores for 

each class and overall accuracies of different methods are 

shown in Table 3. It can be seen from Table 3 that our method 

can get highest F1 scores for all categories except Car and 

overall accuracies, which illustrates the effectiveness of the 

proposed method. In addition to higher accuracies, the proposed 

method also used the fewest samples. Approaches proposed by 

Audebert et al. and Sun et al. were based FCN, therefor fully 

labelled samples were needed. For proposed method, only 5% 

samples are used for training. Overall, whether it is from the 

perspective of classification accuracy or practical application, 

proposed method is better. 

 

 SegNet-

RC 

V-

FuseNet 
Sun et al. Ours 

Impervious 91.0 91.0 93.0 95.73 

Building 94.5 94.4 95.6 97.63 

Low vegetation 84.4 84.5 85.6 92.43 

Tree 89.9 89.9 90.3 93.64 

Car 77.8 86.3 84.5 81.57 

Overall 89.8 90.0 91.2 95.57 

Table 3. F1 scores for each class and overall accuracies of 

different methods (%). 

 

4. CONCLUSION 

This paper proposes a land cover classification approach using 

CNN with remote sensing data and DSM. Experimental results 

show that object-based voting can greatly reduce the “salt and 

pepper” effect and CRF optimization can capture more accurate 

outline of ground objects than pixel-based classification and 

image objects. Additionally, DSM is very helpful for land cover 

classification. The final overall accuracy of proposed approach 

is 95.57%. However, there are still some shortcomings. 

Compared with ground truth, the outline of ground objects in 

final result is still not accurate enough, which should be solved 

in future research. Additionally, experiments were performed in 

urban areas only because of lack of experimental data in a 

natural landscape. 
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