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ABSTRACT: 

 

Calculating the spatial-temporal distribution of supraglacial debris cover on glaciers is essential for understanding mass balance 

processes, glacier lake outburst floods, hydrological predictions, and glacier fluctuations that have attracted attention in recent years. 

However, due to the reflectance of supraglacial debris is similar to that of non-glacier slopes, mapping supraglacial debris cover 

based on optical remote sensing remains challenging. In this paper, we used NDSI and machine learning algorithm to extract debris 

cover on glaciers in Hunza Valley, Pakistan. Our result showed that the RF model has the best classification accuracy with kappa 

coefficient of 0.94 and overall accuracy of 96%. The debris-covered area increased by 21.31% from 1990 to 2019 (394.76 km2 ~ 

478.88 km2) in the study area. Results and the method are of significance in the assessment of meltwater modeling for glaciers with 

debris cover. 

 

 

 
 Corresponding author 

1. INTRODUCTION 

Glaciers, also known as ‘alpine solid reservoirs’, are not only a 

promising natural freshwater resource but also a sensitive 

indicator of global climate change (Kaab et al., 2012; Yang, 

1995; Zemp et al., 2019; ). Recent studies have been conducted 

on mass balance (Dehecq et al., 2018; Zemp et al., 2019), 

glacial area change (Patel et al., 2019; Paul et al., 2013), surface 

velocity (Altena et al., 2019; Garg et al., 2019), glacial-

hydrological modeling (Shrestha et al., 2015), and glaciers’ 

response to climate change (Rowan et al., 2015; Scherler et al., 

2011). However, accurate glacier boundary outlines are always 

fundamental for change detection and model validation. At 

present, large-scale glacier inventory initiatives mainly include 

Global Land Ice Measurements from Space (GLMS) (Raup et 

al., 2007), Randolph Glacier Inventory (RGI) (Pfeffer et al., 

2014), Glacier Area Mapping for Discharge from the Asian 

Mountains (GAMDAM) (Nuimura et al., 2015), and the Second 

Glacier Inventory of China (Liu et al., 2015). All of these were 

aimed at generating a global dataset of land glaciers. However, 

the alpine glaciers that are widely distributed in the Pamir, 

Karakorum, Kunlun, Nyainqentangula, and Himalaya 

Mountains (Khan et al., 2015; Scherler et al., 2011; Shukla and 

Garg, 2019; Zhang et al., 2016) are heavily covered by debris. 

Due to the reflectance of supraglacial debris is similar to that of 

non-glacier slopes (Paul et al., 2004) and because there is a lack 

of continuous, large-scale, high-quality optical images that are 

not affected by cloud and terrain shadows, mapping the 

supraglacial debris cover based on remote sensing is 

challenging compared to mapping clean ice or snow.  

 

In the past, attempts at boundary identification of glaciers with 

debris cover were made with the assistance of individual 

parameters such as the normalized difference vegetation index 

(NDVI), normalized difference snow index (NDSI), normalized 

difference water index (NDWI), and spectral band ratio 

thresholds (e.g., near-infrared/short-wave infrared (NIR/SWIR)) 

or their combination from optical remote sensing images (Alifu 

et al., 2016; Bolch et al., 2010; Mölg et al., 2018). The aim was 

to distinguish between clean ice and debris-covered ice. These 

methods can robustly delineate clean ice or snow, but they 

cannot accurately and automatically classify debris-covered 

glacier ice as distinct from clean ice and the surrounding land 

surface (Robson et al., 2015). This has stimulated studies on the 

use of other parameters such as geomorphic parameters derived 

from a digital elevation model (DEM) (Patel et al., 2019; Paul et 

al., 2004) and thermal characteristics from the infrared band 

(Singh and Goyal, 2018), as well as utilizing the coherence 

change between two successive synthetic aperture radar (SAR) 

images (Janke et al., 2015; Robson et al., 2015). However, 

complex pre-processing and severe terrain noise of SAR data 

make large-scale applications difficult. 

 

In recent years, machine-learning-based classification methods 

have been applied to identify glacial outlines (Racoviteanu and 

Williams, 2012; Zhang et al., 2019). Machine learning has 

advantages for extracting land surface information from remote 

sensing images (Maxwell et al., 2018) because mining large-

scale and time-series land information from massive remote 

sensing data is a computationally intensive task and requires 

powerful computing platforms for analysis. Fortunately, some 

geospatial cloud-computing platforms are emerging to meet this 

demand, such as Google Earth Engine (GEE), Amazon Web 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-417-2020 | © Authors 2020. CC BY 4.0 License.

 
417



 

Services (AWS), Earth Server (ES), and Earth Observation Data 

Centre (EODC) (Guo et al., 2020). Among these, GEE has 

obvious advantages because it is an open-source cloud-based 

platform for planetary-scale geospatial analysis that integrates 

mainstream free satellite data such as the Landsat archive, 

Sentinel series imagery, and other terrain products and climate 

data (Gorelick et al., 2017). It can quickly pull information from 

massive satellite-image data on various high-impact societal 

issues such as forest resources (Hazel et al., 2016), water 

resources (Pekel et al., 2016), land use classification (Dong et 

al., 2016), and other fields. 

 

The objective of this study is to develop an automatic algorithm 

for identifying debris-covered ice and mapping its spatio-

temporal distribution by combining glacier inventory data and 

remotely sensed images based on the GEE geospatial analysis 

platform. The study is focused on glaciers in the Hunza Valley 

in the Karakorum Mountains of Pakistan. Based on the 

traditional knowledge-based approach, Otsu’s method was 

utilized to optimize thresholds of band-based indices and 

machine learning algorithms such as random forest (RF), 

support vector machine (SVM), and classification and 

regression tree (CART) that are used to classify supraglacial 

features, including debris-covered glacier ice, based on the 

spatial resolution of the images used. Raw spectral information, 

band ratios, and color-to-grayscale conversion from Landsat 5/8 

optical satellite imagery and the topographical components 

derived from SRTM DEM products were extracted as feature 

variables in the machine learning model. The same scheme was 

used to generate a time-series of the debris-covered area and 

bare ice area in the study area. Finally, the results were 

comprehensively analyzed together with other data derived at 

the same time. 

 

2. STUDY AREA 

The Hunza Valley is an area measuring ~11000 km2 located in 

western Karakoram, Northern Pakistan (latitude 36°00'15"~ 

37°05'23" N, longitude 74°02'57" ~ 75°46'48" E) (Figure 1). 

The topography across Hunza Valley is characterized by large 

altitudinal variations from 1,341 m to 7,831 m above sea 

level(a.s.l.). The valley is home to glaciers with a total area of 

~3600 km2 that accounts for ~33% of the basin area based on 

the RGI 6.0 dataset (RGI Consortium, 2017). Most of the 

glaciers (e.g., Hispar, Batura, Barpu) are debris-covered and in a 

state of surging and advancing (Bhambri et al., 2017). Debris-

covered glaciers are potential factors driving glacial lake 

outburst floods (GLOFs) (Bhambri et al., 2019), which 

represent a major threat to local people, their properties, and 

infrastructure such as Karakoram Highway (KKH) in the Hunza 

Valley. Climatologically, the study area is arid to semi-arid and 

lies in the subtropical climate zone, with significant variations 

in precipitation and temperature (Immerzeel et al., 2012). Based 

on the MODIS 1 km LST Daily products, the mean land surface 

temperature (LST) for the entire region is -12.9℃ in January 

and 20.1℃ in July. Precipitation is mainly controlled by Indian 

monsoons and the westerlies, and average annual precipitation 

is between 180 mm and 690 mm (Qureshi et al., 2017). Snow 

cover occupies approximately 80% of the basin’s land surface 

in the winter and decreases to 30% in the summer (Tahir et al., 

2011). Types of land cover in the basin include forest (0.36%), 

shrubs (16.12%), farmland (0.76%), and barren land (82.78%). 

The main soil types include Leptosols (LP), rock outcrop soil 

(RK), and glaciated soil (GG); further, the major soil 

component in the region is highly active clay, followed by rock 

outcrops and glacial soil (Ali et al., 2018; Garee et al., 2017).  

 
Figure 1. The geographical location of the Hunza Valley with 

region of interest (ROI) sample sites of various glaciers. 

Surging glaciers are marked with triangles (Bhambri et al., 

2017). 

 

3. DATA AND METHODS 

3.1 Data and Processing 

We used cloud-free imageries of Landsat 5 Thematic Mapper 

(TM) and Landsat 8 Operational Land Imager (OLI) acquired in 

each ablation season and are available on GEE. We used 

Sentinel-2A/B Multi-Spectral Instrument images with a spatial 

resolution of 10m and a recycle time of 5 days for validation 

purpose. The 1 arc-second SRTM DEM V3 was used to derive 

topographical parameters and elevation gradient, like slope, 

aspect, and plan curvature. RGI v6.0 glacier inventory for the 

region was used to constrain the spatial extend of model runs 

for debris cover extractions which have been modified based on 

Sentinel-2 images. The processing procedure can be 

summarised as follows: the selection of images excluding 

seasonal snow cover was done by confining images acquired 

during the ablation season (e.g., during July, or days 200 to 270 

± 10 days). Then, the pixel digital number (DN) values were 

converted to atmospheric top-level reflectance (TOA) (Chander 

et al., 2009). Third, images (pixels) with the least clouds were 

selected by applying a simple Landsat cloud score algorithm 

available on GEE, generating a composite image with no-cloud 

pixels of scenes in the region, and computing per-band 

percentile values (25%) from the accepted pixels. Whole image 

data pre-processing and the subsequent classification process 

were implemented by coding on the GEE platform.  

 

3.2 Supraglacial Debris Extraction and Validation 

3.2.1   Debris-covered ice extraction: In this work, we used 

three algorithms to delineate boundaries for glaciers with debris 

cover. The first method is a multi-criterion-based approach that 

uses thresholds of NDSI < 0.4 (Dozier, 1989) to distinguish 

clean ice/snow from debris-covered ice and NDVI < 0.1 to 

exclude non-glaciers. However, a fixed NDSI threshold of 0.4 

may not be applicable for all regions. We then developed an 

optimization method based on Otsu algorithms (Otsu) to 

optimize the NDSI threshold to better distinguish clean 

ice/snow and debris-covered ice in different areas. An Otsu 

algorithm is an automatic non-parametric and unsupervised 

method for thresholding that is used to automatically detect 

targets in computer vision and image processing fields (Ng, 

2006). Otsu is a global threshold method, and its principles are 

the following: Assume that the grey value of an image is 1 ~ N, 

divide it into two groups at k value, G0 = [1~k] and G1 = [k +
1~N], and calculate the probability of the two groups, ω0 and 

ω1 , the average values for each group (μ0  and μ1 ), and the 
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entire image (μ). Then, the variance of the two groups can be 

calculated by the following equation: 

𝜎2(k) = ω0(μ0 − μ)2 + ω1(μ1 − μ)2 

where, 𝜎2(k) is a threshold selection function. By changing the 

k value within 1 ~ N, the k value at which 𝜎2(k) is maximized 

is the required threshold. 

 

The third algorithm is a machine-learning algorithm that 

includes SVM (Suykens and Vandewalle, 1999), RF (Liaw and 

Wiener, 2002), and CART (Breiman et al., 1984). In this study, 

default parameters were used, but 500 trees were set for the RF 

classification, and the kernel function of the radial basis 

function (RBF) was applied in the SVM model. It is obvious 

that a single spectrum cannot fully solve the problem of the 

similarity of ice covered with debris to the surrounding terrain. 

We generated 14 feature variables: original spectrum (b1, b2, b3, 

b4, b5, b6, b7), band ratios (nir/swir1), NDVI [(nir-

red)/(nir+red)], NDSI [(green-swir1)/(green+swir1)], NDWI 

[(green-nir)/ (green+nir)], and luminance and geomorphic 

parameters (slope and aspect). Training data were visually 

sampled based on high-spatial-resolution Sentinel-2 and Google 

Earth images. Samples in the regions of interest (ROIs) were 

divided into clean ice or snow (ice/snow), debris-covered ice 

(debris), bare land, and others (e.g., vegetation, villages, rivers 

and lakes, and shadows) according to land cover types in the 

Hunza Valley (Ali et al., 2018). For example, for 2019, 1,024 

sample points were selected, including 373 debris, 356 ice/snow, 

270 bare land, and 205 other points. The spatial distribution of 

ROIs for 2019 is shown in Figure 1B. 

 

3.2.2   Post-classification processing: The classified results 

were processed by applying slope threshold and RGI6.0 + 

outlines and removing the ‘salt-and-pepper effect’ and glacier 

ice and debris-covered areas measuring less than 0.05 km2. 

 
Figure 2. Post-classification processing: A) 3D distribution of 

slope in the debris-covered area of glaciers; B) histogram of 

slope statistics; C ) comparison of removal effects under 

different kernel radius and kernel types, 5×5 square type, and 50 

connected pixels were selected. 

 

(i) Slope threshold This is a key parameter for delineating 

glacier areas with debris cover. Some early studies proposed 

various thresholds for slope. For example, a slope < 24° can be 

used to distinguish debris-covered glaciers and the surrounding 

terrain (Paul et al., 2004). Some proposed smaller values such 

as a slope < 12° (Alifu et al., 2015) or a slope < 14~16° 

(Robson et al., 2015). We hypothesize that the slope threshold 

shows spatial heterogeneity for various glacierised mountains. 

To obtain a typical value for this region, we selected 713 

sampling points uniformly for glacier and non-glacier debris 

areas of the Hunza Valley. Our statistical results show that 

slopes of less than 25° dominate the glacier area (99% of the 

glacier debris area) with a mean slope of 6.71° (Figure 2A, B). 

Therefore, a slope threshold of 25°, which is consistent with 

Paul’s suggestion, was used to confine the glacier debris area 

from the surrounding debris area (Paul et al., 2004). 

 

(ii) Removal of the ‘salt-and-pepper effect’ This effect is 

common in pixel-based classification of land surfaces. To 

remove island pixels, we found that a 5×5 square kernel with 50 

connected pixels was the best choice to remove this effect after 

comparison of different kernel sizes (kernel radius of 3×3, 5×5, 

7×7, 9×9, 11×11, 13×13, 15×15, and 25×25) and types (square, 

circle, octagon, diamond, cross, and plus) and connected pixel 

counts (5, 10，20, 30, 40, 50, 100, 200, 300, 400, 500, 1000) 

(Figure 2C). 

 

3.2.3   Evaluation of classification accuracy: To evaluate the 

accuracy of classification models and the authenticity of the 

estimation results, we used two methods. For machine learning, 

a cross-validation method was used by dividing the total sample 

into two parts, with 70% of the sample points from each class 

randomly selected to train the model and 30% of sample points 

withheld as a validation dataset. Using the validation data, a 

confusion matrix was generated to assess the accuracy of 

predictions across class and overall accuracy through the Kappa 

coefficient and overall accuracy (OA). Another accuracy 

evaluation method using the ‘round robin’ method is based on 

multiple manual digitizations, as proposed by Paul and 

colleagues (Paul et al., 2017). Based on high-resolution 

Sentinel-2 and Google Earth images, we selected three glaciers 

(Kukki Jerab, Virjerab, and Yashkuk Yaz) and performed 

manual digital digitization five times and used the mean value 

for evaluating automatically derived extent and standard 

deviation for digitization accuracy. 

 

4. RESULTS 

4.1 Accuracy Analysis 

Figure 3A shows that results from the machine learning 

algorithms generally have high accuracy, with Kappa 

coefficients ranging from 0.82 to 0.95. In comparison, 

classification accuracy for the SVM model is slightly lower than 

for the RF model, whose Kappa coefficient is 0.9 and overall 

accuracy is 96.02%. Table 1 shows the debris-covered area on 

three debris-covered glaciers derived by machine learning 

algorithms and by manual digitization. Manual digitization for 

each glacier by five professionals shows decreased standard 

deviations for the largest to the small glaciers, specifically 

Yashkuk Yaz (26.77 ± 2.19 km2), Kukki Jerab (15.19 ± 0.80 

km2), and Virjerab (21.56 ± 0.35 km2) glaciers. The linear fit 

between the mean of the digitizations and automatic estimates 

indicates that all the machine learning algorithms can produce 

results close to reality, but the RF model is slightly better than 

the other two with reference to the determination R2 coefficient 

of 0.98 for RF, 0.97 for the multi-index method, and 0.93 for 

the Otsu-based model (Figure 3B). Table 2 shows the confusion 

matrix of model prediction versus validation data using the RF 

model and 2019 remote sensing data. The accuracy of RF model 

prediction for different land types is more than 90%, especially 

for clean ice/snow with user and producer accuracy of 100%. 

Considering the accuracy of the RF model for satellite data 

acquired at different times, the Kappa coefficient of the RF 

model was within a range of 0.92–0.95 (Figure 4). 
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Figure 3. A) Model accuracy of three machine learning 

algorithms(bar plot is overall’s accuracy and line chart are 

Kappa coefficient); B) linear fit of estimated values to manually 

digitized values. 

In addition, to verify the accuracy and reliability of RF model 

estimation, we also compared the results with those of others 

(Figure 4). For example, the manual digitization results of Mölg 

and colleagues (Mölg et al., 2018) are an area of 583.56 km2, 

which is much larger than the debris cover area of this study in 

2010 (440.10 km2). This is consistent with the overestimation 

described by the authors. Another result automatically extracted 

by Scherler and colleagues (Scherler et al., 2018) is roughly 

consistent with the results from this study, with a residual error 

of 25~33 km2. 

 

Table 1 Comparison of debris cover area values derived from automatic extraction algorithms and manual digitisation 

Glacier 

Multiple digitisations (km2) 

RF Multi-index Otsu-based 
1  2  3 4 5 Std. Mean 

Kukki Jerab 15.67 16.13 15.04 15.12 14.01 0.80 15.19 14.19 14.47 15.38 

Virjerab 21.67 21.94 21.46 20.98 21.56 0.35 21.52 19.92 22.85 24.98 

Yashkuk Yaz 25.90 27.26 26.20 30.21 24.30 2.19 26.77 27.98 26.32 27.48 
 

Table 2 Confusion matrix for RF model classification in 2019 (model prediction (top) and validation data (left))  

 Debris Ice/snow Bare Other Total Producer accuracy 

Debris 108 0 4 2 114 94.74% 

Ice/snow 0 115 0 0 115 100% 

Bare 4 0 79 0 83 95.18% 

Other 3 0 2 60 65 92.31% 

Total 115 115 85 62 377 OA: 96.02% 

User accuracy 93.91% 100% 92.94% 96.77% - Kappa: 94.60% 
 

 

 
Figure 4. Debris cover area of the study area in different periods. 

Black represents estimates by the RF classifier in this paper. 

The grey histogram represents the estimation accuracy (Kappa 

coefficient) of the RF model for the corresponding period. Blue 

represents the manual digitization results of Mölg and 

colleagues (Mölg et al., 2018) based on Google Earth images 

and 2007 ALOS-1 PALSAR-1 images. Yellow and red 

represent those automatically extracted by Scherler and 

colleagues (Scherler et al., 2018) using Landsat 8 composite 

images from 2013–2017 and Sentinel-2 composite images from 

2015–2017, respectively. 

 

4.2 Mapping Supraglacial Debris Cover 

The glacial debris cover area for six periods (1990, 2000, 2010, 

2013, 2016, and 2019) in the Hunza Valley was delineated 

based on the RF model. The total area of glaciers with debris 

cover in the study area showed a clear increase from 1990 

(394.76 km2) to 2019 (478.88 km2) (Figure 4). This increasing 

trend has been seen for other major glaciers during the same 

period as shown in Figure 5. This means glaciers in the region 

have been becoming dirty since 1990. 

 

The results for bare ice and supraglacial debris cover area are 

based on the RF model (shown in Figure 6A) and on images 

acquired in 2019 for all glaciers in the Hunza Valley. More than 

78% of the clean ice/snow area lies higher than 5,500 m a.s.l., 

while about 80% of the debris-covered ice is distributed 

between 4,000 and 5,000 m a.s.l.. The median elevations were 

approximately 5,365 m for clean ice/snow and 4,075 m for 

debris-covered ice. The median elevation of glaciers in Hunza is 

5,230 m a.s.l., which is sometimes referred to as the 

equilibrium-line altitude of glaciers in the Hunza basin (Qureshi 

et al., 2017). This means that supraglacial debris is extensively 

distributed in the lower part of the ablation area of glaciers. 

Most glaciers have a North (N) and Northeast (NE) aspect, 

accounting for 38.7% of the glacier area, and only a few 

glaciers have a West (W) aspect (Figure 6B). 

 

Overall, the debris-covered area of each glacier has also 

increased over time but varies by altitude gradient. In the low-

altitude area (i.e., < 3,200 m a.s.l.), the debris-covered area 

steadily changes without a significant increase, with an average 

variance of about 0.1 km2 but increases significantly in the mid-

altitude range (3,200 ~ 4,200 m a.s.l.). When the elevation is 

higher than 4,200 m a.s.l., the debris-covered area increases 

with large variance, especially in areas above 5,000 m. Seasonal 

snow is a key factor that causes large variance in the debris 

cover of these areas. The essence of debris expansion is the 

conversion of clean ice into impure ice, which changes its 

reflectance on remote sensing images, causing it to be identified 

as the debris class. The main material source of these moraines 

is impure ice formed by dust accumulation. Moreover, due to 

deglaciation, rocks in the ice body are exposed and accumulate, 

the bedrock on both sides of a glacier disintegrates under the 
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influence of external forces, or debris such as rolled clastic rock 

accumulates on the ice surface because of climate change. 

 
Figure 5. Random forest classifier-based area estimates for five 

glaciers. Column 1 is estimated debris area in different years 

and the trend over time, followed by an example of supraglacial 

debris extraction for each glacier, including the Landsat 8 

satellite image in 2009 (Column 2), RF classified results 

(Column 3), and debris area (Column 4). 

 

 
Figure 6. A) Distribution of debris-covered and clean ice/snow 

area by altitude based on the 2019 RF model classified result. 

The light blue area represents the equilibrium-line altitude (ELA) 

of glaciers in the Hunza Valley (4,500 ~ 5,500 m a.s.l.); B) 

Percentage of debris cover and ice/snow distribution by the 

aspect. 

 

5. DISCUSSION 

5.1 Uncertainties in Supraglacial Debris Mapping 

Uncertainty analysis, including uncertainty from measurement 

errors, models, and scale effects, is an important step in 

validating the authenticity of remotely sensed products (Wu et 

al., 2014). Aiming to determine the extent of debris cover using 

remote sensing data, we analyzed sources of uncertainty in this 

paper. This mainly includes the following aspects: i) Errors 

from remote sensing data, including distortions generated by the 

sensor during image acquisition, and image quality and mixed 

pixel effects caused by spatial resolution. Satellite data directly 

determine the quality of the classification results, especially in 

high mountain areas, which are affected by clouds and steep 

terrain. In this paper, to exclude the impact of fresh snow, we 

selected images from the melting season with heavy cloud cover. 

This resulted in a lack of high-quality images for some years, 

requiring us to use images from previous and subsequent years. 

ii）Errors from ground observation data, such as the counts and 

spatial distribution of the sample points in this paper for 

machine learning classification. iii) Errors from classification 

methods, mainly including model types, selected feature 

variables, value selection for model parameters or thresholds, 

and accuracy evaluation method. iv) The complex surface types 

of debris-covered glaciers, such as stagnant ice in glacier tongue 

areas, cliffs and ponds on debris-covered area, large moraines, 

and dirty ice. 

 

Generally, the methods for delineating debris include manual 

digitization and multi-rule-based and supervised classification. 

From the nature of different algorithms, manual digitization is 

time-consuming, and the interpretation accuracy varies 

depending on the experience of the interpreter. The multi-rule-

based method can quickly produce binarised results, with 

simple post-classification processing. However, the rule-based 

method generally determines the threshold based on experience, 

and this threshold may not be suitable for all glacier areas. 

Fortunately, the Otsu-based method developed in this paper 

addresses this problem and automatically calculates the 

threshold, which is more flexible than the empirical threshold. 

Supervised classification is complicated and requires a huge 

amount of calculations, but when it is combined with geospatial 

big data analysis platforms such as GEE, it has great potential 

for classification. From the perspective of the classification 

effect, all methods are highly robust for identifying clean ice or 

snow, but there is a slight difference in the identification of the 

debris-covered layer, which is mainly reflected in the glacier 

tongue and the interface area between clean ice and debris-

covered ice. All methods have inaccurate identification at the 

glacier tongue with thicker debris or vegetation (Vezzola et al., 

2016). At the interface of clean ice and debris-covered area, the 

effects of machine learning classification are the best, followed 

by the Otsu-based method. On the whole, the Otsu-based 

method is fast and can combine RGI data with appropriate 

manual corrections, making it highly suitable for large-scale 

glacier inventory. Further, because the pixel-based classification 

considers only the spectral characteristics of a single pixel, it is 

easy to identify the ponds and cliffs on debris-covered glaciers 

as water or clean ice. In addition, the results with salt-and-

pepper effects often require post-classification processing, 

especially for machine learning algorithms. Therefore, object-

based classification based on image features such as shape or 

topological features has been developed with higher accuracy 

than pixel-based methods (Kraaijenbrink et al., 2016; Robson et 

al., 2015). For example, Robson and colleagues (Robson et al., 

2015) showed that compared with the pixel-based method, an 

object-based method can improve the classification of debris-

covered glaciers by 10%. 

 

5.2 New Approaches for Future Work 

The biggest challenges in debris-covered ice delineation are the 

complex surface features of glacial tongue areas (i.e., stagnant 

ice) and mixed pixels caused by the coexistence of debris and 

clean ice on upper glacier areas. Due to high-resolution optical 

remote sensing, images have more detailed characteristics, 

making the first approach conducive to high-precision detection 

of targets. Extraction of multiple feature variables, such as 

texture features, combined with the powerful capabilities of 

deep learning, is a method capable of extracting these complex 

surface features. 
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Another approach makes full use of the motion characteristics 

of glaciers to identify debris-covered ice. Ice flows, which are a 

major feature distinguishing glaciers from other natural bodies, 

control the basic process of glacial change. Observations of 

glacier ice flow are of great significance to reveal glaciers’ 

changing rules and predict their future changes. Ice flow can be 

monitored by remote sensing methods such as visual tracking, 

cross-correlation (Fahnestock et al., 2016), and interferometric 

radar (Paul et al., 2013). Previous studies have used glacier 

velocity data to analyze glacial motion mechanisms, test glacial 

flow theories, and identify surging or advancing glaciers 

(Dehecq et al., 2018; Quincey et al., 2011), but no study has 

used glacier mapping. Therefore, to verify the possibility of 

using glacial surface motion characteristics to distinguish 

glaciers and non-glacier areas, we conducted a test using 

ITS_LIVE surface velocity products, which are derived by 

cross-correlation feature tracking (Gardner et al., 2019). The 

surface velocity is generated from Landsat images, and the 

resampling spatial resolution is 240 m. Figure 7A shows the 

mean surface velocity from 2011 to 2018. The surface velocity 

in non-glacial areas is between 0 ~ 1 m/yr. As shown in Figure 

7B and 7C, we extracted areas with a surface velocity greater 

than 5 m/yr and 10 m/yr and overlaid the debris cover estimated 

in this paper. This showed good edge matches at coarse 

resolution. After improving the spatial and temporal resolution 

of surface velocity, this motion feature can solve the problem of 

mixed pixels between glaciers and lateral moraines, especially 

for large debris-covered glaciers. 

 
Figure 7. A) Mean surface velocity from 2011 to 2018. Data are 

from ITS_LIVE annual surface velocity products from the 

National Snow and Ice Data Centre. B) and C) are overlays of 

debris cover extent and area surface velocity > 5 m/yr and > 10 

m/yr, respectively. 

 

6. CONCLUSIONS AND OUTLOOK 

The purpose of this study was to develop an automatic method 

for debris-covered ice mapping and further explore the change 

in the area of debris cover of glaciers over time. We coded three 

algorithms for debris cover extent mapping based on the GEE 

geospatial big data analysis platform, and we tested them with 

data on glaciers in the Hunza Valley using Landsat satellite 

imagery. The main conclusions are i) The RF has the best 

accuracy among the classification algorithms, with a Kappa 

coefficient of 0.94, an overall accuracy of 96.02%, and 

determination coefficient (R2) of the linear fit between the 

manual digitisation of 0.98. However, after analysing the 

performance and practicability of the methods, we found that 

the Otsu-based method has great potential for large-scale glacier 

inventory when combined with manual corrections. ii) The 

supraglacial debris cover of the Hunza Valley in 1990, 2000, 

2010, 2013, 2016, and 2019 was estimated based on RF 

classifier and Landsat images. The results show that the total 

debris cover area was 394.76 km2 in 1990 and 478.88 km2 in 

2019, indicating that the debris cover on glaciers has increased 

over the past 30 years. 

 

Identification of debris is a fundamental but challenging field 

for researching glacier change and water resources. Debris 

affects the melting rate of glaciers, with thin debris accelerating 

melting and thick debris slowing melting. Due to the 

heterogeneity of debris thickness, debris-covered glaciers 

experience differential ablation, which makes the surface 

moraine gather or disperse in space. Such gathering or 

dispersing, in turn, accelerates differential ablation. This 

interaction results in the formation of supraglacial ponds and ice 

cliffs, and these affect glacier-derived runoff to a great extent. 

Moreover, these cliffs and ponds are not only factors that 

influence the hydrological process but also sources of glacial 

disasters such as GLOFs, which affect production and living 

safety in the downstream areas. With the effects of global 

warming, clean glaciers in the high mountains of Asia are 

increasingly changing into debris-covered glaciers, which leads 

to a change of discharge in rivers mainly supplied by glacial 

meltwater. Consequently, the water resources in basins and 

future trends will be greatly affected. Glacier meltwater runoff 

is an important source of freshwater for human production and 

life. Research by Immerzeel et al. shows that owing to the 

retreat of mountain glaciers, reduction of snow cover, and 

widespread shrinkage and disappearance of alpine lakes, a 

quarter of the global population is at risk of more severe water 

supply problems (Immerzeel et al., 2019). Overall, studies on 

the identification of surface features of debris-covered glaciers 

(e.g., debris thickness, glacial ponds, and cliffs) and their spatial 

distribution and seasonal variation are meant to indicate the 

response of debris-covered glaciers to climate change and the 

effect on hydrology and water resources. 
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