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ABSTRACT: 

 

Accurate detection and automatic processing of earthquake-damaged regions is essential for effective rescue and post-disaster 

reconstruction. In this study, we proposed a Combined Super-pixel Segmentation and AlexNet Detection approach (CSSAD) for 

automatically extracting damaged regions from post-earthquake high-resolution images. Simple Linear Iterative Clustering (SLIC) 

algorithm was used to segment the high resolution images to obtain more homogeneous geo-objects. Multiscale samples database, 

which took the different scale effect of damaged regions into account, was constructed based on the geometric centre of each super-

pixel. AlexNet, which achieved the automatic extraction of high-level features and accurate identification of target geo-objects, was 

used to detect the damaged regions. To enhance the localization accuracy, the output of AlexNet was further refined using super-pixel 

segmentations and masked out of shadow and vegetation. Compared with traditional method, the proposed approach effectively reduces 

the false and missed detection ratio at least 10 percent.  

 

 

1. INTRODUCTION 

In recent decades, the devastating earthquake disaster has caused 

great loss to human life and property (Geiss and Taubenboeck, 

2013; Romaniello et al. 2017). It is very important to carry out 

post-earthquake disaster assessment to obtain the post-

earthquake disaster information timely and effectively 

(Romaniello et al. 2017; Tong et al. 2012). Building damage is 

often considered as the most important sign of post-earthquake 

disaster. Accurate and automatic detection of earthquake-

damaged buildings is not only crucial for initiating effective 

emergency response actions, but also is important for estimating 

the economic losses, managing the resources to be allocated 

during the reconstruction phase (Tu et al. 2017; Jared et al. 2017). 

 

Remote sensing has long been recognized as an effective 

technology for earthquake-damaged building detection (Yeom et 

al. 2017). With the rapid development of remote sensing 

technology, it is moving towards the goal of higher spatial 

resolution, higher temporal resolution and higher spectral 

resolution. Based on new remote sensing technologies such as 

Synthetic Aperture Radar (SAR), Light Detection and ranging 

(LIDAR), and Unmanned Aerial Vehicle (UAV) photography, 

the capability of multi-platform, multi-sensor, multi-scale and 

multi-angle observation is further improved (Chen et al. 2016; 

Chiang et al. 2017). Benefited from a wealth of data sources, 

many studies have presented assessment techniques for 

earthquake building damage by using different images (Elsen et 

al. 2017; Endo et al. 2018). Change detection based on pre- and 

post-disaster image was mostly used approach in damage 

detection, which was convenient and effective enough (Huang et 

al. 2018). Considering the limitation of data acquisition for pre-

disaster, in recent years more studies focused on damage 
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detection based on the post-disaster Very High Resolution (VHR) 

images. UAV is flexible, easy to operate, low cost, safe and 

reliable. UAV images and high-definition video, were used to 

achieve the accurate assessment of damage (Cusicanqui et al. 

2018). Owing to the good observation ability, oblique aerial 

photography technology has been widely used in recent studies. 

Oblique aerial images can achieve the fine observation of 

building façade, which contributes to accurately evaluate the 

damage situation (Gerke, Kerle, 2011). In addition, considering 

the defects of different remote sensing data in object recognition, 

the damage detection using multi-source data becomes one of hot 

spots in present research (Xue et al. 2016). However, the 

registration and fusion of heterogeneous data are relatively 

difficult. After acquired abundant and detailed image data of 

post-earthquake, machine learning algorithm was regarded as the 

most reliable method to detect the building damage (Vetrivel et 

al. 2016). The common damage detection approach using 

machine learning includes following three steps: manually select 

the typical and important damage characteristics, construct 

representative training samples, and use the machine learning 

models to classify or detect the targets.  

 

With the development of the artificial intelligence and computer 

vision technology, deep learning, one of the state-of-the-art 

techniques in the field of machine learning and visual recognition, 

is identified as the commonly used and effective way to extract 

discriminative and representative high-level features (Bai et al. 

2018). Deep learning can learn nonlinear spatial filters 

automatically and generalize a hierarchy of increasingly complex 

features, which is quite applicable in damage detection from 

VHR image. The advantage of deep learning is that it can learn 

features directly from the original data, which shows more 
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flexibility and ability than traditional classification methods. In 

particular, convolutional neural network (CNN), which is 

composed of multi-layer nonlinear adaptive layer, has been 

proven to be a more effective image processing model. The 

whole CNN is end-to-end trained from the original pixel to the 

final category, thus reducing the need of hand-designed 

appropriate feature extractors. 

 

In general, CNN has been the most commonly used method in 

damage detection. However, a lot of problems remain to be 

solved. In post-earthquake VHR images, damaged buildings are 

various in size and modality (Chen et al. 2013). Thus, CNN 

suffers from the fixed receptive field, the reduced feature 

resolution, and the insufficient training sample has severely 

limited the accurate damage detection. Besides, CNN is primarily 

a pixel-based classification method, which will cause serious 

confused classification and pepper phenomenon, although they 

can take full use of high-level features. Objected-based Image 

Analysis (OBIA) can effectively avoid the occurrence of salt and 

pepper phenomenon, but it mainly relies on the low-level features 

within the segmented object (Chima et al. 2018). Combining 

OBIA technology with CNN is important in current studies. 

 

To solve these problems, we proposed one Combined Super-

pixel Segmentation and AlexNet Detection approach (CSSAD). 

On the one hand, the AlexNet can solve the problem that the 

traditional OBIA method is difficult to extract and utilize high-

level features. On the other hand, using OBIA technology can 

make up for the serious salt and pepper phenomenon. Based on 

super-pixels, we don’t need to label samples pixel-by-pixel, 

which was also a time consuming and labor intensive process. 

And super-pixels are used as the most basic analysis element, 

which contributed to increase the accuracy. 

     

2. STUDY AREA AND DATA 

The study area locates in Port-au-Prince, the capital city of Haiti, 

where an earthquake with a magnitude of 7.0 on the Richter scale 

struck on 12 January 2010. The epicentre was located 

approximately 25 km west of Port-au-Prince. This strong 

earthquake caused extensive damage to buildings, facilities, and 

more than 20 million victims of the heavy losses. In Port-au-

Prince a lot of buildings were damaged or even destroyed. We 

chose one typical and representative region with large area to 

construct the damage database, and two small regions to test the 

proposed approach, including one subarea of sampling region 

and one area far away from sampling region in Port-au-Prince. 

 

Two post-earthquake images, including blue, green and red bands, 

were acquired from Google Earth on 17 January 2010. As shown 

in Figure 1, the image with large area (a), whose size was 

4794*3781 was chosen as the basic image of collect damaged 

samples. Image (b) and (c) were respectively chosen as test and 

validation regions for damage detection. Image (b) was the 

subarea of Image (a), and Image (c) was the other badly damaged 

area in Port-au-Prince. 

 

 
(a) region for collecting samples 

   
(b) Area1: subarea of sample region   (c) Area 2: validation area 

Figure 1. VHR images of post-earthquake in Port-au-Prince 

 

3. METHODOLOGY 

As Figure 2 showed, the research methodology included the 

following steps: (1) image processing, including image cutting 

and image super-pixel segmentation; (2) detection of damaged 

regions at pixel level based on multiscale samples and AlexNet 

model; (3) optimization of last results, including classification 

statistics at super-pixel level and mask out of vegetation and 

shadow. Besides, the visual interpretation results at super-pixel 

level were used to evaluate the accuracy of the proposed CSSAD 

method. 

 
Figure 2. Flowchart of the rapid damage detection study 

 

3.1 Image Segmentation and Damage Samples Collection 

3.1.1 Super-pixel Segmentation: Super-pixel segmentation 

algorithms group pixels into perceptually meaningful atomic 

regions, which can be used to replace the rigid structure of the 

pixel grid and greatly reduce the complexity of subsequent image 

processing tasks such as depth estimation, segmentation, body 

model estimation, and object localization. In this paper, VHR 

image is segmented into super-pixels, which are used as basic 

units to optimize damaged regions. As a widely used super-pixel 

method, the SLIC algorithm can output good quality super-pixels 

that are compact and roughly equally sized. SLIC is an efficient 

method which considers the color information of pixels and 

makes full use of the spatial information of pixels to cluster the 

pixels with similar color and close spatial distance (Csillik 2017). 
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3.1.2 Collection of Multiscale Damage Samples: Training 

samples are the prerequisite and foundation for CNN. Generally, 

they are selected manually pixel by pixel. However, this method 

is time consuming and labor intensive, which is impractical for 

fast response to rapid earthquake damage mapping. In addition, 

due to the significant scale variance inherent in post-earthquake 

objects, they present different damage characteristics with 

different size. Thus, it is unreasonable to select the training 

samples using fixed scale. In this study, we used the super-pixel 

segments to construct samples database based on image 

interpretation at different scale (20 × 20, 40 × 40 and 60 × 60) 

(Shao et al. 2019). In this way we not only improved the 

efficiency of collecting training samples, but greatly increased 

the number and type of samples, which contributed to improve 

the classification accuracy. 

 

Figure 3 shows the selection method of multiscale by the use of 

super-pixel segmentation algorithm. As shown in Figure 3, the 

post-earthquake VHR image is divided into a series of small and 

uniform regions using a super-pixel segmentation algorithm. 

Then, for each class, a couple of image patches centred at its 

geometric centre pixel are extracted as training samples for it. In 

detail, samples of each class are first selected at three different 

sizes, and then all three types of samples are resampled to the 

smallest size. Finally, all training samples selected at their 

optimal scales form the training database. 

 

 
 

Figure 3. Selection Method of Multiscale Training Samples  

 

3.2 Alexnet Model 

As a deep learning method, CNN has improved the performance 

dramatically for a wide range of computer vision tasks such as 

image classification, saliency detection, object detection, and 

super-resolution (Long et al. 2017). AlexNet was firstly proposed 

as one new deep learning architecture in ILSVRC-2012 

competitions which was very different from the state-of-art 

studies and showed high performance in object detection 

(Krizhevsky et al. 2012). Besides the increased depth of the 

network, ReLU, Dropout and LRN are first successfully used in 

AlexNet. Using GPU for operation acceleration is also another 

technology improvement. Limited to the net structure of AlexNet, 

the size of input data is capped as 227x 227x3.The net contains 

eight layers, including 5 convolutional layers and 3 fully 

connected layers. In each convolution layer, the stimulus function 

RELU and the local response normalization (LRN) process are 

included. The next three are fully connected layers. The first 

convolutional layer has 96 kernels, the kernel size is 11x11x3 

size and with a 4 pixels stride. LRN, pool size is 3 x 3 with a 

strides of 2 pixels. The second convolutional layer has 256 

kernels, its kernel size is 5x5x48. The third and fourth 

convolutional layers are behind without LRN. The third 

convolutional layer has 384 kernels, the kernel size is 3x3x256. 

While the fourth convolutional layer has 384 kernels, its kernel 

size is 3x3x192, and the fifth convolutional layer has 256 kernels, 

its kernel size also is 3x3x192. However, the fifth convolutional 

layer is behind with LRN. The first two fully-connected layers 

have 4096 neurons. In this study, we propose a flood detection 

method based on AlexNet architecture with our own image 

database. AlexNet structure is shown in Figure 4. 

 

In the training stage, three pairs of patches with size of 20 × 20, 

40 × 40 and 60 × 60 centred at each trained pixel are extracted 

and their three-channel RGB values are inputted into the AlexNet, 

where the small patch is for the first branch and the big one, 

resized to 40 × 40 before inputted into the AlexNet. Through 

training, a CNN classifier with 2 class predictions is generated 

for damage detection. 

 
Figure 4. The Structure of AlexNet 

 

3.3 Damage Optimization at Super-pixel Level 

3.3.1 Classification Statistics within Each Super-pixel: 

AlexNet predicts the presence and rough positions of target 

objects, but it has poor delineation for object borders, which 

caused a serious drop in damage detection accuracy. In a broad 

damaged area, intact building with small area may be influenced. 

There is a possibility to combine super-pixel segmentations and 

the coarse classification of AlexNet to improve the localization 

accuracy of objects. Firstly, we achieve the coarse classification 

of AlexNet. Then we used the super-pixel boundary and max 

voting method to get the optimization result, which avoid the 

situation that coarse segmentation tends to neglect the small 

objects and the fine segmentation inclines to generate the 

spurious regions in geo-object (Huang et al. 2019). The regions 

and region contexts information are well-preserved in the super-

pixel segmentation results.  

 

In detail, we first conducted the damage detection at pixel level 

based on multilevel image database using AlexNet and the 

damage type of each pixel were predicted. Then, the last 
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predicted class of each super-pixel was calculated using the 

following argmax function: 

      (1) 

In this formula, Pk  refers to the class that accounts for the 

majority of areas within that region.  is the predicted class of 

each pixel. S(k) is the number of pixels within super-pixel k. 

 

3.3.2 Mask out of Vegetation and Shadow: Vegetation and 

shadow were firstly extracted at pixel level. An image segment 

was then identified as a specific class using majority rules for 

image objects. 

 

In this study we used one vegetation index for Google images 

(GVI) referring to the research results (Meyer and Neto 2008), 

which was calculated by Equation (2). In this formula 

G'=G/(R+G+B, R'=R/(R+G+B), B'=B/(R+G+B). A pixel with a 

GVI value higher than the selected GVI threshold was identified 

as vegetation; otherwise, it was identified as non-vegetation. 
 

      (2) 
 

Brightness, which is the average of pixel values from red, green 

and blue bands, can effectively separate shadow and non-shadow. 

A thresholding method was adopted in shadow extraction. 

Because of the significant difference, the optimum threshold was 

easily identified after few threshold tests.  

 

After vegetation and shadow were extracted at pixel level, the 

majority rules at object-level were used to produce extraction 

results at object level. Specifically, if pixels of specific class 

within the object were the most, the image segment was 

identified as a specific class. Based on the extracted shadow and 

vegetation, they were masked out from the final cluster result to 

optimize the extraction result. 

 

3.4 Accuracy assessment 

The accuracy of the proposed method was evaluated based on 

visual comparisons. Referring to visual interpretation results 

based on higher-resolution remote sensing images which reached 

0.14m, we used the overall accuracy, mistake rate and miss rate 

based on error matrix to evaluate the accuracy of extraction result. 

The visual interpretation results were shown in Figure 5. 

 

  
(a)  Area1                                      (b) Area2 

Figure 5. The visual interpretation results of Area1and Area2 

 

4. RESULTS 

4.1 Image Segmentation and Results Analysis 

Super-pixels segmentation has a great influence on the collection 

of damage samples and optimization of detection results. To 

illustrate and validate the applicability and advantage of SLIC 

algorithm, we compared the SLIC segmentation result with the 

multiscale segmentation using the Fractal Net Evolution 

Approach (FNEA). During multiscale segmentation, we kept the 

typical parameters, such as segment number and compactness 

unchanged. The final segmentation result was shown in Figure 6. 

 

In order to detect the damaged buildings of minimum size in the 

study area, the average length of sides for each super-pixel should 

be less than the minimum length of damaged regions. By 

repeating segmentation experiment, we set the segmentation 

number of image to 8067. Both of optimization and iteration 

process were repeated 20 times.  

 

  
(a)                                              (b) 

Figure 6. The segmentation results of SLIC (a) and FNEA (b) 
 

To reasonably evaluate the segmentation results of different 

segmentation methods, we used the Average Area (AA), the 

Standard Deviation of Area (SDA), the Average Length-Width 

Ratio (ALWR) and Standard Deviation of Length-Width Ratio 

(SDLWR) as the statistics index to evaluate the size and shape of 

the super-pixel object. As shown in Table 1, the SDA and 

SDLWR of segments computed using FNEA algorithm were 

higher compared with SLIC algorithm. Thus, SLIC algorithm can 

produce segments with more uniform grain size. 

 

Table 1. Statistics for segmentation results using FNEA and SLIC 

 

4.2 Damage Detection based on Multiscale Samples 

4.2.1 Damage Detection at Pixel Level: As discussed in 

Section 3.1.2, in this study we collected damaged and undamaged 

samples in three different scales. Based on the trained model, the 

damage detection at the pixel level was conducted using the 

sliding window of 40*40. The detection results of damaged 

regions using AlexNet at pixel level were shown in Figure 7. 

Referring to the visual interpretation results, the detection 

accuracy was evaluated using the overall accuracy, false 

detection ratio and missed detection ratio. 

 

Referring to Figure 5, the final detection result basically covered 

the damaged regions extracted from visual interpretation, 

although they showed a salt-and-pepper appearance throughout 

study areas. Concluded from Table 2, the overall accuracy was 

relatively high. This was mainly caused by the great quantity 

difference between damaged and undamaged numbers. Thus, the 

overall accuracy was not enough to actually reflect the final 

detection accuracy. False detection ratio and missed detection 

ratio were used to evaluate the final detection result.  

  
(a)                                              (b) 

 
Segment 
number 

AA SDA ALWR SDLWR 

FNEA 8067 101.14 243.01 7.58 10.54 

SLIC 8067 89.27 96.25 1.83 2.12 
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Figure 7. The detection results of damaged regions using AlexNet 

at pixel level for Area1 (a) and Area2 (b) 

 

In conclusion, false detection ratio and missed detection ratio 

were high because of the salt-and-pepper appearance. Some 

undamaged regions of small area were detected as damaged 

regions. Moreover, AlexNet has poor object delineation for intact 

buildings, which caused the unclear boundaries between 

damaged regions and undamaged regions.  

 

Table 2. Accuracy of extraction result at pixel level 
 Area 1 Area 2 

 DA UNDA Total DA UNDA Total 

DA 905 231 1136 759 187 946 

UNDA 259 6672 6931 201 6398 6563 

Total 1164 6903 8067 984 6585 7569 

OA 

(%) 
93.92 94.55 

FDR 
(%) 

20.33 19.76 

MDR 

(%) 
22.25 20.43 

Note: DA=damaged, UNDA=undamaged, OA=overall accuracy, 

FDR=false detection ratio, MDR=missed detection ratio. 

 

4.2.2 Damage Optimization at Super-pixel Level:  

Considering the poor object delineation for damaged regions, in 

this study we used the function argmax to classify each super-

pixel based on the detection result at object level. It should be 

noted that although the false detection ratio at the pixel level was 

high, the missed detection ratio was relatively lower. It indicated 

that the following damage detection at super-pixel level 

improved the extraction accuracy compared with the pixel-based 

approach to a certain extent. After mask out of the vegetation and 

shadow, the optimized results were showed in Figure 8. 

Detection accuracy was also evaluated using the overall accuracy, 

mistake rate and miss rate as shown in Table 3. 

 
 

  
(a)                                              (b) 

Figure 8. The detection result of damaged regions using AlexNet 

at super-pixel level for Area1 (a) and Area2 (b) 

 

As seen from Figure 8, the salt-and-pepper appearance was well 

controlled. The detected damaged regions basically covered the 

visual interpretation results. Moreover, the last result achieved 

the better object delineation for damaged and undamaged regions. 

As concluded from Table 2 and Table 3, there was a nearly 10% 

decline for false detection ratio as the low miss detection ratio 

was kept. The last optimized results were convincing enough. 

 

Table 3. Accuracy of extraction result at super-pixel level 
 Area 1 Area 2 

 DA UNDA Total DA UNDA Total 

DA 896 140 1036 838 108 946 

UNDA 294 6737 7031 243 6380 6623 

Total 1190 6877 8067 1081 6839 7569 

OA 
(%) 

94.62 95.36 

FDR 

(%) 
13.51 11.42 

MDR 
(%) 

24.71 22.48 

Note: DA=damaged, UNDA=undamaged, OA=overall accuracy, 

FDR=false detection ratio, MDR=missed detection ratio. 

 

4.3 Comparison with Other Methods  

In order to illustrate the advantage of CSSAD approach we 

proposed in this study, we conducted the comparison 

experiments using the Traditional SIFT-BOW approach and 

Conventional CNN model, which were widely used to achieve 

the object detection in recent research. It should be noted that we 

used the same samples to train the model. And the damaged 

regions were detected using the sliding window of 40*40. After 

mask out of the vegetation and shadow, the last detection result 

was shown in Figure 9. Detection accuracy was shown in Table 

4. We just used Area 2 to conduct the comparison experiment. 

 

As seen from Figure 9(a), there was obvious salt-and-pepper 

appearance. Misclassification rate and miss rate were relatively 

higher, which indicated that the traditional SIFT-BOW approach 

was not effective enough to detect the accurate damaged regions. 

In contrast, salt-and-pepper appearance was better in Figure 9(b). 

And the detected damaged regions basically covered the visual 

interpretation results. However, as Table 4 showed, compared 

with the detection result using AlexNet model, the detection 

accuracy still need to be promoted. Considering the difference in 

network structure, the fact that the deeper network produced 

more accurate result was verified. In addition, the detection result 

at pixel level was not accurate, which was obvious in Figure 7. 

 

  
(a)                                              (b) 

Figure 9. The detection result of damaged regions using SIFT-

BOW (a) and Conventional CNN (b) 

 

Table 4. Accuracy of extraction result at pixel level 
 SIFT-BOW  CNN  

 DA UNDA Total DA UNDA Total 

DA 461 485 946 735 211 946 

UNDA 357 6072 6623 289 6334 6623 

Total 942 6557 7569 1024 6585 7569 

OA 
(%) 

86.31 93.39 

FDR 

(%) 
51.27 22.30 

MDR 
(%) 

43.64 28.22 

Note: DA=damaged, UNDA=undamaged, OA=overall accuracy, 

FDR=false detection ratio, MDR=missed detection ratio. 

 

5. DISCUSSION 

Rapid assessment of the building damage can not only provide a 

reliable reference for the emergency response team, but also 

provide a basis for the reconstruction of disaster areas after the 

earthquake. In this paper we proposed one CSSAA approach to 

detect the damaged regions from VHR images.  

 

Considering the rich spatial information contained in high-

resolution images and the complexity of the various damaged 
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geo-objects, selecting the right feature is the most basic task in 

image classification. Traditional method focused on the common 

spectral and texture features, which need to be empirically 

designed after many time consuming and labor intensive 

experiments. Moreover, these low level characteristics are too 

limited to recognize the damaged buildings with complex 

characteristics. High level characteristics need to be explored in 

damage detection. In this paper, the AlexNet, one of commonly 

used CNN model, was chosen for automatic feature learning of 

high-resolution images. With the hierarchical structure of the 

CNN, image features at higher levels can be automatically 

extracted. Moreover, CNN has shown satisfied robustness and 

accuracy in detecting complex targets. However, the traditional 

CNN model detect the specified target objects at the pixel level 

and required fixed size of input images, which ignored the scale 

variation of geo-objects. Thus, it was difficult to achieve the 

accurate detection of damaged regions. To this end, we combined 

the super-pixel segmentations with AlexNet classification results 

for both efficient multiscale sample selection and better 

extractions of object boundary. 

 

As demonstrated in our experiments, the combination of image 

objects and deep features is quite effective. For one thing, it 

alleviates people from the time-consuming process of training 

sample selection and allows choosing more optimal training 

samples for each target class at various scales. For another, the 

combination of super-pixel segmentations and deep learning 

method provides accurate targets’ localization as well as 

identifications in the multiscale classified images. In addition, the 

final classification is capable to capture various targets due to the 

consideration of multiscale information. 

 

6. CONCLUSION 

Efficiently and accurately acquiring information about damaged 

buildings after earthquake disaster is crucial for disaster response 

and rescue. In this paper we proposed a CSSAA approach, which 

combined the super-pixel segmentation and deep learning, to 

detect the damaged regions. The results showed that the 

methodology is able to accommodate the rapid damage mapping. 

Considering the limitation of low-level features in damage 

detection, we used CNN model to extract the high-level feature. 

Taking the scale variation of damaged regions into account, this 

paper presents one multiscale sample collecting method based on 

super-pixels. To avoid salt-and-pepper appearance and achieve 

better extractions of targets’ boundary, we conduct the 

optimization process using argmax function at the super-pixel 

level. Generally, in this study combining OBIA technology with 

CNN to detect the damaged regions was verified as one efficient 

approach, which improved the accuracy in both localization and 

classification. Compared with other conventional methods, 

CSSAA achieve simple, practical, and appropriate for rapid high-

resolution damage detection. 
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