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ABSTRACT: 
 
The classification of different types of pasture using remote sensing imagery is still a challenge. Assessing high quality geospatial 
information of pasture management system and productivity are key factors for establishing local public policies related to food 
security. In this context, we aim to investigate how texture features, allied with Object Based Image Analysis, can contribute to the 
automatic classification of herbaceous pastures and shrubby pastures in a region of Brazilian Savannah. We used Sentinel-2 images 
from dry and rainy seasons to extract several vegetation indexes, spectral unmixing components and texture features. The SLIC 
algorithm was used for perform image segmentation and the Random Forest for image classification. The use of texture features on 
pasture classification resulted in an accuracy of 87.03%. Our key finding is that features like entropy and contrast were able to detect 
areas with a greater concentration of shrubby-arboreal elements, which are often present on shrubby pastures and may be the first 
signal of a degradation process. 
 
 

1. INTRODUCTION 

On April 2016, United Nations (UN) proclaimed the Decade of 
Action and Nutrition (2016-2025) which aims to accomplish 
several goals in order to reduce hunger and poverty by 2030 
(Baker et al., 2018). According to UN statistics, 821 million 
people suffered from food insecurity in the world by 2016. In this 
context, Brazil was one of the first countries to propose serious 
commitments to this policy, increasing the annual budget of 
several programs related to food security (United Nations, 2017). 
Brazil contributes significantly to food production in the world, 
being currently the largest exporter of beef and soybeans and it is 
expected to be the second largest exporter of corn by 2020 
(USDA, 2019; 2020). 
 
Brazil has the second highest cattle stock in the world, with 244 
million heads (only behind India with 300 million heads) (USDA, 
2019). Brazilian exports for 2019, related only to cattle beef, 
were 19% greater when compared to 2018, generating an annual 
budget of US$ 6.5 billion. Countries such as China, Hong Kong, 
Egypt, Chile and Iran represent almost 70% of the destination of 
Brazilian beef (BMIEC, 2020). 
 
The increase in beef production is highly related to pasture 
expansion in Brazil and is usually associated with the conversion 
of natural system into pastures, especially in Amazon and 
Cerrado (Brazilian Savanna) biomes (Lapola et al., 2014).  
However, with the intensification of public polices and 
international pressure, programs such as “Prevention, control and 
monitoring of bushfires in the Cerrado” (Tuchschneider, 2013), 
“Mapping Land use and cover in Cerrado – TerraClass Cerrado 
2013” (Scaramuzza et al., 2017), “Development of Systems to 
Prevent Forest Fires and Monitor Vegetation” (World Bank, 
2016) and “Integrated Landscape Management in the Cerrado 
Biome” (World Bank, 2018) were developed. The results of 
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constant monitoring of the Cerrado biome was not effortless, 
since Cerrado deforestation rates dropped from 30,000 km2/year 
for 6,500 km2/year over the last two decades (INPE, 2020). 
 
Lower deforestation rates result into fewer areas available for 
pasture expansion, and, to maintain a high beef production, 
improvements on Brazilian pasture productivity are the key for a 
future sustainable environment (Strassburg et al., 2017). Pasture 
condition is highly correlated with management systems adopted 
and can be assessed through several factors, such as plant density, 
weight and height, presence of invasive species or termite 
mounds (Dias-Filho, 2014). Cultivated pastures are usually 
associated with the predominance of a planted herbaceous specie 
with good nutrition factors for the cattle (Dick et al., 2015). 
Pastures with invasive species, specially shrubs and small trees, 
may indicate the lack of a management system and also be the 
first signal of a degradation process (Dias-Filho, 2014). 
Cultivated pastures that adopted management systems improved 
several aspects of cattle productivity, such as weaned calve 
weight, weight gain per year, slaughter weight and even milk 
production (Dick et al., 2015). Thus, monitoring not only the 
pasture areas, but also pasture condition is an important issue to 
improve public policies at a regional and propriety levels.  
 
In this context, remote sensing is an essential tool to develop 
methodologies and provide good results. Mapping pasture areas 
in Cerrado was successfully done by Sano et al. (2008) and 
Scaramuzza et al. (2017), but no pasture condition was analysed. 
Almeida et al. (2016) mapped four different covers types on 
pastures in Amazon: herbaceous pasture, shrubby pasture, 
pasture with bare soil and regeneration with pasture. However, 
all these authors used methodologies based on segmentation and 
visual interpretation of remote sensing imagery, which is time 
consuming and the quality is related to the interpreter experience. 
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This challenge was overcome by using remote sensing time series 
for automatic pasture detection regarding other land use and 
cover classes. Muller et al. (2015) used Landsat-5 and Landsat-7 
images in order to map pastures, agriculture, savannah, forest, 
water and non-vegetated lands on Mato Grosso State, Brazil. 
Normalized Difference Vegetation Index (NDVI) time series and 
the Random Forest algorithm were used to perform a pixel wise 
classification. Several statistical metrics, such as mean values, 
standard deviation and other indexes were used on the 
classification, which resulted in an accuracy of 93%. A similar 
methodology was adopted by Parente et al. (2017), who mapped 
pasture areas the whole Brazilian territory. Once again NDVI 
time series and the Random Forest Classifier were used and the 
accuracy was of 87% on a pixel wise classification.  
 
Object Based Image Classification (OBIA) was applied by Neves 
et al. (2016) in order to classify pastures, forest and agriculture in 
Mato Grosso State. Using Enhanced Vegetation Index 2 (EVI2) 
time series from MODIS (Moderated-Resolution Imaging 
Spectroradiometer) data and including polar time series metrics, 
the authors compared a pixel wise classification versus OBIA. 
Considering the pasture class, the OBIA outperformed the pixel 
wise classification with an accuracy of 92% against 75% (both 
using the Random Forest classifier), which indicates that the use 
of OBIA might be a reliable technique to improve pasture 
classification. Neither of the previous works advanced on 
different pasture covers classification, like proposed by Almeida 
et al. (2016). 
 
Several other authors classified pasture cover using other image 
processing techniques. For instance, Davidson et al. (2008) 
evaluated spectral unmixing components (Shimabukuro, Smith, 
1991) for the identification of degraded pastures. Considering 
how seasonality influences on pasture vegetation, greater values 
of the soil component were detected on degraded pasture, 
whereas, the vegetation component had higher values on 
cultivated pastures. Rufin et al. (2015) evaluated the Tasseled 
Cap transformation (Kauth, Thomas, 1976) in order to 
discriminate herbaceous pasture from shrubby pasture in Pará 
State, Brazil (Amazon biome). Once again considering 
seasonality, the high variability of the components was able to 
identify the transition between both pastures. 
 
Despite all the effort, automatic classification of pasture cover is 
still an issue. Neves et al. (2017) investigated optical image 
texture in order to classify herbaceous pasture from shrubby 
pasture on Acre State, Brazil (Amazon biome). Using images 
from both seasons and the random forest classifier, texture 
features and OBIA improved the classification of both pasture 
classes from 64.7% to 76.4%, when compared to classification 
without texture. Considering the Cerrado Biome, the 
discrimination of natural herbaceous grasslands from natural 
shrubby grasslands was also improved by the use of texture, 
especially because some texture features, like entropy were able 
to capture the transition between herbaceous and shrubby-
arboreal vegetation (Girolamo Neto, 2018). 
 
In this context, we aim to investigate how texture features, allied 
with OBIA, can contribute to the automatic classification of 
herbaceous pastures and shrubby pastures in a region of Cerrado 
(Mato Grosso do Sul State, Brazil) using Sentinel-2 imagery with 
10m spatial resolution. This study is also part of the Integrated 
Landscape Management in the Cerrado Biome Project (World 
Bank, 2018). 

2. MATERIALS AND METHODS 

2.1 Study site 

The study site is within Mato Grosso do Sul state, which holds 
10.2% of Brazilian cattle heads in an area of 17.2 million hectares 
(IBGE, 2019). The Sentinel-2 tile (T22KBB) was used as study 
site and contains partially the municipalities of Bataguassu, 
Brasilândia, Campo Grande, Nova Andradina, Nova Alvorada do 
Sul, Ribas do Rio Pardo e Santa Rita do Pardo. These seven 
municipalities (highlighted in green in Figure 1) represent 15% 
of the cattle production of the state and on 4.3 million hectares. 
 

 
Figure 1. Study site highlighting Mato Grosso do Sul State in 
Brazil, the Sentinel-2 tile and also the selected municipalities for 
the present study. 

 
2.2 Satellite and field data 

Two Sentinel-2 images from rainy (21/01/2019) and dry seasons 
(24/08/2019) were used. They were acquired in level 2A product 
(surface reflectance with values adjusted from 0 to 10000). 
Spectral bands with 10m spatial resolution were used: Blue (439-
535 nm), Green (537-582 nm), Red (646-685 nm) and Near 
Infrared (767-908 nm). The images were obtained without any 
cost on the Copernicus platform (scihub.copernicus.eu/).  
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A field work was carried out on the study site on a close period 
to image acquisition (01/09/2019 until 06/09/2019). A total of 
461 field observations were obtained considering two pasture 
classes described on Table 1.  
 

Herbaceous pasture Shrubby pasture 

Definition: More than 50% of 
the pasture area is dominated by 
an herbaceous specie. Sparse 
shrubs and small trees may 
occur. Smooth texture. 

Definition: More than 50% 
of the pasture area is 
dominated by shrubs and 
small trees. May present 
patches of bare soil. Rough 
texture. 

Sentinel-2 True Colour: 

 

Sentinel-2 True Colour: 

 

Field campaign photo: 

  

Field campaign photo: 

 
Table 1: The two pasture classes analysed in this study: class 
definitions, examples of remote sensing images (Sentinel-2 true 
colour composition of the dry season) and also photographs taken 
on the field campaign. 
 
2.3 Image processing 

Several image processing procedures were applied in order to 
obtain the variables used for classification. They are described on 
the following sections. 
 
2.3.1. Vegetation Indexes: They are used to highlight vegetation 
pixels on remote sensing imagery by analyzing the combination 
of different regions of the spectrum (Xue, Su, 2017). Seven 
different vegetation indexes (Xue, Su, 2017) were used on this 
paper and are described on Table 2. 
 

Equation  

𝑁𝐷𝑉𝐼 =
𝜌 − 𝜌

𝜌 + 𝜌
 (1) 

𝐸𝑉𝐼 =  𝐺 ∗
(𝜌 − 𝜌 )

(𝜌 + 𝐶 ∗ 𝜌 − 𝐶 ∗ 𝜌 + 𝐿 )
 (2) 

𝐸𝑉𝐼2 = 𝐺 ∗
(𝜌 − 𝜌 )

(𝜌 + 2,4 ∗ 𝜌 + 1)
 (3) 

𝑆𝐴𝑉𝐼 = (1 + 𝐿) ∗
(𝜌 − 𝜌 )

(𝜌 + 𝜌 + 𝐿)
 (4) 

𝑀𝑆𝐴𝑉𝐼2 =
(2 ∗ 𝜌 + 1 − (2 ∗ 𝜌 + 1) − 8 ∗ (𝜌 − 𝜌 ))

2
 (5) 

𝑀𝐶𝐴𝑅𝐼 =
(1,5 ∗ [2.5 ∗ ( 𝜌 − 𝜌 ) − 1.3 ∗ (𝜌 − 𝜌 )])

(2 ∗ 𝜌 + 1) − (6 ∗ 𝜌 − 5 ∗ 𝜌 ) − 0.5
 (6) 

𝑉𝐷𝑉𝐼 =
(2 ∗ 𝜌 − 𝜌 − 𝜌 )

(2 ∗ 𝜌 + 𝜌 + 𝜌 )
 (7) 

Table 2: Vegetation indexes extracted for both Sentinel-2 images, 
where, ρB,G,R,NIR = the reflectance value of the given band; L = 
soil line adjustment factor; G = gain factor; C1 e C2 = aerosol 
resistance coefficients; Lc = vegetation correction factor. 

2.3.2. Texture: Targets on a satellite image may be characterized 
by texture. A smooth texture is usually related to lower grey level 
variations in a window. On the other hand, a rough texture is 
associate with higher grey level variations (Hall-Beyer, 2017).  
In order to extract texture information of an image, Haralick et 
al. (1973) proposed the Grey Level Co-occurrence Matrix 
(GLCM), which is a second order histogram where each entry 
reports the join probability of finding a set of two grey level 
pixels at a certain distance and direction from each other over a 
predefined window. It can be calculated for 4 different directions 
inside the window (0°, 45°, 90° and 135°).  From the GLCM is 
also possible to calculate de Grey Level Difference Vector 
(GLDV), which computes absolute differences from grey level 
pairs obtained by the GLCM (Haralick et al., 1973; Hall-Beyer, 
2017). The texture features used on this paper were generated 
using the 0º direction and are described on Table 3.  
 

Feature name Equation  

GLCM Mean 𝑖, 𝑗(

,

𝑃 , ) (8) 

GLCM Contrast 𝑃 , (𝑖 − 𝑗)

,

 (9) 

GLCM Dissimilarity 𝑃 , |𝑖 − 𝑗|

,

 (10) 

GLCM Homogeneity 
𝑃 ,

1 + (𝑖 − 𝑗)
,

 (11) 

GLCM 2nd Angular 
Moment 

𝑃 ,

,

 (12) 

GLCM Entropy 𝑃 , (− ln 𝑃 ,

,

) (13) 

GLCM Std 𝑃 , (𝑖, 𝑗 − µ , )

,

 (14) 

GLCM Correlation 
(𝑖, µ )(𝑗, µ )

(𝜎 ) + (𝜎 ),

 (15) 

GLDV 2nd Angular 
Moment 𝑉  (16) 

GLDV Entropy 𝑉 (− ln 𝑉 ) (17) 

Table 3: Texture features extracted for both Sentinel-2 images, 
where, Pi,j = normalized value for the cell i,j; N = number of rows 
or columns; µi,j = GLCM mean; σi,j = the GLCM Std; Vk = the 
image object level. 
 
The texture features were calculated for each of the four Sentinel-
2 bands, the three spectral unmixing components and the seven 
vegetation indexes (10 textures per layer, e.g., 10 x 14 = 140 
texture features for each image). 
 
2.3.3. Spectral unmixing: This approach aims to estimate the 
proportion of different components inside a single pixel, 
considering that the spectral response of the given pixel is a linear 
combination of other different and know spectral responses 
(Shimabukuro, Smith, 1991). The spectral response for 
components of bare soil, shadow and green vegetation were 
obtained from 20 pure pixels (each) manually selected on the 
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images. The spectral unmixing, on both images (each one at a 
time), was performed according to the following equation: 
 

𝑟 = 𝑎 ∗ 𝑥 + 𝑒  (18) 

 
where  j = number of components; 
 i = number of spectral bands; 
 ri = mean spectral reflectance for the ith spectral band 
of a pixel containing one or more endmembers; 
 aij = spectral reflectance of the jth component in the 
pixel for the ith spectral band; 
 xj = proportion value of the jth component in the pixel; 
 ei = error term for the ith spectral band. 
 
2.3.4. Image segmentation and class attribution: The 
Superpixel approach is a region-based image segmentation that 
over segment the image in order to produce meaningful objects 
named superpixels (Çiğla, Alatan, 2010). Superpixels adhere 
well to image boundaries and the algorithm is memory efficient 
(Achanta et al., 2012). The Simple Linear Iterative Clustering 
(SLIC) superpixel algorithm was used in this paper (Achanta et 
al., 2012). The SLIC in an adaptation of the k-means algorithm, 
that computes not only the similarity of the pixels in terms of the 
colour space (e.g., RGB), but also the spatial proximity in relation 
to cluster centers, according to the following equations: 
 

𝑑 = (𝑅 − 𝑅 ) + (𝐺 − 𝐺 ) + (𝐵 − 𝐵 )  (19) 

𝑑 , = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 )  (20) 

𝐷 = 𝑑 + 𝑑 ,

𝑚

𝑆
 (21) 

 
where  dRGB = Euclidean distance on the RGB space of a pixel 
i and a pixel on a cluster center k; 
 dx,y = Euclidean distance on the x,y plane of a pixel i 
and a pixel on a cluster center k; 
 S = superpixel grid interval; 
 m = compactness of the superpixel. 
 
The algorithm creates a regularly spaced grid controlled by the 
desired number of superpixels. After that, each image pixel 
overlapped by the search region is associated with the nearest 
cluster center, then the cluster centers are adjusted on an update 
step and this is repeated until convergence. The compactness of 
the superpixel refers to how spatial proximity weights on the 
calculations and, therefore, how compact they will be (closer to 
a square). The parameters S and m used on this work were 
220,000 and 750, respectively. These values were reached after 
several empirical tests and visual evaluation of the segmentation. 
 
Considering each field observation, the pasture area was adjusted 
visually based on the Sentinel-2 images (representative area of 
the field observation). After that, we assigned classes to the 
superpixels on this area (Figure 2). This resulted on 1973 samples 
of herbaceous pasture and 1061 samples of shrubby pasture.  
 
2.4 Image classification 

The classification algorithm used was the Random Forest 
(Breiman, 2001), which previously presented good results on 
other applications of pasture mapping (Muller et al., 2015; Neves 
et al., 2016; Parente et al., 2017). The Random Forest algorithm 
is also considered computationally efficient, it is less sensitive to 
noisy data and the generation of multiple trees with the bootstrap 

technique can also avoid overfitting (Belgiu, Drăguţ, 2016). We 
built up Random Forests with 1000 trees and no pruning was 
performed (Hall et al., 2009).  
 

 
Figure 2: Example of class assignment considering one field 
observation and the respective representative area in blue. Visual 
interpretation was performed in order to assign the class of 
herbaceous pasture on the green superpixels. 
 
A total of four experiments were conducted in order to evaluate 
how texture contribute to pasture cover detection (Table 4), using 
features generated for both images (dry and wet season). Mean 
values for each superpixel were calculated for spectral 
reflectance of the Sentinel-2 bands, components of spectral 
unmixing and vegetation indexes. We also calculated standard 
deviation and skewness for the previous features. Texture 
features were extracted for each superpixel.  
 

Experiment Features used Total features 
[1] Reflectance  8 

[2] 
[1] + Spectral unmixing + 

vegetation indexes 
28 

[3] 
[2] + Standard deviation + 

Skewness 
84 

[4] [3] + Texture 364 
Table 4: Features used and number of total features used in each 

of the four experiments carried out on this study. 
 
Feature selection was performed for all the four experiments 
aiming to remove irrelevant features and improve classification 
accuracy. Four algorithms (Wrapper, Correlation Feature 
Selection, Information Gain and Information Gain Ratio) were 
tested, since each method may present better results considering 
each kind of application (Dash, Liu, 1997; Hall et al., 2009) 
 
The 10-fold cross-validation method was used in the experiments 
and each classification was repeated 10 times. An error matrix 
was generated and the metrics of Overall Accuracy (OA), Recall 
(R) and Precision (P) were employed to interpret the results. The 
equation of these metrics is described below.  
 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (22)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (23)

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (24)

 

where TP = True Positive; 

 FP = False Positive; 

 TN = True Negative; 

 FN = False Negative.  
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3. RESULTS AND DISCUSSION 

The Overall Accuracy (OA) of all experiments is presented on 
Table 5. Figure 3 shows the average values of precision and recall 
for each class on each experiment realized. All these results were 
obtained considering the Wrapper feature selection method, 
which outperformed the other methods mentioned on section 2.4. 
 
 

Experiment number Overall Accuracy (%) 
1 84.17 ± 0.08 
2 85.47 ± 0.14 
3 84.90 ± 0.13 
4 87.03 ± 0.12 

Table 5: Average overall accuracy obtained for the four 
experiments. 
 

 
Figure 3: Average values of Precision and Recall for both classes 
considering each one of the four experiments. 

 
The OA of experiment 1, using only the reflectance values for the 
Sentinel-2 bands, was of 84.17%. It will be considered the 
baseline for further analysis, together with the Precision and 
Recall values on Figure 3. 
 
The addition of vegetation indexes and unmixing components to 
the dataset (experiment 2) improved the OA to 85.47%. This 
increase was expected, since the importance of vegetation 
indexes for pasture detection was already reported by Neves et 
al. (2016) and Parente et al. (2017). After feature selection, four 
vegetation indexes were selected: the VDVI and the MCARI for 
rainy season and the VDVI and the MSAVI2 for the dry season. 
 
In order to understand why these vegetation indexes were used, a 
Pearson correlation analysis was performed between the indexes 
obtained for each season image (Figure 4). The high correlation 
values between all indexes, except the VDVI, indicates that they 
are always representing the same phenomena and, thus, 
representing the vegetation seasonality in our classifier. 
Considering that the VDVI only uses bands from the visible 
spectra (Equation 7), it obtains a different relation when 
compared to other indexes that uses the NIR band (Wang et al., 
2015). This is the explanation for the lower correlation with other 
indexes and the selection by the Wrapper algorithm. 
 
On experiment 2, the components of vegetation and shadow from 
the spectral unmixing were also selected. Davidson et al. (2008) 
already pointed out that the vegetation component had greater 
values on herbaceous cultivated pastures than shrubby pastures. 
The presence of this component also contributed to the accuracy 
improvement in our results as well. Comparing recall values of 
experiment 2 in relation to experiment 1, the improvements were 
more noticeable on the shrubby pasture recall, which increased 

from 68.94% to 72.68%. The increase on the hit rate of this class 
improved the quality of the generated map and better precision 
values were also obtained for both classes. 
 

 
Figure 4: Correlation analysis of the vegetation indexes 
considering a) rainy season and b) dry season. 
 
Experiment 3 presented a slightly lower OA than experiment 2. 
Similar features from experiment 2 were on experiment 3 after 
feature selection (vegetation indexes from the rainy and dry 
seasons and both components of the spectral unmixing). Three 
standard deviation features and three skewness features were 
selected and did not improved the classification accuracy. Muller 
et al. (2015) also used similar statistical features, but no 
explanation was given on how they affected classification results.  
 
When texture was used, the OA had the best result, which was 
87.03%. The use of texture improved, not only the recall, but also 
the precision for both classes. Experiment 4 used a total of 364 
features and the Wrapper algorithm selected 16 different features. 
Comparing to the other experiments, a pattern starts to be 
discovered, since vegetation indexes from the rainy and dry 
seasons and the shadow component of the spectral unmixing 
were selected once again. 
 
Considering only texture, five different features were selected 
(Table 6). In order to better understand these features, we decided 
to divide then into two major groups, following Hall-Beyer 
(2017) suggestion. Texture features were divided into a group 
that is related to orderliness, and other that is related to contrast. 
 
The contrast related textures are derived from features like 
homogeneity, dissimilarity and the contrast from the GLCM. 
These features evaluate how different the grey level values are in 
a superpixel. On a homogeneous superpixel, with less grey level 
differences, higher values of homogeneity are expected, whereas, 
the contrast values tend to be low. The dissimilarity works similar 
to contrast, but a liner relation is considered (Equation 10) and 
lower values are also expected for a homogeneous superpixel.  
 
The group of textures related to orderliness are derived from 
second angular moment and entropy from the GLCM or the 
GLDV. These features are directly related on how the pixel grey 
levels are distributed on a superpixel, not the difference between 
the grey level values, like on the contrast group. A more ordered 
superpixel would present a constant variation of grey level pixels 
along a direction, whereas a disorder image would present an 
uneven or random variation. A disordered superpixel has greater 
values of entropy, while more ordered superpixel have lower 
values. The second angular moment has a similar behaviour, but 
in an opposite way of the entropy. 
 
It may be hard to identify what characteristics each texture 
feature can describe, thus, an example can be found on Table 7, 
considering the image from the dry season and the respective 
superpixels and texture features from Table 6. 
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Texture feature Group Season 

Band 1 GLDV 2nd A. M.  orderliness Rainy 
Soil component GLCM homogeneity contrast Rainy 

Soil component GLDV 2nd A. M.  orderliness Dry 
Band 4 GLDV Entropy orderliness Dry 
Band 1 GLCM Contrast contrast Dry 

Table 6: Selected texture features for experiment 4 considering 
the dry and rainy seasons. 
 
The shrubby pasture has 50% or more of its area composed by 
shrubs or small trees, which was highlighted on the Soil 
component of the spectral unmixing on Table 7, as mentioned by 
Davidson et al. (2008). Considering the superpixels limits shown 
in a red dashed line, the distribution of the shrubby-arboreal 
elements (dark pixels) in the image does not follow a pattern and 
are uneven, which generates low values of second angular 
moment. On the other hand, this uneven distribution generates 
high values of entropy, which was observed when analysing the 
superpixels on the band 4 composition. There are considerable 
grey level variations within each superpixel as well, which results 
in high contrast values (represented in our case by the contrast of 
band 1). 
 
Comparing our results with other applications that evaluated 
texture for pasture cover classification, we obtained better results. 
Neves et al. (2017) obtained an accuracy of 76%, but their 
references were obtained from visual interpretation of RapidEye 
images (with 5m spatial resolution). This emphasizes the 
importance of verifying the pasture on field, carefully analysing 
the vegetation patterns.  
 
 

 

 
Comparing the above mentioned results to the herbaceous pasture 
class, almost no shrubby-arboreal elements can be seen on the  
The entropy patterns related to vegetation features found on this 
paper are similar to the ones found by Girolamo Neto (2018), 
when the author analysed natural herbaceous and shrubby 
grasslands in the Cerrado. 
 
Sentinel-2 true colour composition. The absence of these 
elements creates a smoother texture and a homogeneous area, 
thus the contrast of the superpixels (shown in a dashed green line 
in Table 7 – band 1 contrast) are low. This small difference in 
grey levels results into small entropy values, since there is almost 
none grey level variation, so it is hard to quantify if it is ordered 
or not. This kind of relationship also affects values for the second 
angular moment, which tends to be low as well. However, on the 
selected samples shown on Table 7, it is possible to see that some 
superpixels on the right edge of the herbaceous pasture 
encompassed a dirty road. Considering the soil fraction, there is 
a greater variation of this element, and this variation is ordered 
towards the 0º direction, thus greater values of this texture this 
example and the adoption of the “average” nomenclature on 
Table 7. 
 
Performing a visual analysis of superpixels misclassified, we 
noticed several cases where the error was associate with the 
pasture landscape heterogeneity. Figure 5 presents two examples, 
where the first one is an area of herbaceous pasture where the 
concentration of shrubby-arboreal elements on the north were 
misclassified. The second example is an area of shrubby pasture, 
where the lack of these elements near the road resulted into 
misclassified superpixels. 
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Table 7: Examples for the classes of shrubby pasture and herbaceous pasture on several image compositions: Sentinel-2 true colour, 
the soil component of the spectral unmixing, the near infrared band and the blue band. In red dashed lines the superpixels corresponding 
to the shrubby pasture class and on green dashed lines the ones corresponding to the herbaceous pasture class and how the respective 
texture values were for each class on each image composition. 
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Figure 5. Example of misclassified superpixels of both classes 
due the landscape heterogeneity in pastures (Sentinel-2 true 
colour composition). 
 

4. CONCLUSION 

Texture features derived from the grey level co-occurrence 
matrix and the grey level difference vector improved the 
discrimination between herbaceous pasture and shrubby pasture 
in a region of Brazilian Savannah. The best overall accuracy 
achieved was 87.03%, using the superpixel segmentation, the 
Random Forest classifier and Wrapper algorithm for feature 
selection. These metrics improved the discrimination of these 
classes considering the presence of shrubby-arboreal elements on 
shrubby pastures, vegetation patters that are not usually seen on 
herbaceous pasture. Higher values of entropy and contrast were 
found for shrubby pastures in comparison to herbaceous pastures. 
We also emphasized that a better classification was achieved by 
considering seasonality of the vegetation and the use of spectral 
unmixing fractions like soil, shadow and vegetation. 
 
Most of the misclassified superpixels between the two classes 
were related to the landscape heterogeneity in pastures, 
especially considering a few patches of shrubby pasture without 
the arboreal elements and a smoother texture. As future works, 
we aim to evaluate texture features for other pasture covers 
related to different management systems, such as the 
Silvopasture, which integrates trees and forage for cattle 
production and have a unique patter on Sentinel-2 imagery. 
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