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ABSTRACT: 
 
The main objective of the current study was to produce an accurate map of date palm (DP) plantations in the Emirate of Abu Dhabi in 
United Arab Emirates (UAE) using moderate resolution Landsat-8 (OLI) imagery. The second objective was to be able to create a more 
detailed map depicting three different categories of date palms at three different age stages: young, medium, and mature. This was 

achieved using a hierarchical integrated approach: first, Landsat-8 OLI imagery were used to map mature date palms in the study area; 
second, an object oriented classification (OOC) approach was applied at the plantation level using sub-meter Worldview-2 imagery 
(WV-2) to depict and map medium and young aged palms. Three age-stage categories of date palms were mapped with acceptable 
accuracy. The primary outcome of this classification approach was the creation of detailed maps of date palms to be used as input to a 
remote sensing (RS) based biomass estimation model for the assessment of the above ground biomass (AGB) and carbon sequestered 
(CS) of date palms. Results were validated using existing ancillary data and field checks. DP were mapped with an overall accuracy of 
94.5% which was considered high in similar conditions of drylands, while the overall kappa statistics was estimated at 0.888. 
 

 
 
 

1. INTRODUCTION 

Mapping vegetation for accurate measuring of biomass is a 
serious problem that must be resolved when quantifying carbon 
stock. Geospatial approach (RS/GIS) is widely used to collect 
information regarding forest AGB and vegetation structure as 
well as to monitor and map vegetation biomass and productivity 
at large scales(Iizuka and Tateishi, 2015; Makinde et al., 2017; 
Pflugmacher, 2011).  Although the methods detailing vegetation 
cover mapping and estimation by RS and GIS are well developed, 

they face many challenges in certain ecosystems, such as arid 
lands ecosystems with high background contribution reflectance. 
Furthermore, many plant species cannot be easily distinguished 
from other targets due to their spectral similarities. The use of 
high spatial and spectral resolutions data has to be considered as 
they help resolve such ambiguities and play essential roles in the 
quality of land cover maps. Moreover, using satellite images to 
map and correlate environmental factors is only possible if the 
target vegetation spectra are strong enough to be identified within 

the pixel, which is the case only in some dryland 
environments(Aly et al., 2016; Tian et al., 2016). This latter 
requirement presents a major challenge in desert where 
vegetation is usually sparse, offering a small spectral target that 
requires higher resolutions to be detected(Bradley et al., 2019). 
Hyperspectral sensors showed plausible classification accuracies 
in mapping major forest species and predicting the susceptible 
areas of fruit malformation(Nagaraja, 2009). Hebbar et al., 2014, 

used LISS-IV data to classify fruit trees and found that old and 
mature plantations were classified more accurately while young 
and recently planted ones (3 years or less) showed poor 
classification accuracy due to mixed spectral signature, wider 
spacing and poor stands of plantations(Hebbar et al., 2014). 
 
Furthermore, moderate resolution satellites (e.g. Landsat, and 
SPOT) proved to be effective in land cover classification for 

different research purposes and in different regions(Aly et al., 
2016; Elhag, 2016; Rembold et al., 2000; Shaker et al., 2012). 
Such multispectral optical sensors have been widely utilized 
operationally in estimating and mapping AGB(Eisfelder et al., 
2012; Kumar et al., 2015; Kumar and Mutanga, 2017; TSITSI, 
2016; Vashum and Jayakumar, 2012). Indeed, moderate 

resolution satellite data offer plausible results after conducting 
specific approaches such as pan-sharpening or fusion techniques. 
Starting with Landsat 7, a panchromatic band with 15 m spatial 
resolution, that can be used to pan-sharpen other bands and hence 
increase their interpretability, was added to the already existing 
Landsat’s multispectral sensors(Phiri and Morgenroth, 2017; 
Shaharum et al., 2018). Previous studies showed that such use of 
the panchromatic band helped achieve dramatic improvements 

(more than 15%) in classification accuracies(Gilbertson et al., 
2017). 
 
The Landsat program, MSS, TM, ETM+ and the most recent 
Landsat-8 OLI, present unique advantages in land cover 
classification applications because: (1) it is the longest running 
uninterrupted Earth observation program since 1972; (2) its 
archives are the first to offer global images free of charge (free 
access approach since 2008)(Phiri and Morgenroth, 2017; Turner 

et al., 2015); (3) the current effects of climate change make the 
research on land cover classification methods based on the 
archived Landsat images an important resource(Barbosa et al., 
2014; De Sy et al., 2012); (4) it is a very good source for 
vegetation change detection over large areas due to its relatively 
high temporal resolution (16-days revisit) and large swath (185 
km) and; (5) the suitability of the spatial resolution of Landsat 
series for regional mapping of biomass and carbon in a variety of 

ecosystems(Clerici et al., 2016). Baumann et al., 2018, found that 
Landsat-8 OLI is reliable for mapping woody vegetation (tree 
cover and shrub cover) in their study in Gran Chaco, south 
America. In their study for mapping tree canopy cover and AGB 
in woodlands landscape of Burkina Faso using Landsat-8 OLI, 
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Karlson et al., 2015, found that the image texture is more 

correlated to tree cover attributes, in particular AGB, in open 
canopy conditions compared to closed canopies due to its ability 
to capture shadow structures caused by large trees(Karlson et al., 
2015). 
 
In the current study, a hybrid classification approach was adopted 
to create a classified map of the studied area producing seven 
different land use and land cover (LULC) classes as a first step. 

In the second step, an integration of our knowledge of the studied 
area within GIS environment has been employed to merge 
classes, producing a binary mask of only two categories: 
vegetation and non-vegetation. Lastly, high spatial resolution 
WV-2 imagery was used to identify and classify date palm 
plantations within the vegetation category. 
 

2. BACKGROUND: MAPPING DATE PALMS AT 
DIFFERENT AGE STAGES  

For the purpose of tree crown detection and delineation many 
algorithms were developed(Chepkochei, 2011; Hebbar et al., 
2014; Lack and Bleisch, 2010; Rizvi et al., 2019; Sahay et al., 
2017). However, results of tree detection and delineation can be 

affected by algorithm characteristics. Indeed, different 
approaches may give different results despite working in the 
same environment. Thus, it is important to select the appropriate 
algorithm to get the suitable results. Moreover, for any algorithm 
to work properly, crowns should be, at least, detectable and 
segmented as an object in the image before classification. 
Training areas of the classes that are to be extracted must be 
chosen very carefully to not include any background pixels and 

non-targeted classes based on visual analysis and on previous 
knowledge of the area by the interpreter. By using the pan-
sharpened WV-2 images (spatial resolution 0.5 meter), date palm 
(DP) crowns can be differentiated from the background (soils, 
grasses, and weeds) and other shrubs and trees using colour, tone, 
texture, size and planting arrangement. 
 
We used ERDAS IMAGINE 2020 Objective tool, from Hexagon 

Geospatial, that employs “feature models” which work on objects 
produced by image segmentation and various other pixel-based 
algorithms which, after being vectorized, can be processed by 
geometric and textural parameters(Lack and Bleisch, 2010). 
Several algorithms were used to extract and delineate tree 
crowns, however, the selection of the suitable one is a matter of 
user-defined parameters “cue metrics” and depend on trial and 
error (See Methodology section). In general, the steps can be 
divided to levels of analysis: (1) raster data analysis which 

includes identifying date palms from other vegetation and 
classifying their age stages (mature, medium, and young) 
according to their crowns, and (2) vectorising, cleaning up the 
vector layers and creating maps. In the raster analysis part, a 
pixel-based classifier relying on spectral, textural and site 
information, is used. Many studies chose Single feature 
probability (SFP) function to extract quantitatively the desired 
class(Chepkochei, 2011; Hebbar et al., 2014; Lack and Bleisch, 

2010; Rizvi et al., 2019) using a Bayesian-classifier for statistic 
classification. Some studies include vegetation indices (e.g. 
NDVI) along with spectral and textural information(Chepkochei, 
2011; Hebbar et al., 2014; Lack and Bleisch, 2010; Rizvi et al., 
2019). In their study of mapping multiple horticulture crops using 
OOC in Krishna district in India, Sahay et. al., 2007 applied 
certain NDVI ranges as threshold to differentiate between mango 
trees and oil palms(Sahay et al., 2017). In the current study, in 

the UAE, both SFP function and NDVI threshold were used; the 
NDVI threshold was derived empirically from satellite imagery 
collected over the date palm samples identified in the field. An 

optimum range of NDVI values between 0.18 to 0.45 was found 

useful to differentiate between date palms and other vegetation 
types in the area. The definition of training areas for date palm 
crown as well as for background pixels is of central importance. 
Training areas are chosen carefully to not include any 
background pixel. Pixels of the individual palms (identified by 
training polygons) were submitted to compute pixel cue metrics 
to train the pixel classifier. The result is the pixel probability layer 
(Figure 1b). Then, the pixel probability layer is then converted 

into raster object using threshold and clump function. This 
function keeps only those pixels which have probability greater 
than or equal to a threshold value and assigns them the value of 
1, while the remaining pixels are assigned the value of 0. Then, 
it performs a contiguity operation (clump) on the binary values 
and converts the pixel probability layer to a raster object layer 
(Figure 1c). For our study area, the threshold value was set to 
0.50 based on the knowledge that lowering the threshold value 
can lead to inclusion of some non-tree pixels(Chepkochei, 2011; 

Hebbar et al., 2014; Rizvi et al., 2019). In order to separate and 
differentiate the palm crowns according to their ages, two other 
functions were applied: “Probability filter” and “Size filter” so 
that pixel objects with high probability are kept while others are 
given the status of ‘background’. The “Probability filter” 
operator removes all the raster objects whose zonal probability 
mean is less than the specified minimum probability set to 0.75 
in our case. While the “Size filter” removes raster objects that are 

too small or too large thus allowing one to restrict the set of raster 
objects to those of an appropriate crown size of individual 
palms(Chepkochei, 2011; Rizvi et al., 2019). With high 
resolution multispectral satellite imagery like WV-2, the 
differentiation between palms crown sizes according to their ages 
is explained in detail in the Methodology section below. 
 
The second level of analysis was done on the vector data model 

by first vectorising the three raster outputs (mature, medium, and 
young), smoothing the polygons, calculating the areas, and 
cleaning up the maps manually (Figures 1d, 1e, and 1f). 

 

Figure 1. Separating age classes of date palm plantations: an 

example from Al Foah date palms farm: (a) Original WV-2 

image (RGB:7,5,4); (b) SFP using Bayesian network; (c) 

Threshold and clump applied; (d) Mature palms layer; (e) 

Medium palms layer; and (f) Young palms layer. 
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3. METHODOLOGY 

Six Landat-8 OLI scenes covering Abu Dhabi emirate are pre-
processed, pan-sharpened, and combined to build a single large 
mosaic image covering the study area. Each scene is classified 
using hybrid methods to produce an accurate LULC map, then 

reclassified (recoded) to produce a bitmap including only 
vegetation and non-vegetation areas. Then, a thematic map of 
date palm (DP) plantations in Abu Dhabi is built by 
distinguishing between DP and non-DP classes. An accuracy 
assessment procedure is run to evaluate the quality of the LULC 
map produced using available reference data and researchers’ 
knowledge of the study area. On this basis, an error matrix is 
produced for each map to determine the overall accuracy, the 
user’s and producer’s accuracy, and the kappa 

coefficient(Rozenstein and Karnieli, 2011; Vicharnakorn et al., 
2014). All procedures are implemented using ERDAS IMAGINE 
2020 and ArcGIS 10.5 software packages. A detailed step-wise 
methodology is developed and presented in the following sub-
sections. 

 
3.1 Study area 

The Emirate of Abu Dhabi is located in the West and South West 
part of UAE and is bounded by 22° 55  ́to 24° 48  ́N, and 51° 30´ 
E to 56° 00  ́E. The desert areas constitute approximately 85% of 
the Emirate’s main land, dividing into five landforms: sand 
dunes, inter-dunal sands, coastal sabkhas (flat plains with salty 

crust), inland sabkhas and exposed rock. The climate of the study 
area is affected by its location inside the desert with proximity to 
the coasts of the Arabian Gulf and the Gulf of Oman. The climate 

is characterized by a minimum average temperature of 14.7C 

while the average maximum can reach around 42.9C. The 

annual average long-term rainfall is 59.1 mm and the humidity is 
44.3% (NCM, 1995-2018). Elevations vary between main sea 
level in coastal areas and increases smoothly in desert areas 
averaging an altitude of about 200 m above sea level (where most 
date palm plantations are found).  The Emirate, which hosts the 
capital city of Abu Dhabi has witnessed dramatic conversions of 

its lands from being desert / desert-like covered country to an 
urbanized and well-developed modern state. The government 
invested heavily in planting and maintaining green areas, 
including more than 3000 farms many of which are date palm 
plantations. Six pan-sharpened images were used for building a 
single large mosaic image covering the whole Abu Dhabi area 
(Figure 2). 

 

Figure 2. Study area (six Landsat-8 OLI images used to create 

one single mosaic image) 

 

3.2 Data processing 

Six cloud free Landat-8 OLI images covering the Emirate of Abu 
Dhabi (Path/Raw: 160/43, 160/44, 161/43, 161/44, 162/43 and 
162/44), of Level-2 atmospherically corrected were downloaded 
from U.S. Geological Survey website (USGS). They all were 

acquired in April and May 2017. In addition, six panchromatic 
bands (level-1) were downloaded for the same scenes (same 
Path/Row and date) for pan-sharpening purposes. For each image 
selected, bands 2, 3, 4, 5, 6, 7, and 8 of Landsat-8 OLI were 
stacked and saved in ERDAS Imagine (.img) format. All images 
were co-registered to the Universal Transverse Mercator (UTM) 
projection (Zone 40, WGS 84).  Furthermore, the panchromatic 
band-8 was used to pan-sharpen the other bands in order to 
process the whole image sets at 15 m instead of the original multi 

spectral Landsat 30 m resolution. Nearest Neighbourhood (NN) 
algorithm was used for the resampling of the output images. The 
Anderson classification system (Level 1), recommended for use 
with Landsat resolution data(Anderson, 1976; Rozenstein and 
Karnieli, 2011), was used. Our classification scheme adopted 
seven LULC classes representing: urban (build-up including 
roads and buildings), vegetation (oasis, farms, palm plantations, 
parks, forests), sand sheets (dark soils and gravel), sand dunes 

(bright soils), deep water and shadows (including black surfaces), 
shallow water, and sabkhas (including bright surfaces). A hybrid 
classification, combining both supervised and unsupervised 
methods was applied. Therefore, two stages of classification were 
conducted; first, we ran unsupervised classification to minimize 
bias in the selection of training areas and seed signatures; second, 
a comprehensive set of spectral class signatures was used as 
training data for supervised classification(Rozenstein and 

Karnieli, 2011). 
 
The six scenes were pan-sharpened and displayed as false color 
composite of bands 5,4, and 3; they were radiometrically adjusted 
using histogram equalization for better interpretation. Each 
image was initially clustered into 80 clusters using K-mean 
classifier and a maximum number of iterations of 80, found to be 
the optimum number for Landsat data; allowing the clustering to 

stop naturally upon reaching the convergence threshold of 0.990 
(Yang and Lo, 2002). Then, the images were classified using 
signatures from training sites that include all classes. The 
signatures were collected by digitizing polygons onto the images 
to collect the training samples (total of 720 training sets). The 
signatures were evaluated by drawing the mean signature values 
of each class against the Landsat-8 OLI bands. The maximum 
likelihood classification (MXL) was run and then, classes of the 
resulting image were recoded into the seven LULC classes. All 

classified scenes were mosaicked, and the study area was subset 
using available vector shapefile of the study area boundaries. The 
area of each LULC class was calculated in hectare. The thematic 
LULC map was filtered to clean up the single pixels by using a 
Majority Filter with window size of (3x3) and, manually cleaning 
up using the Fill Tool by filling the miss-classified pixels with 
the right values. 
 

3.3 Extraction of vegetation areas and mapping of date palm 
plantations 

3.3.1 Vegetated areas and date palms mapping (Landsat 8 
OLI): In order to map date palm plantations in Abu Dhabi, a bit 

map was produced including only two land cover classes: 
vegetated / non-vegetated (Southworth et al., 2002). The Recode 
function in ERDAS Imagine 10.5 was used to produce the 
vegetation bitmap, where a value of 1 was assigned to vegetated 
class and a value of 0 was assigned to non-vegetated class. The 
same classification procedure used to produce the LULC map 
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was applied here: an unsupervised classification of 80 clusters 

using k-mean classifier was run, followed by selecting training 
sets of pure spectral signatures to run MXL classifier; and then 
recoding to produce two classes: DP and non-DP classes. The 
selection of training sets (spectral signatures), was produced 
based on previous intensive field visits to date palm farms in the 
study area including: AlAin, AlFoah, Hayer, Yaher, Salamat, 
Khatem, Khaznah Wathbah, Nahdha, and Swihan. The GPS 
points (x,y) collected from these visits were projected on the 

image to collect pure spectral signatures of DP. Extraction of the 
vegetated areas required converting the LULC map of Abu Dhabi 
to a binary map by merging all non-vegetated classes namely: 
urban, sand sheets, sand dunes, deep water, shallow water, and 
sabkhas, into one class and be recoded as non-vegetation. 
Vegetated areas (pixels) were extracted (subset) from the original 
image of the study area by masking the non-vegetated pixels 
using Subset/Mask functions in ERDAS Imagine 10.5. Then, the 
vegetated areas layer was converted from raster to vector to 

produce vegetated areas in shapefile format. Here, a second level 
of classification was run in order to produce the date palm (DP) 
bitmap where a value of 1 is assigned to DP class and a value of 
0 is assigned to non-DP class. Then, the areas of DP classes were 
computed (section 4). 
 

3.3.2 Separating Age classes of date palm plantations (WV-
2): In this step, WV-2 covering all the vegetation areas of Abu 

Dhabi using the “vegetated area” shapefile which was created 
previously, was used to run OOC. The OOC procedure applied 
to 349 WV-2 images covering the eastern region of the Emirate 
of Abu Dhabi (Figure 3).  

 

Figure 3. OOC was applied to WV-2 images at eastern district 

of Abu Dhabi to separate three different age stages of date palm 

plantations 

 
WV-2 characterized by its multispectral bands (eight bands and 
one panchromatic) with 1.85m spatial resolution for the eight 
bands and submeter (0.46m) for the panchromatic. For each 
image selected, only three bands plus the panchromatic band of 
WV-2 were used and saved in ERDAS Imagine (.img) format. 

The three bands: band 3 (green), band 5 (red), and band 7 (NIR1) 
are equivalent to bands 3, 4, and 5 in Landsat 8 OLI (green, red, 
and NIR) which were proven to be significant RS variables in our 
study(Issa et al., 2019). The fusion of panchromatic with 
multispectral images of WV-2 scenes was done using the NN 
algorithm in order to create an image at a spatial resolution of 
0.5m(Jawak et al., 2013). In order to reduce the size of WV-2 
images for further processing, the vegetated areas were subset 
from each WV-2 scene. The subset process was done by 

overlaying the vegetated area vector file produced in Landsat-8 

LULC classification and the personal interpretation of WV-2 

images. A semi-automatic object-oriented feature extraction 
model was used for delineation of the date palm plantations using 
ERDAS Objective Imagine(Chepkochei, 2011; Hebbar et al., 
2014; Lack and Bleisch, 2010; Rizvi et al., 2019).  
 
The feature model tree for extraction date palm crowns was 
created and optimized for a small area in AlFoah date palms farm, 
north to AlAin city. This farm has more than 60,000 palms in 

different cultivars and ages and was intensively visited during the 
project(Issa et al., 2019, 2018). Later, the feature model tree was 
transferred to a whole WV-2 pan-sharpened images(Lack and 
Bleisch, 2010). Finally, the optimal parameters were set using the 
trial-and-error approach. 
 
Finally, the shapefiles were merged using geoprocessing tool 
(Merge) in ArcGIS software and map was produced for mature, 
medium, and young date palm plantations. The area of each DP 

age stage was computed. A confusion matrix was created, and 
accuracy measures were calculated for LULC map which 
produced by applying pixel-based classification (PBC) on 
Landsat 8 OLI images and the age stages map of date palms 
which produced by applying OOC on WV-2 images.  
 

4. RESULTS 

Figure 4 shows the main classes’ percentage in the study area 
including: deep water, shallow water, urban, vegetation, sand 
dunes, sand sheets, and sabkhas. 

 

Figure 4. LULC map of the study area 

 
As mentioned in the Methodology section, the Recode function 

in ERDAS IMAGINE 2020 was used to produce the DP bitmap 
where a value of 1 is assigned to DP class and a value of 0 is 
assigned to non-DP class (Figure 5). It was concluded that young 
and medium date plantations (≤ 10 years) were difficult to 
differentiate due to soil background. Therefore, date palm 
plantations extracted from Landsat 8 OLI images refer to mature 
date palm plantations only (≥ 10 years) with an average crown 
diameter passing 5 meters and average total height around 6.6 

meter. For overestimated or underestimated classes, the problem 
was solved manually by working on the vector polygons and the 
removal of erroneous pixels benefiting from our knowledge of 
the study area and existing reference maps using the Fill tool in 
ERDAS imagine 10.5 to fill the miss-classified pixels with the 
right values. 
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Figure 5.  Vegetation bitmap and derived mature date palm 

plantations in the study area using Landsat 8 OLI (PBC method) 

 
The evaluation of spectral signatures derived from the 740 
training sets showed that the short wave infrared (SWIR1& 
SWIR2 bands) offered the best separablity power among all 
Landsat 8 OLI bands. However, some combinations were found 
to be more efficient in identifying and mapping the vegetation 

class such as: (RED, SWIRE1, SWIRE2) or (RED, GREEN, 
SWIR1) or (RED, GREEN, SWIR2) or (GREEN, SWIR1, 
SWIR2). Table 1 shows percentages and areas (in hectare) of 
each class of the LULC map of the study area (Emirate of Abu 
Dhabi), where sand dunes occupied around two third of the 
emirate with around five million hectares. Sabkhas, sand with 
high level of salts, occupied 15.51% of the emirate with more 
than one million hectares while the sand sheets including gravels 

occupied 8.6% of the whole area with more than half million 
hectares. Urban areas occupied 0.6% with 40,102.6 hectares 
while vegetated areas occupied 0.49% of the total area of the 
emirate with more than thirty thousand hectares. 

LULC Area (ha) Percentage (%) 

Deep water 9,677.7 0.15 
Shallow water 11,847.2 0.18 

Urban 40,102.6 0.6 
Vegetation 32,333.3 0.49 
Sand dunes 4,957,180 74.48 
Sand sheets 572,665 8.6 
Sabkhas 1,032,170 15.51 
Total 6,655,975.8 - 

Table 1.  Areas and percentages of the study area LULC map 

classes 

 
Table 2 shows the area (in hectare) of the mature date palm 
category of the study area, which occupied 64.62% of the 
vegetated areas in the emirate. 

Class Area (ha) 

Mature Date Palm Plantations ( 10 years) 20,893.5 

Other vegetated areas 11,439.8 

Table 2.  Areas in ha, of mature date palm class and other 

vegetated areas in Abu Dhabi 

 

Finally, Date Palms at different age classes of the Eastern District 

of Abu Dhabi was mapped with high accuracy (Figure 6).  

 

Figure 6. Map of Date Palms age classes at Eastern District, 

Abu Dhabi (b) AlFoah date palms farm in false color image (c) 

Zoom map of date palm age classes 

 

Table 3 shows the areas (in hectare) of the three age stages 
of date palms in Eastern District of Abu Dhabi. 

Class Area (ha) 

Mature Date Palms 1565.03 
Medium Date Palms 959.01 

Young Date Palms 316.98 
Total 2,841.02 

Table 3. Area per hectare of date palms in Eastern District, Abu 

Dhabi 

 
5. ACCURACY ASSESSMENT 

The accuracy of the classified maps was assessed by a set of 
points sampled using the stratified random sampling of 350 
points, 50 for each class. The points, different from the training 
points, were randomly selected for each of the classes using 
ERDAS Imagine’ accuracy assessment tool. In addition, we used 
Google Earth, reference map and personal knowledge of the area 
in this process. A confusion matrix was created, and accuracy 

measures were calculated for the seven classes included in the 
LULC map. The results summarized in (Table 4) indicate a good 
overall performance of the classification with a Kappa value of 
about 81%. 

 
Table 4.  Accuracy assessment of the LULC map 

 
Accuracy of the Date Palm classification is summarized in table 
5 where high accuracy with an overall accuracy of 94.5% and a 
Kappa coefficient of 88% were achieved. 
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Table 5.  Accuracy assessment of mapping the date palms using 

OOC on WV-2 images 

 

6. DISCUSSION 

Mapping specific vegetation species with medium resolution 
satellite imagery, such as Landsat-8 OLI, was a great challenge. 
Hybrid classification approach combining supervised and 
unsupervised algorithms was successful in identifying and 
mapping mature date palm plantations in the current study. On 
the other hand, delineating young date palms was a little harder 
to achieve requiring direct (manual) input from the researcher. 

Alternatively, a more detailed satellite imagery with sub-meter 
resolution such as WV-2 was used to medium and young date 
palms. 
 
The same classification method used to produce LULC map was 
applied to produce DP map. The selection of training sets 
(spectral signatures), were produced based on previous intensive 
field visits to date palm farms in the study area. The date palm 

age and plots densities had an effect on the estimation of AGB. 
Moreover, some plots had sparse distribution of date palms with 
no regular spacing system due to human disturbances. 
 
Examining the mean spectral signatures of LULC classes derived 
from Landsat-8 data showed that vegetation was well separated 
from deep water in the NIR and from all other classes in the red 
and green bands although the red band was better separator than 

the green band. In conclusion, and based on the researchers’ 
experiments, the following combinations were the most helpful 
in detecting the vegetation class and producing the final bitmap: 
 

1. RED, SWIR1, SWIR2, OR 
2. RED, GREEN, SWIR1, OR 
3. RED, GREEN, SWIR2, OR 
4. GREEN, SWIR1, SWIR2 

 
The produced LULC map showed that sand dunes occupied 
around two third of the emirate with around five million hectares. 
Sabkhas and sand, with high level of salts, occupied 15.51% of 
the study area with more than one million hectares while the sand 
sheets including gravels occupied 8.6% of the whole area with 
more than half million hectares. Urban areas occupied 0.6% with 
40,102.6 hectares while vegetated areas occupied 0.49% of the 
total area with more than thirty thousand hectares. The area (in 

hectare) of the mature date palm plantations of the study area 
occupied 64.62% of the vegetated areas in the emirate of Abu 
Dhabi. 
 
WV-2 covering the areas occupied by DP and identified by the 
classification of Landsat 8 data were used to perform an OOC to 
map medium and young age DP. The overall map of DP 
comprising all age classes was then produced with a high 

accuracy for the Emirate. 
 

7. CONCLUSIONS & RECOMMENDATIONS 

In the current study, we mapped LULC classes in the Emirate of 

Abu Dhabi using medium scale Landsat-8 OLI imagery. We 
adopted a hybrid classification approach combining both 

supervised and unsupervised classifications to identify and map 

vegetation class in order to extract date palm (DP) plantations. 
The adopted approach was very successful in mapping mature 
date palm plantations while the results with young palm were 
more challenging due to their sparse structure bringing more soil 
background contribution to the DP signatures.  To overcome this 
problem, we adopted an OOC approach using high resolution 
WV-2 imagery to identify and map medium and young DP. The 
fusion of moderate spatial resolution Landsat 8 with high spatial 

resolution WV-2 imagery, for creating detailed maps of DP at 
different age stages, proved to be successful and appropriate for 
creating DP maps that can feed a RS-based model for AGB 
estimation.  
 
Finally, date palm plantations were mapped with an overall 
accuracy of 81.71% which is considered high in similar 
conditions of drylands, while the overall kappa statistics was 
estimated at 80. 94%. Furthermore, the accurate separation of 

date palms into 3 age categories allowed for a better estimation 
of their AGB and the carbon they sequester. The maps created in 
this study made possible to apply a non-destructive approach for 
estimating AGB and carbon sequestered in DP in the arid 
environment of UAE. The approach can easily be extended to 
larger areas in the region. 
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