
OPTIMAL DATES FOR DECIDUOUS TREE SPECIES MAPPING USING FULL YEARS

SENTINEL-2 TIME SERIES IN SOUTH WEST FRANCE

N. Karasiak1∗, M. Fauvel2, J.-F. Dejoux2, C. Monteil1, D. Sheeren1

1 DYNAFOR, Université de Toulouse, INRAE, Castanet-Tolosan, France

nicolas.karasiak@inrae.fr, david.sheeren@ensat.fr
2 CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, Toulouse, France

Commission III, WG 10

KEY WORDS: sentinel-2, satellite image time series, tree species, forest, map, biodiversity, spatial autocorrelation, France

ABSTRACT:

The free to use Sentinel-2 (S2) sensors with 5-day revisit time at high spatial resolution in 10 spectral bands is a revolution in the

remote sensing domain. Including 6 spectral bands in the near infrared, with 3 dedicated for the red-edge (where the vegetation

significatively increases), these european satellites are very promising for mapping tree species distribution at a national scale. Here,

we study the contribution of three one-year S2 Satellite Image Time Series (SITS) for mapping deciduous species distribution in

the southwest of France. The annual cycle of vegetation (called phenology) can contribute to the identification of tree species. For

some specific dates, species can have different phenological behaviours (senesence, flowering...). To train and validate the maps,

we used the Support Vector Machine algorithm with a spatial cross-validation method. To train the algorithm with the same number

of samples per species, we decided to undersample each class to the smallest class using a K-means clustering method. Moreover,

a Sequential Feature Selection (SFS) has been implemented to detect the optimal dates per species. Our results are promising with

high accuracy for Red oak and Willow (average score of the three one-year respectively F1 = 0.99, F1 = 0.94) based on the optimal

dates. However, it appears that the performances when using the each full SITS are far below the optimal dates models (average

∆F1 = 0.32). We did not find, except for Willow and Red oak, that the optimal dates were the same for each year. Perspectives is

to find an algorithm robust to temporal or spectral noise and to smooth the time series.

1. INTRODUCTION

In the context of global warming and biodiversity loss, forests

are one of the most important ecosystems to protect (Thompson

et al., 2011). The diversity of the tree species and their age is

one of the main criteria for estimating potential biodiversity in-

dicator (Larrieu, Gonin). Despite its crucial role in preserving

biodiversity and mitigating global warming, this ecosystem is

affected by two main problems. On the one hand, tree species

are prone to diseases. Indeed from 2003 to 2012, more than

85 millions hectares of forest have been affected by insect pests

(van Lierop et al., 2015). On the other hand, the share of the

world’s forests is decreasing year after year and is being re-

placed by agriculture or grazing with serious consequences on

biodiversity (Brockerhoff et al., 2008). These previous authors

also pointed out that the replacement of natural or semi-natural

forests by forest plantations is always preferable to other land

covers, with the exception of the original forest. Whether it is

degradation or deforestation, there are solutions to slow down

these losses. For example, to prevent natural forest diseases,

the higher the number of tree species in a forest, the greater the

resilience (Guo et al., 2019). By protecting the trees, we also

protect the flora and fauna biodiversity.

Hence, knowing the spatial distribution of trees is important

whether for foresters, climatologists, or ecologists. For dec-

ades, national maps have been produced by photo-interpretation

using high-resolution optical sensors. It all began with aerial

photography from aircraft (Smith, 1976), and then with the de-

velopment of very high spatial resolution satellite sensors, maps

were produced at a large scale. In 2019, the National Institute of
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Geographic and Forest Information (IGN) published its second

version of the main tree species in France (BDForêt ® v2). It

took nearly 20 years because most of the work is manual, car-

ried out by photo-interpretation of false-color images (the in-

frared band is put in the red channel).

To switch from manual mapping to a supervised classification,

it is essential to rely on phenological events of tree species. In-

deed, deciduous trees show very marked events throughout the

year such as leaf flush, flowering or senescence (leaf fall and

leaf coloration) (Badeau et al., 2017). These events modifiy the

reflectance of the forest during the year by influencing the bio-

physical or biochemical attributes of the canopy (Yang et al.,

2016; Miller et al., 1991). SITS can help to monitor the cycle

and should increase the spectral separability between deciduous

tree species (Fassnacht et al., 2016).

Despite huge progress in machine learning, it appears that map-

ping tree species distribution over large areas from space is still

a opening question and so a challenging task (Fassnacht et al.,

2016). In order to have an up-to-date and large scale map of tree

species, using sensor with high spatial, temporal and spectral

resolution such a Sentinel-2 is highly recommended (Fassnacht

et al., 2016).

While some works have already investigated the potential of

Sentinel-2 to map temperate forest species with cloud-free im-

ages (Grabska et al., 2019; Bolyn et al., 2018; Immitzer et

al., 2019), only few authors used a dense time series of satel-

lite images (SITS) with a cloud detection and filtering pro-

tocol (Sheeren et al., 2016; Karasiak et al., 2017). Typically,

SITS-based works use lower spatial resolution imagery such
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Figure 1. Location of the study area in France with the size of the Sentinel-2 31TCJ tile. On the right, the 2019-07-25 image of

Sentinel-2 processed in level 2A with flat reflectance.

as that from the Modis sensor (Yan et al., 2015) or Landsat-8

(Pasquarella et al., 2018). SITS using higher spatial resolution

sensors are not focused on tree species distribution but on land-

cover mapping (Inglada et al., 2017).

Results between studies are often contradictory, both in terms of

optimal dates and best predicted species. Besides, estimation of

the quality seems to be very sensitive to spatial autocorrelation

between the training and validation set (Karasiak et al., 2019)

but it is rarely taken into account.

Because of specific disruptions that may appear in a single year

(clouds, diseases, climate events such as drought...), there is a

need to use several independent years to have a better under-

standing of the results. This should provide an understanding

of the stability of the optimal dates for mapping tree species

distribution. However, to the best of our knowledge, the iden-

tification of key dates for each available deciduous species has

not been studied, neither using several years, neither using a

dense SITS.

The main objectives of our research are:

1. To assess the potential of full years Satellite Image Time

Series for mapping deciduous tree species.

2. To identify the best dates for each species.

3. To evaluate the accuracy stability among three independ-

ant years.

4. To identify the most suitable species for country scale

mapping

5. To understand the quality differences between the full time

series and the model using only the best dates.

2. MATERIALS

The aim of this study is to assess the contribution of optimal

dates in the mapping of deciduous species. In order to map at

large scale, we need to have similar temporal sampling accross

a whole country and it is therefore not possible to select only

cloudless dates for each part of the territory. The dimension of

the data(number of dates and spectral bands) must be the same

all over the country.

2.1 Study area

The study area is located in the southwest of France, below the

city of Toulouse (Figure 1). It is part of the Western European

broadleaf forests going from this study area to finish at Dresden

(Digital map of European ecological regions, 2000). Our study

area is covered by about 10% of forests as the land is dominated

by crops. The climate is sub-Atlantic characterized by sunny

autumns, hot dry summers, and mild rainy winters (2018 cli-

mate data: average temperature = 15.1◦C ; precipitation = 700

mm).

2.2 Satellite Images

Images came from Sentinel-2 satellite and are com-

posed of four spectral bands at 10-m spatial resolution

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2019

2018

2017

Figure 2. Acquisition dates of Sentinel-2 images for year 2017, 2018, and 2019. Sentinel-2 images are not sampled evenly over time

due to excessive cloud cover. This means that some level 1C images were not processed at level 2A by the Theia pole.
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Species Size Stands

Broadleaf
Silver birch (Betula pendula) 67 3
Oak (Quercus robur/pubescens/petraea) 247 12
Red oak (Quercus rubra) 205 9
Aspen (Populus spp.) 139 7
European ash (Fraxinus excelsior) 130 5
Black locust (Robinia pseudoacacia) 88 9
Willow (Salix spp.) 52 4
Eucalyptus* (Eucalyptus spp.) 143 5

Conifer
Corsican pine (Pinus nigra subsp. laricio) 201 9
Maritime pine (Pinus pinaster) 157 8
Black pine (Pinus nigra) 52 2
Silver fir (Abies alba) 53 4
Douglas fir (Pseudotsuga menziesii) 50 8
Cypress (Cupressus) 42 1

*the only sempervirent broadleaf species in our study area.

Table 1. List of tree species with their sample size which is

equivalent to the number of Sentinel-2 pixels (n = 1626). In

bold, deciduous species used to estimate the contribution of

each date to the time series. The number of forest stands is based

on the French National Forest Inventory (IGN BDForêt® v.2)
.

(Blue: 458–523 µm, Green: 543–578 µm, Red: 650–680 µm,

Near InfraRed: 785–899 µm) and 6 bands at 20-m going from

the red-edge which is the part of electromagnetic spectrum just

after the red and before the near infrared (re1: 698–713 µm,

re2: 733–748 µm, re3: 773–793 µm) to the near and mean

infrared (NIR: 1565–1655 µm, MIR: 2100–228 µm). Ra-

diometric resolution is 12 bits and images were acquired

with a field of view of 100 km. As our study area is located

on the middle of the Sentinel-2 tile (from west to east) no

Bidirectional Reflectance Distribution Function (BRDF) effect

should remain as it appears more on image borders.

The S2 images were downloaded on the pole Theia

for year 2017, 2018 and 2019 (http://www.theia-

land.fr/en/products/sentinel-2). These data are available

directly at level 2A (i.e. Top-of-canopy reflectance products

orthorectified) and they include a cloud and shadow mask

(Baetens et al., 2019). These masks came from the MAJA

algorithm which includes atmospheric correction by combining

multi-temporal and multispectral criteria in order to estimate

the optical thickness of aerosols (Hagolle et al., 2015). If the

image was not computed by Theia, it means that the product

was not valid (it can be due to too many clouds). Thus, 37

dates were acquired for 2017 and 2018, 32 for 2019. Each time

series has different temporal resolution due to the clouds over

our study area (Figure 2).

2.3 Forest mask

A forest mask produced for the Haute-Garonne department in

2018 by the IGN, BDForêt® v.2, was used to select forest

pixels in the SITS (i.e. forest stands with a minimum area

of 0.5 hectares) and to exclude non-forested areas. Although

the BDForêt® v.2 was released in 2018, it was made by

photo-interpretation using aerial photographs from 2013 (IGN

BDOrtho®). To update the mask and to avoid forest cuts in the

ground references, we manually modified it to keep only forest

stands that were uncut till the most up-to-date 2018 very high

resolution image BDOrtho®.

2.4 Ground references of tree species

Four field surveys were conducted in the 72 main forests

between November 2013 and January 2017 to identify the forest

species in the study area. Only dominant broadleaf and coni-

ferous species location were gathered. To ensure data consist-

ency, references were acquired from a Garmin GPSMap 62st

GPS receiver (3-5 m accuracy) in the centre of an area cover-

ing approximately 900 m2 (i.e. nine contiguous pixels from the

Sentinel-2 satellite). Only the pixels in the center of these areas

were used for classification.

A total 1626 field references was collected for 14 species, in-

cluding 8 deciduous and 6 coniferous (Table 1). For some spe-

cies, identification was limited to the genus because of the ex-

istence of many cultivars (as for poplar) or the difficulty in de-

termining the exact species (oak, willow or eucalyptus). The

class distribution is imbalanced, from 42 cypress and 52 willow

samples to 247 oak and 205 red oak samples. However, this

dataset reflects the abundance of species in these forests.

3. METHODS

3.1 Pre-processing of the SITS

For each of the three years, a SITS has been computed using lin-

ear interpolation when a cloud or cloud shadow was detected by

the MAJA algorithm (Section 2.2). The process was performed

using the time series gap-filling function (Inglada, 2016) of the

Orfeo ToolBox (Grizonnet et al., 2017). Since 2016, Inglada et

al. (2017) has been using this prep-processing of the SITS to

map French land cover from Sentinel2 every year.

3.2 Undersampling of the reference data

As our set of reference samples reflect the reality of the forests,

the effective per species is therefore very imbalanced. The two

main species, Oak (Quercus robur/pubescens/petraea) and Cor-

sican pine (Pinus nigra subsp. laricio) have more than 200

samples each, contrary to Willow (Salix spp.) and Cypress

(Cupressus) which have about 50 samples. Training samples

for the two first cited species tend to be 5 to 6 times higher than

the rarest species in our dataset.

For each species, we decided to undersample our dataset to

the size of the smallest class using their feature representa-

tions (i.e.spectral bands) (Jain et al., 1999). A simple approach

is to downsize using a random selection by fixing the num-

ber of desired output samples. However, to keep the richness

of our small dataset and not to lose crucial information that

could be under-represented, we prefered to use a K-means to

group samples from their similar features (Hartigan, Wong).

This technique is recommended and performs very well with

small scale datasets (Lin et al., 2017). In concrete terms,

European ash (Fraxinus excelsior) with 130 samples has many

more samples than cypress (n=42), which is the minority class.

So, the undersampling algorithm generated a K-means with 42

clusters and used the coordinates of these cluster centroids as

the new European ash samples. This processing was handled

by the imbalanced-learn library (Lemaître et al., 2017)

3.3 Feature selection

We implemented a feature reduction approach (Green et al.,

1988) called forward Sequential Feature Selection (SFS) (Whit-

ney, 1971). This method is an interesting way to know the most
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important dates in a time series. Also, keeping the whole in-

formation (i.e. all the features) will lead to the Hughes phe-

nomenon, knowing that the larger the dimension the lower the

quality (Hughes, 1968). A previous study has shown the ad-

vantage of reducing the size of the input features when using

dense SITS (Karasiak et al., 2019).

To estimate the contribution of each date to classify tree species,

we learnt for each species a dedicated model using the SFS. Se-

lection of dates is made using the ten spectral bands per date of

Sentinel-2. The addition of dates is done iteratively, one by one,

and the best date is added to an initially empty set. This pro-

tocol has been used systematically to evaluate the performance

of the model in predicting the different deciduous tree species.

F1 score was the metrics used as criteria to evaluate each date

for each species. The combination of dates with the highest

score per species will be presented in the results part.

3.4 Validation by spatial cross-validation

Every model was learned and evaluated using cross-validation.

Given the possible optimistic bias related to spatial autocor-

relation in the datasets (Pugh, Congalton; Hammond, Verbyla;

Mannel et al., 2011), we opted for a spatialized leave-one-out

cross-validation method (Le Rest et al., 2014; Karasiak et al.,

2019).

Spatial cross-validation involves selecting validation samples

that are spatially separated by a given distance from the training

samples. To get the distance, Moran’s Index (Moran, 1950) was

computed on each spectral band by variing lineary the distance

from 1 pixel (10-m) to 50 pixels (500-m). Pixels of non forests

were masked using our forest/non forest mask made from 2018

very high resolution images (See section 2.3). The more the

variability of the defined neighborhood equals the total variab-

ility of the data set the more Moran’s I will be close to zero.

This metrics gives us an index ranging from -1 to 1, where 1

corresponds to the maximum of spatial autocorrelation, and 0

the ideal case without autocorrelation. Considering that below

Moran’s i =0.2, the spatial autocorrelation can be considered

insignificant (Dale, Fortin), we’ve rounded up the average value

where Moran’s i <=0.2 in the three SITS and we found a dis-

tance of d = 340-m. This means that for each species, the val-

idation sample is at least distant by 340-m from the training

samples.

The Spatial Leave-One-Out cross-validation is composed of 42

folds, as many as samples per class after undersampling. The

results of the 42 predictions is averaged to have a global es-

timation of the error considering the F1 value of the predicted

species.

3.5 Classification protocol

For each year we built as many models as deciduous species to

map. In combination with an undersampling and spatial cross-

validation strategy, the Support Vector Machine (SVM) al-

gorithm (Vapnik, 1998) was used to train our models. This clas-

sifier is known to perform very well with few samples per class

and a high number of features (Melgani, Bruzzone; Mountrakis

et al., 2011). In this study, we selected the Radial Basis Func-

tion (RBF) kernel which is the most frequently used and has

already been proven to be effective in the case of similar clas-

sification problems (Kavzoglu, Colkesen; Ferreira et al., 2016).

The learning process was computed using the scikit-learn py-

thon library Pedregosa et al. (2011), and the vector of features

were standardized (i.e. centering and scaling to unit variance)

before the training process. The parameters of SVM fitted were

the regularization parameter (C) know as the penalty parameter

and the kernel bandwidth (γ) were tuned by cross-validation.

The grid search was constructed with C = {0.01, 0.1, ..., 110}

and γ = {1−9, 1−8, ..., 13}.

This work is based on the python library we developped: Museo

ToolBox(Karasiak, 2020). This library contains the spatialized

cross-validation, the Sequential Feature Selection approach and

many more. Moreover, it is fully compatible with the scikit-

learn library.
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Figure 3. Best F1 score per species and per year based on (a) all

the features, or (b) the optimal dates after a Sequential Feature

Selection.

4. RESULTS

In this section we analyse the performances of each model ded-

icated to a species and their different results when using all fea-

tures (full SITS) or the optimal number of dates from SFS. The

quality of each model is quantitatively measured using the F1

score metrics of the selected species. The F1 score for the op-

timal features per species is the combination of dates having the

highest performance.

4.1 Optimal dates versus all features

The classification performances of the three years are presented

for each approach in Figure 3. Generally speaking, the perform-

ances between the three years were relatively similar. However,

there is a significant difference in quality between the two meth-

ods. The average F1 of the seven deciduous species when using

the full SITS is 0.64 while with the SFS method the results are

0.23 points higher, i.e. 0.87. For both datasets, the F1 differ-

ences between the best year and the worst year is about 0.05

F1. In 2019, when the algorithm was trained using all the dates,
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the best deciduous average F1 was 0.69 while learning with a

reduced dataset using SFS was 0.86.

Looking at the species for both datasets Red oak has, except

once, the highest accuracy (F1 = 0.99 with optimal dates,

F1 = 0.93 with the full SITS) followed by willow (F1 =

0.96, F1 = 0.81 for respectively optimal dates and full SITS).

Black locust and Siver birch seem to be particularly affected

when learning with the full SITS and loses about 0.4 of F1

points. The comparison between the two methods show a high

difference in the quality evaluation (∆F1 = 0.32). However,

the best or less well discriminated species remained the same

regardless the method.

4.2 Optimal dates

In the following sections, we will only detail the results of the

optimal dates approach based on the SFS since it has shown the

best results and allows us to identify the most important dates

for each species (Section 3.3).

The F1 contribution per date was computed by substracting the

highest score with n dates by the highest score using n-1 dates.

Generally speaking, only a small number of dates is needed to

reach the best quality per species. With about five dates, each

species reaches its maximum F1 or was really close (±0.02)

(Figure 4).

4.2.1 Similar trends per year The only common and close

date selected for the three years is in the end of july or begin-

ning of august and only concerns the Willow trees. This tree

systematically reach a very high accuracy with only one date

in the middle of the summer (F1 = 0.9). When looking at the

Red oak species, selected dates are in early november or late

november for respectively 2017 and 2018 but may 1 in 2019.

The other trend is for 2017 and 2018 where the first date in F1

contribution for Oak and Silver birch is in early or end novem-

ber. Also the F1 contribution is high with only one date for Oak

(F1 = 0.6) and for Silver birch (F1 = 0.77).

4.2.2 Unstable temporal selection The species which are

the most subject to have different dates selected among years

are Black locust and European ash. However, these two spe-

cies share a similar pattern: in 2017 their key date is in octo-

ber/november, in 2018 in march/april and in 2019 for the middle

of summer.

In summary, it is tricky to say that a specific date or season is

more important than another when looking at algorithm choices

over several years in a row. A general trend seems to suggest

that late fall or mid-spring may be the most appropriate times

to maximize the gaps between species, but not for every species

and every year.

5. DISCUSSIONS

5.1 Optimal dates comparison

Thanks to the three one-year of SITS, it is difficult to say

whether a date is more important than another. If Immitzer et

al. (2019) found broadleaf species were more able to be detec-

ted in April, May and June, we can’t confirm their conclusion

as for some years it seems to be only november, or for some

species (Willow) only end of June or early July. Grabska et al.
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Figure 4. Optimal dates for each species in year (a) 2017, (b)

2018 and (c) 2019. The F1 contribution per date was computed

by substracting the highest score with n dates by the highest

score n-1 dates. The larger the circle, the more important the

date in the Sequential Feature Selection. If negative score, circle

does not appear. Date is only written if the contribution is

superior to 0.04 F1 points. On the left, below the species, is

specified the best F1 score and the number of optimal dates

needed to reach it.

(2019) found that the optimal dates for mapping broadleaf and

conifers species were two dates in spring (April 30, May 5) and

three in autumn (October 14, October 17, November 8), but the

differences in accuracy between their several combination of

two, three of four dates do not seem significant.

Including our work, the three articles on Sentinel-2 for mapping

tree species show significant disagreements over which dates to

focus on. A reason why optimal dates are changing from one

year to another can be the missing of a key event at a specific

date which is not available from one year to another. It can also

be relative to a local event, such as the dryness after a warm

summer, the soil condition, or a substorey vegetation that begins

before the leaf spreading (this could be the reason why February

and March are selected as no leaf have flushed at this period).

At last, a biais in the Sequential Feature Selection to consider
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is that only one date can be selected for each iteration, but there

can be multiple possibility to reach the same accuracy. The best

score (F1 = 0.87) from one single date for the Red oak can

be reached with three other dates: May 1st, August 24th and

November 21st. For other species it is not as pronounced as for

the Red oak, but it is common that a date as important as the

chosen one can also be available several months apart.

5.2 Species accuracy

Looking at specific species, Grabska et al. (2019) also found

difficulties to map Birch trees (F1 = 0.23), but this can be ex-

plained by their very small sample size (n = 25). Our results

contrast with (Bolyn et al., 2018) where accuracy is very high

(F1 = 0.93) as the number of samples (n = 268). However,

as the authors used only 10% of the polygons for the valida-

tion and as it included mixed pixels, they think their "validation

was probably over-estimated for the application of the classifier

over the whole study site".

Like us, Immitzer et al. (2019) also encountered difficulties in

mapping European ash (F1 = 0.77). In our cas this species

was the second most difficult to predict with the optimal dates

(F1 = 0.82).

As opposed to the best dates which differ from one paper to

another, it turns out that the easiest or hardest species to predict

are rather the same among recent papers.

5.3 Understanding the drop of F1 score when using the the

full SITS

To understand how to reach optimal dates performance with the

full SITS, we need to understand errors and success. It is diffi-

cult to draw a reliable conclusion about which month or season

to use for predicting a species as most important dates differ,

sometimes heavily, from year to year.

Understanding these errors should improve the future works

that use a full SITS. We chose to focus on the Silver birch trees

as the average accuracy using the feature selection is highest

in 2017 with only 5 dates (F1 = 0.81) but very low with the

full SITS (F1 = 0.18). This species is found in three different

forest stands, but two are within the same forest. It turned out

that three dates particularly affected the quality of the model

(Figure 5), and the reason for this failure is due to a cloud un-

detected by the MAJA algorithm over this forest. It was there-

fore not possible for the algorithm to retrieve the spectral signal

of the Silver birch in this forest as the other plot was not im-

pacted by a cloud or vice versa. This also confirms that SVM

is very sensitive to noise in temporal data, as already suspec-

ted (Karasiak et al., 2019). The case Silver birch is not unique.

When analysing the quality dropout by comparing the dates that

heavily decrease the quality of species prediction, we systemat-

ically see underdetected clouds in the full SITS.

The solutions to avoid this quality dropout is either to smooth

the time series, or to find an algorithm robust to temporal noise.

Random Forest (RF) classifier can deal with noise in the data

up to 25% of wrong labels (Pelletier et al., 2017), However, our

noise is some a spectral noise, or temporal noise. The impact of

this kind of noise has been studied with RF algorithm (Agjee et

al., 2018), and authors noted that combining RF and penalized

regression such as Ridge Regression significantly increases the

noise robustness of the classifier.

5.4 Effect of noisy dates in the SITS

For year 2017, we notice very few optimal dates were in spring.

To understand why, we look closely at spring images from 2017

as the season was selected in 2018 and 2019 by the SFS method.

We found that for may 6 and 16 the cloud mask were not accur-

ate. Indeed, clouds were underdetected on May 6 and overde-

tected on May 16 (Figure 6).

This kind of errors has already be stated (Karasiak et al., 2019).

The Sequential Feature Selection is appropriate to deal with this

error as these dates won’t be selected to enhance the prediction.

But in order to use the full SITS in case of an country scale

product, it will be mandatory to smooth the temporal signature.

An interesting way to remove noise would be to use the Whit-

taker smoother (Eilers, 2003), or Savitzky Golay . However, the

first smoother did not show clear benefit for tree species map-

ping using a one-year SITS (Sheeren et al., 2016) but the au-

thors did not take into account the spatial autocorrelation which

can lead to a high overestimation of the predictive potential of

the algorithm (Karasiak et al., 2019).

6. CONCLUSIONS

Thanks to the two Sentinel-2 satellites, it has been possible to

acquire a significant number of images for year 2017, 2018 and

2019. Using optimal dates based on the Sequential Feature Se-

lection, high performances were observed for Red oak (aver-

age F1 = 0.99) and Willow (average F1 = 0.96). However,

some species are hard to identify, such as Black locust (average

F1 = 0.71).

There is no much differences between years (∆F1 = 0.05) but

the usage of the full SITS impacts heavily the quality (average

F1 = 0.64). The best performances were systematically higher

when using the optimal dates found with the Sequential Feature

Selection (average F1 = 0.87). The poor performances of the

full SITS using SVM algorithm can be explained by noise in the

time series due to undetected clouds. However, the very high

quality of the optimal dates for 2019 (average F1 = 0.86) using

a binding spatial cross-validation suggests there is a real poten-

tial of the time series to map forest species at country scale.

The selection of best dates not only provided better quality by

reducing the number of images required, but also made possible

to analyse the dates selected by the algorithm. The chosen dates

were quite different from one year to another. The only species

were selected dates were stable between year is Willow and Red

oak, which are also the two most accurate species.
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Figure 5. Optimal dates based on SFS to predict the Silver birch

in 2017. The first, best and last F1 score are shown above the

bar, and inside is specified the selected date.
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Figure 6. Misdetection of clouds generate temporal noise in the

SITS. Here, the 2017-05-16 was uncloudy but as the MAJA

algorithm finds a cloud above the forest, the gap-filling method

has not been able to take advantage of this cloudless date.

Further research should focus on finding an algorithm robust

to temporal noise and methods to smooth the time series. The

identification of these methods, if they are successful, should

remove the main problems of mapping tree species distribution

at a country scale. It should result in a time series accuracy as

close as the optimal dates quality. However, there is a need to

have more tree species references to be more representative of

the whole territory and less sensitive to local errors.
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