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ABSTRACT:

Monitoring staple crop production can support agricultural research, business such as crop insurance, and government policy. Obtaining
accurate estimates through field work is very expensive, and estimating it through remote sensing is promising. We estimated county-level
maize yield for the 37 maize producing countries in Kenya from 2010 to 2017 using Moderate Resolution Imaging Spectroradiometer
(MODIS) data. Support Vector Regression (SVR) and Random Forest (RF) were used to fit models with observed county level maize
yield as a function of vegetation indices. The following five MODIS vegetation indices were used: green normalized difference
vegetation index, normalized difference vegetation index, normalized difference moisture index, gross primary production, and fraction
of photosynthetically active radiation. The models were evaluated with 5-fold leave one year out cross-validation. For SVR, R2 was 0.70,
the Root Mean Square Error (RMSE) was 0.50 MT/ha and Mean Absolute Percentage Error (MAPE) was 27.6%. On the other hand for
RF these were 0.69, 0.51 MT/ha and 29.3% respectively. These results are promising and should be tested in specific applications to
understand if they are good enough for use.

1. INTRODUCTION

In Kenya, crop production is a vital contributor to food security
and employment. The sector directly accounts for about 26% and
indirectly for another 25% of gross domestic product (Machado
and Paglietti, 2015; Kenya National Bureau of Statistics, 2017).
Maize is the main staple food in Kenya. Kenya has about 2.1
million ha of maize, more than 40% of the total cropland area.
Maize yields are variable, as they are affected by droughts and
pests. For example, Fall Army Worm infestations led to a drop
in maize production by 6.3% in 2017 (Kenya National Bureau of
Statistics, 2017) leading to a severe maize shortage. A quantitative
and spatially-explicit understanding of variation in maize yield can
support better investments, more efficient markets, and improved
policy making. If yield estimates are timely, they can be used
to avert food shortage through appropriate interventions such as
imports.

Here we investigate the use of remote sensing vegetation met-
rics from 8-day Moderate Resolution Imaging Spectroradiometer
(MODIS) products to estimate maize yields in Kenyan counties.
We anticipate that remote sensing can provide cheap, early, and
perhaps more accurate maize production estimates than the esti-
mates based on ground based government surveys (Chivasa et al.,
2017).

Remote sensing has been used to estimate crop yield with several
regression like techniques. For example, ordinary least squares
(Rojas, 2007; Kim et al., 2014), piecewise linear regression (Prasad
et al., 2006), Back-propagation Neural Network (Panda et al.,
2010), regression tree-based models (Johnson, 2014), empirical
Leaf Area Index (LAI) regression model (Baez-Gonzalez et al.,
2005), multiple linear regression and machine learning regression
using Random Forest (RF) (Kim and Lee, 2016; Kayad et al., 2019;
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Sakamoto, 2020), SVR techniques (Kayad et al., 2019). Others
have used convoultional neural networks (Kuwata and Shibasaki,
2015; Mu et al., 2019) or a combination of remote sensing and
simulation models.

In the present study, we use SVR and RF regression models to
predict maize yields based on MODIS vegetation indices in maize
producing counties in Kenya. The counties were grouped into
homogeneous regions with similar maize phenology. Only maize
pixels extracted from an existing cropland map were used as
described in Section 2.2. This cropland map was developed in
2015 using Landsat data. The process involved visual image
interpretation by an analyst and guided on screen digitization.
Therefore, vegetation indices derived from maize only pixels, were
aggregated to county boundaries and used to model maize yields
based on reference county level yields between 2010 and 2017.
The reference yield data was obtained from the Kenya Ministry of
Agriculture, Livestock, Fisheries and Irrigation (MOALFI).

The rest of the paper is organized as follows. Section 2 describes
data used and explains the approach we adopted and illustrates how
RS metrics from MODIS were used for maize yield prediction. In
Section 3, the results are presented. This section is followed by
the Discussion and Conclusions.

2. MATERIALS AND METHODS

2.1 Study area and data

Our study area encompasses the 37 Kenyan counties that grow
maize. The counties are grouped into 8 regions with respect to
similarity in the maize cropping calendar (Table 1, Figure 1).
Trans Nzoia and Uasin Gishu counties are the major producers of
maize in Kenya.
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We only considered the long-rain season and defined our start and
end of growing season with the guide of regional maize calendar
in (GEOGLAM, 2020) and Normalized Difference Vegetation
Index (NDVI) onset and offset. Generally, we used the months
of March–November in Coast and North Rift, April–November
for South Rift and Central, March–September for upper and lower
Eastern, March–October for upper Nyanza and the whole year for
Western because of dominant double season maize growing.

Table 1. Grouped maize growing counties in Kenya.

Region County names

North Rift 1. Baringo, 2. Nandi, 3. Uasin Gishu, 4.
Trans Nzoia, and 5. Elgeyo Marakwet

South Rift 6. Bomet, 7. Kericho, 8. Nakuru, and 9.
Narok

Central 10. Nyandarua, 11. Nyeri, 12. Kiambu,
13. Murang’a, and 14. Kirinyaga

Upper Eastern 15. Marsabit, 16. Tharaka Nithi, 17.
Isiolo, 18. Meru, and 19. Embu

Coast 20. Taita Taveta, 21. Kwale, 22. Kilifi,
23. Tana River, and 24. Lamu

Upper Nyanza 25. Kisii and 26. Nyamira
Western 27. Migori, 28. Homa Bay, 29. Kisumu,

30. Siaya, 31. Kakamega, 32. Bungoma,
33. Busia, and 34. Vihiga

Lower Eastern 35. Makueni, 36. Kitui, and 37.
Machakos
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Figure 1. Maize growing counties in Kenya used for yield predic-
tion. The number labels correspond to County names in Table 1.

County level maize yield data for 2010 to 2017 was obtained from
the MOALFI which has made it available via (MOALF, 2020)
(Figure 2). The data was collected by the Kenyan government

field extension officials under the state department of agriculture.
The data is being continuously made available online through
Global Open Data for Agriculture and Nutrition initiative. There
are clear regional differences in maize yield, with the highest yield
in the North Rift region, followed by South Rift, Nyanza, Western,
Central, Coast, upper Eastern and lower Eastern.
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Figure 2. Regional distribution of maize yield data acquired be-
tween 2010–2017.

2.2 Methods

Figure 3 gives an overview of the techniques used to implement
this study. Basic tasks of our methodological framework includes
MODIS data acquisition, RS metrics computation, masking out
non-maize areas using maize maps, exclusion of atmospheric and
sensor affected pixels using MODIS quality masks, aggregation
of the metrics spatially and temporal per county, maize yield
prediction using SVR and RF, and validation of model predictions.
Details of these steps are described in subsequent subsections.

MODIS GPP

Quality & crop area masking

MODIS LAI
MODIS Surface 

reflectance

NDVI 
computaion

Machine learning yield prediction
Yield 

information

Spatial-temporal metric computation

Model cross-validation R2 RMSE, 
& MAPE

Figure 3. Methodological framework adopted for maize yield
prediction.

2.2.1 MODIS data processing To predict yield, we used the
following MODIS data products: (1) NDVI (2) Green Normalized
difference Vegetation Index (GNDVI), (3) Leaf Area Index (LAI),
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(4) Gross Primary Productivity (GPP), (5) Normalized Difference
Moisture Index (NDMI), and (6) Fraction of Photosynthetically
Active Radiation (FPAR). NDVI, GNDVI, and NDMI were com-
puted from MODIS 8-day 500 m surface reflectance data found in
the MOD09 series products from the Terra satellite (NASA, 2020).
The NDVI is commonly used as a proxy for green biomass. It is
computed as the ratio of the reflectance in the near infra-red (NIR)
and red portion of electromagnetic spectrum, that is,

NDVI =
NIR − RED
NIR + RED

. (1)

The GNDVI substitutes the red band in NDVI equation with green
as

GNDVI =
NIR − GREEN
NIR + GREEN

. (2)

The GNDVI was developed to estimate chlorophyll concentration
in vegetation (Gitelson et al., 1996) and may be useful as a proxy
for photosynthetic rate and plant stress. The NDMI is given as

NDMI =
NIR − SWIR1
NIR + SWIR1

(3)

where SWIR1 is the short wave infra-red 1 band in MODIS surface
reflectance. We used it in order to quantify water content in maize
since it is sensitive to the moisture levels in vegetation. Basi-
cally, soil moisture variability is one of the main factors affecting
crops productivity. Lastly, GPP, LAI and FPAR metrics are 8-day
500 m products from MODIS. GPP is a product from MODIS
that was acquired from MOD17 data series products generated
from Terra satellite. It is based on the radiation-use efficiency
concept and can potentially be used to quantify generation of new
biomass in vegetation. The LAI and FPAR are found in MOD15
product series of MODIS. LAI is a one-sided green leaf area per
unit ground surface area dimensionless quantity that characterizes
plant canopies. In contrast, FPAR is an important parameter in
estimating biomass production because the development of vege-
tation is related to the rate at which radiant energy is absorbed by
vegetation. Compared to NDVI, GPP, LAI and FPAR model-based
biophysical variables normally show good correlation with crop
yield and primary production (Coleman et al., 2017).

After computing the RS metrics, we masked out atmospheric
effects, water and data affected by varying sensor conditions using
MODIS quality masks that come with the products. For instance,
we masked out pixels with clouds, shadows, water areas, aerosol,
cirrus, fire and snow from MOD09 surface reflectance product. In
LAI and FPAR products, pixels with water, snow, aerosol, cirrus,
and shadows were masked out. Similarly, pixels with clouds, dead
detector, and with poor confidence quality score were excluded.
Finally, a second crop mask was applied on quality masked image
scenes in order to retain maize growing areas only within each
county.

The masked images were used to compute spatial-temporal met-
rics for each county using the process summarized in Figure 4.
This was done by first computing mean aggregates of all pix-
els within each county boundary for each image scene to ob-
tain spatial metrics. A mean aggregate of all the spatial met-
rics within a defined maize season was finally computed to
obtain spatial-temporal metrics. This procedure is available
on Earth Engine: https://code.earthengine.google.com/
60abb28e6af6e56296452591192e1e5e.

2.2.2 Feature selection Feature selection is a process of se-
lecting relevant variables that aid model prediction. It is an im-
portant step that helps minimize model over-fitting while aiding

its prediction accuracy. We used RF’s mean decrease in accuracy
measure from variable importance to select relevant metrics from
the initial 6 that were computed. In principle, mean decrease in
accuracy is computed by determining the impact a predicting vari-
able has when it is removed from the model. Figure 5 shows the
outcome of RF feature importance. Basically, GPP was the most
important metric in maize yield prediction followed by NDVI,
FPAR, LAI, NDMI and GNDVI. Following this guide we selected
all variables except LAI with consideration of information diver-
sity.

2.3 Maize yield prediction

We tested two machine learning methods, RF and SVR, for maize
yield prediction using the RS metrics selected earlier. These
models were adopted because previous studies have shown that
they lead to good results compared to other methods (Kim and
Lee, 2016; Kayad et al., 2019; Sakamoto, 2020).

2.3.1 Random Forest (RF) machine learning ensemble tech-
nique is based on CART (Classification and Regression Trees)
(Breiman, 2001). Random forest fits many trees with a boot-
strapped sample, and also takes a random sample of the variables
that can be used at each split in the tree (James et al., 2013). We
set the number of trees to 500 and the number of variables used to
split nodes as n/3, where n = number of input variables.

2.3.2 Support Vector Regression (SVR) Support vector ma-
chines has gained popularity in image classification and regression
(Vapnik, 2000). SVR is a generalization of the classification
problem where the model returns a continuous-valued output as
opposed to an output from a finite set. Predictions are done in
SVR by using an optimal hyperplane to minimizes prediction error.
We used radial basis kernel to construct the model’s hyperplane.
The kernel has two parameters namely ε and penalty parameter
C. We determined these parameters via a grid search based on the
least mean square error.

2.3.3 Model evaluation We used cross-validation to com-
pute Root Mean Square Error, Mean Absolute Percentage Error
(MAPE) and coefficient of determination R2 measures from data
with a pair of yield and corresponding RS metrics. For example,
given observed yields y and their corresponding predicted yields
ŷ, the RMSE is computed as

RMSE =

√∑n
i=1(ŷi − yi)2

n
, (4)

while MAPE is

MAPE =

∑n
i=1 |yi−ŷi|

yi

n
× 100%, (5)

and

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ŷi/n)2
(6)

where n is the number of observations. The smaller the RMSE
value, the closer are predicted maize yields to actual ones. MAPE
is an average of the absolute percentage errors from model pre-
dictions, i.e., an average of the ratio of absolute yield errors with
actual yields (Equation (5)). This measure expresses prediction
error as a percentage allowing for comparisons between studies.
Lastly, theR2 explains the proportion of variance in the dependent
variable that is explained by the independent variable. We used
5-fold leave one year out cross validation to compute these model
evaluation measures.
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Figure 4. Remote sensing processing steps in GEE.
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Figure 5. Selection of remote sensing yield prediction metrics
using RF.

3. RESULTS

Figure 6 shows some of the metrics to used predict maize yields.
All the metrics show an asymptotic relationship with maize yields.
Maize yields increase linearly with NDVI from around 0.1 to 0.5
which corresponds to maize yields between 0–2 ton/ha. From 0.5
NDVI rises sharply to 0.7 which corresponds to yields between
2–5 ton/ha. In NDMI, a linear relationship is depicted between
-0.1 to 0.1 are consistent with maize yield between 0–2 ton/ha like
NDVI. When NDMI is in the range of 0.1–0.25 the maize yields
sharply increase between 2–5 ton/ha. GPP exhibits a relationship
with maize yields with values of ranges 100–500. Lastly, FPAR
shows a relationship with maize yields when it ranges between
10–60 though with some outliers.

Cross validation results are shown in Figures 7 and 8. SVR had
a RMSE 0.50 ton/ha, MAPE of 27.6% and R2 of 0.7 which was
slightly better than the results obtained with RF.

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
● ●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●●

●

●

●●
●

●

●● ●

●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●●
●

●

●

●

●
●● ●

●

●●● ●●

●
●

●

0.3 0.4 0.5 0.6 0.7

0
1

2
3

4

NDVI

Y
ie

ld
(M

T
/h

a)

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
● ●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●●

●

●

● ●
●

●

●● ●

●●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●●
●

●

●

●

●
●●●

●

●●● ●●

●
●

●

−0.1 0.0 0.1 0.2

0
1

2
3

4

NDMI

Y
ie

ld
(M

T
/h

a)

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
● ●

●
●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●●

●

●

●●
●

●

●● ●

●●

●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●●

●

●
●

●

●

●●

●

●●

●

●●
●

●

● ●
●

●

●

●

●
●● ●

●

●●● ●●

●
●

●

100 200 300 400 500 600

0
1

2
3

4

GPP

Y
ie

ld
(M

T
/h

a)

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●●
●

●

●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●●

●

●

●●
●

●

●● ●

●●

●

●

●

●●
● ●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●
●●

●

●

●

●● ●

●

●
●

●

●

●●

●

●●

●

●●
●

●

●●
●

●

●

●

●
●●●

●

●●● ●●

●
●

●

20 30 40 50 60

0
1

2
3

4

FPAR

Y
ie

ld
(M

T
/h

a)

Figure 6. Relationship of RS metrics with maize yields over
2010–2017 period.
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Figure 7. RMSE and MAPE from 5-fold cross-validation of RF
and SVR maize prediction models.
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Figure 8. Coefficient of determination R2 of RF and SVM for a
5-fold cross-validation.

4. DISCUSSION

We have adopted machine learning regressing techniques to predict
maize yields in Kenya using MOALFI data collected annually. The
objective is to provide a remotely sensed platform for rapid yield
estimation during maize growing season. Maize is a staple food
for most Kenyan families and is also a source of income. Due to
lack of proper maize estimates farmers have suffered from poor
maize prices and other times shortage during low seasons that
results to food scarcity. Therefore we adopted RS metrics from
MODIS satellite for yield prediction. All the metrics are correlated
to county yields recorded between 2010–2017 (Figure 6). The
GPP metric during maize growing season had the highest feature
importance (Figure 5). This is expected because GPP acquired
during growing season period has been established to be one of
the best indicators of the amount of new biomass (Prince, 1991;
Gitelson et al., 2006) in crops and hence the reason it correlates
well with maize yields. In contrast to findings by (Shanahan
et al., 2001), which demonstrated that GNDVI acquired during
mid-grain season was the most highly correlated with grain yield,
GNDVI had the lowest importance in our study. This is because
our study used GNDVI mean aggregate from the entire season as
opposed to mid-gran period only.

Selected (NDVI, GNDVI, NDMI, GPP, and FPAR) metrics were
used to predict maize yields using SVR and RF machine learning
methods. The performance of SVR and RF was very similar. Both
methods explained a large amount of yield variability. We estab-
lished that the RMSE of 0.50 ton/ha (SVR) and 0.51 ton/ha (RF)
is an improvement over other studies like (Guindin-Garcia, 2010).
The average predictor error attained by the two approaches, i.e.
27.6% in SVR and 29.3% in RF, may be sufficiently accurate for
use; but it is also clear that there is much room for improvement.

Our study has demonstrated that it is possible to predict maize
yields in Kenya using MOALFI historical data. Despite these
encouraging findings there is still more room to improve yield
predictions. For instance, we used a maize crop mask that was
generated in 2015 via expert knowledge digitization. We expect
that there may have been changes in maize growing area in differ-

ent counties between 2010-2017 period that we used for model
prediction. Though we assumed, such changes to be negligi-
ble, use of maize crop mask generated annually to compute RS
metrics might improve prediction accuracy. This is a subject of
our future study. It is also important to note that administrative
boundaries have changed over time through different Kenya gov-
ernment regimes. These changes might have introduced biases
while streamlining collected maize yield data from old to new
administrative boundaries. Nonetheless, despite aggregating RS
metrics to the county boundaries the prediction accuracy attained
is reasonable. However, although RS data is increasingly acces-
sible at better spatial-temporal resolution and at no cost, ground
reference data is still essential to design and validate RS metrics
based predictions (Coleman et al., 2017).

5. CONCLUSION AND OUTLOOK

The study has demonstrated that maize yield estimation in Kenya
can be achieved at reasonable prediction accuracy using machine
learning SVR and RF. Maize yield prediction can help MOALFI,
traders and other food security stakeholders. In future work, we
will consider regions with similar agro-ecological and cultural
farming attributes and use annual maize mask generated by deep
learning in our model predictions. We hope to design the models
to predict yields at pixel level in each county.
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