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ABSTRACT: 

 

Canopy height (CH) and leaf area index (LAI) provide key information about crop growth and productivity. A rapid and accurate 

retrieval of CH and LAI is critical for a variety of agricultural applications. LiDAR and RGB photogrammetry have been increasingly 

used in plant phenotyping in recent years thanks to the developments in Unmanned Aerial Vehicle (UAV) and sensor technology. The 

goal of this study is to investigate the potential of UAV LiDAR and RGB photogrammetry in estimating crop CH and LAI. To this 

end, a high resolution 32 channel LiDAR and RGB cameras mounted on DJI Matrice 600 Pro UAV were employed to collect data at 

sorghum fields near Maricopa, Arizona, USA. A series of canopy structure metrics were extracted using LiDAR and RGB 

photogrammetry-based point clouds. Random Forest Regression (RFR) models were established based on the UAV-LiDAR and 

photogrammetry-derived metrics and field-measured LAI. The results show that both UAV-LiDAR and RGB photogrammetry 

demonstrated promising accuracies in CH extraction and LAI estimation. Overall, UAV-LiDAR yielded superior performance than 

RGB photogrammetry in both low and high canopy density sorghum fields. In addition, Pearson’s correlation coefficient, as well as 

RFR-based variable importance analysis demonstrated that height-based metrics from both LiDAR and photogrammetric point clouds 

were more useful than density-based metrics in LAI estimation. This study proved that UAV-based LiDAR and photogrammetry are 

important tool in sustainable field management and high-throughput phenotyping, but LiDAR is more accurate than RGB 

photogrammetry due to its greater canopy penetration capability. 

 

 

1. INTRODUCTION 

Monitoring crop growth and development is of great significance 

for agricultural studies (Weiss et al., 2020). As important 

indicators of crop growth, canopy height (CH) and leaf area index 

(LAI) provide key information about crop overall conditions such 

as crop health, stress and nutrient status, as well as crop 

productivity (Gower et al., 1999; Kimm et al., 2020; Ziliani et al., 

2018). An accurate retrieval of crop growth parameters such as 

CH and LAI with high efficiency and low cost is critical, 

particularly in precision agriculture and high-throughput field 

phenotyping. Field-based direct measurement of CH and LAI is 

accurate but often labour-intensive, time-consuming and 

destructive, while remote sensing techniques provide rapid and 

non-destructive measurements at larger spatial and higher 

temporal scales, and have been known as alternative approaches 

(Tao et al., 2020).  

 

With high spatial resolution, which fulfils the requirements for 

fine-scale applications (i.e., agricultural field or plot scale), as 

well as high flexibility and controllability in data collection 

compared to satellite remote sensing, recently emerged 

Unmanned Aerial Vehicle (UAV) has advanced the applications 

of remote sensing technologies, especially in precision 

agriculture and high-throughput field phenotyping 

(Maimaitijiang et al., 2020b; ten Harkel et al., 2020). Spectral  
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features (i.e., vegetation indices) derived from UAV-integrated 

multispectral/hyperspectral sensors have been broadly 

implemented in monitoring crop growth status, such as CH, LAI   

and biomass estimation (Maimaitijiang et al., 2017; Tao et al.,  

2020). However, spectral information is often affected by soil 

background, atmospheric conditions, as well as optical saturation 

issue in dense vegetation. Point cloud data from either LiDAR or 

RGB photogrammetry provides detailed three-dimensional (3D) 

information about the plant canopy, and can more accurately 

measure properties of dense canopies because they are less 

sensitive to saturation after canopies close (Jiang et al., 2020; 

Sankaran et al., 2015). UAV-based RGB photogrammetric point 

clouds have been used in canopy height extraction, as well as 

estimating crop LAI and biomass (Li et al., 2020; Maimaitijiang 

et al., 2019). With the availability of UAV integrated high 

resolution LiDAR systems, UAV-LiDAR point clouds were also 

employed in crop growth monitoring, such as canopy height 

extraction and biomass prediction (ten Harkel et al., 2020). 

Compared to RGB photogrammetry, LiDAR often provides 

higher penetration capability into the canopy, but less cost-

efficient, along with its complexity in terms of operation and data 

processing (Maimaitijiang et al., 2019; White et al., 2016). 

Studies about UAV-LiDAR applications in crop growth 
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monitoring, especially from a comparative perspective with 

UAV RGB photogrammetry are less attempted.  

 

This research aims to examine the potential of UAV to estimate 

crop growth indicators CH and LAI in sorghum plants from a 

perspective of LiDAR and RGB photogrammetry comparison. 

Additionally, the contribution of different canopy structure 

metrics derived from LiDAR and RGB photogrammetry for LAI 

estimation was analysed within the formwork of Random Forest 

Regression (RFR) method. 

 

 

2. TEST SITE AND DATA 

2.1   Test site and experimental setup 

The field experiments were conducted at the University of 

Arizona’s Maricopa Agricultural Center of (elevation 360 m, 

33.070º N and 111.974 º W), located in central Arizona in a semi-

arid region with low annual rainfall and low relative humidity 

(Figure 1). During the sorghum growing season in 2019 (May – 

August), the average monthly rainfall was 6.8 mm (range from 0 

in June to 14.1 mm in July). Soils at the site are characterized as 

clay loam to sandy loam (Casa Grande soil type). 

 

Sorghum were planted in two adjacent fields (north and south  

field) at different times in summer 2019. The north field was   

comprised of a grain sorghum diversity panel planted on 21 May  

2019 (15 days later than the southern field trial). The sorghum 

lines in this grain sorghum experiment were comprised of 234 

accessions of the Sorghum Association Panel (SAP) planted in 

two replicates. There were total 518 plots (37 east-west rows each 

containing 14 plots), not including the buffer plots on the field 

edges to minimize edge effects. The dimension of each plot is 

about 1.5 m × 3.5 m, and each plot covered two rows. The south 

field experiment was comprised of a sweet sorghum bi-parental 

population planted on 6 May 2019, two replicates of 166 

Recombinant Inbred Lines (RILs) and parents of the 

GRASSL*RIO population were planted in a split-plot 

experimental design. There are 672 experimental plots separated 

by 3 rows of 14 border plots for a total of 714 field plots 

(excluding external buffer plots planted to minimize edge effect). 

The dimension of each plot is about 1.5 m × 3.5 m. In addition, 

to reduce edge effects, lateral and end borders planted in 2-row 

plots on east/west edges and north/south outer ranges.  

 

At the time of UAV and field data collection from June 24th to 

June 26th, 2019, the north field has relatively lower and sparse 

sorghum canopy (denoted as L-field), while south field almost 

reached close canopy stage, which has higher and dense sorghum 

canopy (denoted H-filed). 

 

 

 
Figure 1. Study site location and UAV-based RGB imagery of two fields (north and south field). 

The north field was denoted as L-field (Low and sparse canopy), and the south field was denoted as 

H-field (high and dense canopy). 
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2.2    Data 

2.2.1   Field data collection: to assess the accuracy of CH 

derived from UAV LiDAR and photogrammetry point clouds, in 

situ field measurements of CH was conducted using a meter stick 

at 110 locations throughout L-filed, and 92 locations in H-field 

from June 24th to 26th, 2019 (Table 1). CH was measured from 

the ground vertically to the top of the leaves. It is worth noting 

that sorghum plots with low to median and high canopy height 

and density were covered during the measurement to better 

evaluate the performance of LiDAR and RGB photogrammetry 

techniques in different canopy conditions.  

 

Non-destructive measurement of LAI was carried out using LAI-

2200C Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE, USA) 

from 109 plots in L-field and 87 plots in H-field on June 25th and 

26th of 2019. Two above and five below canopy readings of LAI-

2200C were taken along a diagonal transect between two rows 

within each plot to obtain a LAI value (Maimaitijiang et al., 

2017). Field-measured CH and LAI are summarized in Table 1. 

 

Table 1 Descriptive statistics of field-measured canopy height 

(CH) and leaf area index (LAI). 

 
Field 

Name 
No. Mean Max. Min. SD 

CV 

(%) 

CH 

(m) 

L 110 0.601 0.870 0.360 0.108 17.9 
H 92 1.21 1.58 0.910 0.128 10.6 

H+L 202 0.878 1.58 0.360 0.325 37.0 

LAI 
L 109 1.30 2.93 0.420 0.491 37.8 
H 87 4.03 5.10 2.91 0.485 12.0 

H+L 192 2.51 5.10 0.420 1.45 57.6      
*No. represents the number of samples; SD: standard deviation;  

CV: coefficient of variation; L-field: lower canopy height density 

field; H-field: higher canopy height and density field; HL-field: 

combination of data from L-field and H-field. 

 

2.2.2   UAV data collection: an aerial campaign was conducted 

to collect LiDAR and RGB data over L-field and H-field 

separately on June 25th, 2019. A DJI Matrice 600 Pro hexacopter 

(DJI Technology Co. Ltd., Shenzhen, China) (Figure 2a) 

integrated with a Phoenix Scout-32 system (Phoenix LiDAR 

Systems, Los Angeles, California, USA) (Figure 2b) was 

employed to acquire UAV data. The Phoenix Scout-32 system is 

a lightweight (2.4kg) and compact multi-platform (UAV, ground 

vehicle or backpack) 3D mapping system, and it includes a 

Velodyne HDL-32 LiDAR sensor and a Sony A7R II RGB 

camera (Figure 2b). The Velodyne HDL-32 is a 32-channel dual-

return sensor, which has an effective scan rate up to 700,000 

pts/s, field of view (FOV) of 360° (horizontal) by 41.33° 

(vertical), and a reported ± 0.02 m accuracy with an effective 

range up to 65 m from the target. Additionally, an UAV onboard 

GNSS system was integrated to assist point clouds 

georegistration. Moreover, a ground-based RTK-GPS reference 

station X900-GNSS (CHCNAV, Shanghai, China) was setup 

during the aerial data collection to aid flight trajectory correction 

and improve the accuracy of LiDAR point clouds position. The 

overlap of LiDAR strips was 75%. 

 

Structure from Motion (SfM) photogrammetry was achieved 

using the Sony A7R II RGB camera (Figure 2b), which employed 

a 42-megapixel (MP) CMOS Sensor and 15-mm focal length. 

UAV flights were conducted at 30 m AGL with a flight speed of 

5 m/s. The flight mission was planned using Phoenix Flight 

Planner (www.phoenixlidar.com/flightplan/) and uploaded to the 

Litchi Mission hub online application (https://flylitchi.com/hub/) 

for executing the flight mission. 

 

 
Figure 2. UAV platform and sensors. A DJI Matrice 600 Pro 

hexacopter integrated with a Phoenix Scout-32 system (a), 

the Phoenix Scout-32 system includes a Velodyne HDL-32 

LiDAR sensor and a Sony A7RII RGB camera (b). 

 

3. METHODS 

3.1   UAV data preprocessing 

RGB imagery collections were processed through Pix4Dmapper 

software (Pix4D SA, Lausanne, Switzerland), which applies 

orthorectification and mosaicking to generate one whole field 

image (Figure 1). High density point clouds with las format were 

generated via Pix4Dmapper’s SfM-based photogrammetric 

module. A number of survey-grade accuracy Ground Control 

Points were used to produce UAV RGB orthomosaics and point 

clouds with precise position and scale (Sagan et al., 2019). 

LiDAR point clouds, flight trajectory files, and GPS data from 

the ground reference station were loaded into the LiDARMill 

application (www.phoenixlidar.com/lidarmill, Phoenix LiDAR 

Systems, Los Angeles, California, USA), which is a cloud -based 

LiDAR post-processing platform. LiDARMill generates point 

clouds with las format after applying trajectory correction, noise 

filtering, and ground/non-ground classification. LiDAR 

preprocessing involves three steps: combining IMU and GNSS 

data to generate a smoothed and accurate trajectory, automated 

flight line detection to reduce processing time by automatically 

detecting and omitting turns and calibration maneuvers to focus 

on data-collecting flight lines, and a LiDAR snap process which 

optimizes alignment parameters and minimizes offsets from 

multiple flight lines by comparing geometric observations made 

across overlapping flight lines. 

 

3.2    Point cloud-based metrics extraction 

A statistical outlier removal algorithm was applied to remove 

possible outliers in point clouds from LiDAR and RGB 

photogrammetry (Jiang et al., 2019). Point clouds of L-filed and 

H-filed from LiDAR and photogrammetry were split by overlaid 

plot polygons, respectively, and a number of plot-level 3D point-

cloud groups were generated. For each plot-level point-cloud 

group, the 1st percentile of the cumulative probability distribution 

of original elevation value was regarded as ground elevation (or 

Digital Elevation Model (DEM)), and the true height value for 

each point was achieved by subtracting the ground elevation 

(DEM) from original point heights. Additionally, points below 

the 1st percentile of the cumulative probability distribution of 

original elevation were treated as ground points, while the 

remaining of the points were regarded as non-ground canopy 

points (Niu et al., 2019).  

 

A set of plot-level canopy structure metrics that are employed for 

vegetation parameter estimations in previous studies (Li et al., 

2017; Maimaitijiang et al., 2019) were computed using LiDAR 

and photogrammetry canopy points, respectively (Table 2).  
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Table 2 List of canopy structure metrics derived from UAV-

LiDAR and RGB photogrammetry-based point cloud. 

Metrics  Descriptions 

Hmax Maximum of canopy height 

Hmin Minimum of canopy height 

Hmean Mean of canopy height 

Hmed Median of canopy height 

Hmode Mode of canopy height 

Hsd Standard deviation of canopy height 

Hcv Coefficient of variation of canopy height 

Hmad Hmad = 1.4826 *median (|height – Hmedian|) 

Haad Haad = mean (|height – Hmean |) 

Hper 

Percentile of canopy height: H10, H20, H30, 

H40, H50, H60, H70, H80, H90, H95, H98, 

H99 

Hiqr 
The Interquartile Range (iqr) of canopy height, 

Hiqr = H75 – H25 

Hskn Skewness of canopy height 

Hkurt Kurtosis of canopy height 

Hcrd  

Canopy return density is the proportion of 

points above the height quantiles (10th, 30th, 

50th, 70th, and 90th) to total number of points: 

Hd10, Hd30, Hd50, Hd70, and Hd90 

Hcrr  
Canopy relief ratio of height:  

(Hmean- Hmin)/(Hmax – Hmin) 

 

Hlii 
Laser intercept index (canopy returns/total 

returns), a description of fractional canopy 

cover 

Hcg The ratio of canopy returns and ground returns 

 

3.3   Modeling methods 

A Random Forest Regression (RFR) model was developed to 

estimate sorghum LAI. RFR is an ensemble regression method 

that consists of different trees, that are trained by applying 

bagging and random variable selection process (Breiman, 2001). 

In this study, we randomly selected 70% of input canopy 

structure metrics and corresponding field-measured LAI, and 

used these to train the RFR model; the remaining 30% of data 

were withheld from training and used to test the model. Canopy 

structure matrices extracted from LiDAR or RGB 

photogrammetry point clouds were used as input variables for 

RFR, to estimate sorghum LAI. A grid-search and k-fold cross-

validation technique was employed to obtain optimal parameters 

during the model calibration phase. Number of tress for RFR 

method was set at 500, and the max_features parameter which 

decides how many features each tree in the RFR considers at each 

split was determined through the grid search procedure 

(Maimaitijiang et al., 2020a).  Root mean square error (RMSE), 

relative RMSE (RMSE%), and the coefficients of determination 

(R2) were used to assess model performance: 

 

 

   
 

where �̂�𝑖  and  𝑦𝑖 are estimated and field-measured sorghum LAI, 

�̅� is the mean value of measured LAI, and  𝑛 is the number of 

testing samples.  

 

In addition, a permutation-based variable importance of RFR 

method was used to identify the most influential canopy structure 

metrics from LiDAR and RGB photogrammetry in LAI 

estimation. Permutation-based variable importance is achieved 

by permuting the values of a variable randomly to evaluate the 

influence on model performance and accuracy (Strobl et al., 

2009). The workflow from data processing, canopy structure 

matrices extraction to model building and evaluation was 

demonstrated in Figure 3. 

 

 
Figure 3.  A workflow diagram of data processing, canopy 

structure matrices extraction and modeling. 

 

 

4. RESULTS AND DISCUSSION 

4.1   LiDAR and Photogrammetry-based CH analysis 

Different percentiles of canopy height (Table 2) were derived 

from LiDAR and photogrammetry point clouds, and compared to 

the field measured CH. In this study, H99 (99 percentile CH) 

from both LiDAR and photogrammetry had the highest 

correlation with measured CH. LiDAR and photogrammetry-

based H99 were plotted against corresponding field measured CH 

(Figure 4). Compared to photogrammetry CH, LiDAR yielded 

higher accuracy with R2 of 0.975, and RMSE% of 5.94%, and 

demonstrated a closer fit toward the 1:1 line. Photogrammetry 

CH illustrated a higher spread pattern for both L-field and H-

field, as demonstrated by lower R2 and higher RMSE%. It is also 

worth noting that RGB photogrammetry underestimated CH at 

both lower and higher values (Figure 4b), which is likely due to 

the point missing of smaller plants (i.e., L-field) in the point cloud 

reconstruction process (Maimaitijiang et al., 2019); and the 

limited penetration of dense canopy (i.e., H-field) inherent to 

RGB photogrammetry (Figure 7). This led to inaccurate and 

overestimated DEM, and thus underestimated CH (White et al., 

2016). 
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Figure 4. Comparison of field-measured canopy height (CH) with LiDAR and RGB photogrammetry-derived 99 

percentiles of canopy height (H99). 

To further evaluate the capability of LiDAR and photogrammetry 

in CH extraction, plot-level canopy height metrics from both 

techniques were achieved and compared (Figure 5). Overall, 

LiDAR and photogrammetry produced consistent and 

comparable results, as evidenced by the compact distribution 

pattern of scattered data points around 1:1 line, as well as high R2 

values. Nonetheless, given LiDAR-based CH as a benchmark, an 

increased underestimation trend was found to photogrammetry-

derived CH with higher values (i.e., CH > 1.0 m in this case) from 

H90, H95, H99 to Hmax (Figure 5), and R2 decreased 

correspondingly from 0.897, 0.982, 0.878 to 0.819. This may be 

due to the limited canopy penetration capability of 

photogrammetry method (Figure 7), which often leads to 

underestimation of CH at high density (White et al., 2016). For 

CH in shorter plots (i.e., CH < 1.0 m in this case), H90, H95, H99 

and Hmax from LiDAR and photogrammetry are centered around 

the 1:1 line, and no obvious under or over estimation pattern was 

noticed. For canopy with a lower height and density (i.e., L-

field), photogrammetry is able to capture vertical information 

from median/lower canopy and acquire ground points, and 

produces point clouds with comparable quality to LiDAR (Figure 

6), and therefore provides more accurate DEM and CH than 

photogrammetry in taller and denser plots. 

 

 
Figure 5. Comparison of LiDAR and RGB photogrammetry-

derived plot-level canopy percentile heights using density 

scatter plots. The red dash line is the bisector (1:1 line). 

 
Figure 6. 3D visualization of one selected plot in L-field.  

(a), (c), (e) are perspective and side views of LiDAR point 

clouds; (b), (d), (f) are perspective and side views of RGB 

photogrammetry point clouds. 
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Figure 7. 3D visualization of one selected plot in H-field.  

(a), (c), (e) are perspective and side views of LiDAR point 

clouds; (b), (d), (f) are perspective and side views of RGB 

photogrammetry point clouds. 

 

4.2   LiDAR and Photogrammetry-based LAI estimation 

Pearson’s correlation analysis was conducted between field-

measured LAI data from LH-field and 30 metrics (Table 2) 

extracted from both LiDAR and photogrammetry to examine the 

potential of each metric for LAI estimation. Overall, LAI has a 

relatively strong positive or negative correlation relationship with 

most of those metrics whether they are computed from point 

clouds derived from LiDAR or photogrammetry metrics: most 

metrics have a correlation coefficient (r) higher than 0.8 or lower 

than -0.8 (Figure 8). In both LiDAR and photogrammetry cases, 

height-based metrics such as H50, H60, H70, H90 and H99 etc. 

produced stronger correlation coefficient (r > 0.8) than density-

based metrics such as Hd10, Hd30, Hd50, Hd70 and Hd90 (r < 

0.4 or r > -0.4). Moreover, the metrics Hmode, H30, Hiqr, Hkurt, 

Hd10, Hd30 and Hd70 from LiDAR and photogrammetry had 

opposite correlation relationships (i.e., positive for LiDAR and 

negative for photogrammetry, or vice versa) with LAI. This is 

likely due to differences in point clouds from LiDAR and 

photogrammetry with respect to vertical distribution at different 

heights, penetration ability, as well as point density. 

 

The RFR method was employed to predict LAI over L-field and 

H-field separately, as well as using data from both fields 

combined (LH-field) using the 30 metrics from LiDAR and 

photogrammetry, respectively. As shown in Table 3, LiDAR-

derived metrics outperformed RGB photogrammetry method in 

LAI estimation regardless of L-field, H-field, or their 

combination (LH-field), indicating superior capability of UAV-

LiDAR in sorghum LAI estimation. While RGB 

photogrammetry was slightly less accurate, it was comparable to 

LiDAR in all three cases (Table 3), suggesting RGB 

photogrammetry has potential as a low-cost technique with 

sufficiently accurate LAI estimation for some applications. 

 

 

 
Figure 8. Correlation coefficient between point cloud-derived 

canopy structure metrics and leaf area index (LAI). LiDAR-

based metrics for LH-field (a); RGB photogrammetry-based 

metrics for LH-field. 

 

Additionally, both LiDAR and RGB photogrammetry-derived 

metrics yielded highest accuracy when combing data from two 

fields (LH-field) with R2 of 0.950 (LiDAR) and 0.939 

(photogrammetry). Combination of LAI data from L-field (lower 

LAI values) and H-field (higher LAI values) increased the 

sample size for model building, as well as data range and 

variations in height, which contributed to the improved accuracy 

(higher R2) of LAI. Furthermore, both LiDAR and 

photogrammetry techniques generated higher accuracy for L-

field (smaller and sparse sorghum canopy) with R2 of 0.753 

(LiDAR) and 0.677 (photogrammetry) than H-field (larger and 

dense sorghum), which has R2 of 0.416 (LiDAR) and 0.391 

(photogrammetry). Limited penetration ability inhibits both 

LiDAR and photogrammetry in crop applications, although 

LiDAR suffers less compared to the latter (White et al., 2016), 

therefore, both techniques are able to capture more internal and 

vertical canopy structure information from L-field due to the 

lower and sparser sorghum canopy, which likely led to better 

prediction of LAI.  
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Table 3. Validation statistics of LAI estimation using RFR. 

Sensor VM* L-field H-field LH-field 

LiDAR 

R2 0.753 0.416 0.950 

RMSE 0.273 0.320 0.309 

RMSE% 19.2 8.10 12.2 

RGB 

R2 0.677 0.391 0.939 

RMSE 0.312 0.327 0.340 

RMSE% 22.0 8.27 13.5 

*VM stands for validation metrics for regression models. 

The predicted LAI using LiDAR and photogrammetry-derived 

metrics in the case of L-field, H-field and LH-field were plotted 

against corresponding field-measured LAI values (Figure 9). As 

consistent with the high R2, data points are closely distributed 

around the 1:1 line for the combined LH-field. By contrast, the 

low R2 is consistent with the spread of data points around the 1:1 

line in the H-field. 

 

 
Figure 9. Scatter plots of measured VS. predicted leaf area 

index (LAI) for L-field using LiDAR (a) and RGB 

photogrammetry (b), and H-field using LiDAR (c) and RGB 

photogrammetry (d), as well as LH-field using LiDAR (e) 

and RGB photogrammetry (f). 

 

4.3   Importance of point cloud-based metrics 

Figure 10 shows the variable importance ranked in descending 

order for LAI estimation of LH-field based on RFR model when 

using LiDAR (Figure 10a) and photogrammetry metrics (Figure 

10b), respectively. Overall, variable importance of LiDAR and 

photogrammetry-based metrics was different in LAI estimation, 

the most important variable in estimating LAI for LiDAR is Hcg, 

while it is Hcv for RGB photogrammetry. The least important 

metric is Hd50 for both LiDAR and photogrammetry. As 

evidenced from previous demonstration (Figure 5 to Figure 7) 

and analysis, point clouds from LiDAR and photogrammetry 

shown differences in terms of point density, canopy penetration 

capability, as well as vertical distribution, which are likely due to 

the different contribution/importance of point cloud-derived 

metrics from LiDAR and photogrammetry in LAI estimation 

(Figure 10).  

 

It is worth mentioning that height-based metrics (i.e., H50, H60 

and H95 etc.) yielded higher performance than density-based 

metrics (i.e., Hd10, Hd30 and Hd50 etc.) in LAI prediction 

generally. Additionally, although most of the metrics from both 

LiDAR and RGB photogrammetry demonstrated relatively high 

correlation with LAI (Figure 8), only a few metrics were 

identified as influential factors for LAI estimation (Figure 10), 

this may due to the fact that RFR assesses the importance of each 

metric jointly by measuring not only the contribution of each 

variable but in multivariate interactions with other variables as 

well, and the redundant collinear variables will not be given large 

importance (Strobl et al., 2009).  

 

 
Figure 10. Ranking of height metrics in LAI estimation 

based on permutation variable importance of RFR. 

Importance of canopy structure metrics from LiDAR point 

clouds (a), and RGB photogrammetry point clouds (b). A 

variable with a higher importance score indicates a larger 

contribution in LAI estimation. 

 

5. CONCLUSION 

This study presented a comparative analysis of UAV-based 

LiDAR and RGB photogrammetry in sorghum growth 

monitoring, specifically in sorghum canopy height (CH) 

extraction and LAI estimation. Overall, both UAV-LiDAR and 

RGB photogrammetry exhibited promising capability in crop 

growth monitoring by providing accurate and rapid estimations 

of CH and LAI in sorghum plants. Nonetheless, UAV-LiDAR 

presented superior performance over RGB photogrammetry not 

only in the case of smaller and sparse sorghum canopy (L-field), 

but for larger and dense sorghum canopy (H-field) as well. In 

addition, both LiDAR and RGB photogrammetry yielded higher 

accuracies in LAI estimation for smaller and sparse sorghum (L-

field) than that for larger and dense sorghum (H-field).  

 

Both techniques demonstrated great potential for crop growth 

monitoring in sparse canopies, however, the relatively poorer 

performance in dense canopies places some limits on their 
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application. For the future work, it will be of interest to evaluate 

and compare the potential of point clouds from UAV-LiDAR and 

RGB photogrammetry for other types of plant traits estimation, 

such as crop aboveground biomass etc. In addition, the potential 

of both techniques should be tested across different development 

stages of crops, as well as a variety of crop types. Moreover, the 

investigation of both techniques in crop growth monitoring could 

be conducted using other machine learning methods, particularly 

the state of the art deep learning algorithms. 
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