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ABSTRACT:

Currently, the overwhelming amount of Earth Observation data demands new solutions regarding processing and storage. To
reduce the amount of time spent in searching, downloading and pre-processing data, the remote Sensing community is coming to an
agreement on the minimum amount of corrections satellite images must convey in order to reach the broadest range of applications.
Satellite imagery meeting such criteria (which usually include atmospheric, radiometric and topographic corrections) are generically
called Analysis Ready Data (ARD). Furthermore, ARD is being assembled into multidimensional data cubes, minimising pre-
processing tasks and allowing scientists and users in general to focus on analysis. A particular instance of this is the Brazil Data
Cube (BDC) project, which is processing remote sensing images of medium spatial resolution into ARD datasets and assembling
them as multidimensional cubes of the Brazilian territory. For example, BDC users are released from performing tasks such as
image co-registration , aerosol interference correction. This work presents a BDC proof of concept, by analysing a BDC data cube
made with images from the fourth China-Brazil Earth Resources Satellite (CBERS-4) of one of the largest biodiversity hotspot in
the world, the Cerrado biome. It also shows how to map and monitor land use and land cover using the CBERS data cube. We
demonstrate that the CBERS data cube is effective in resolving land use and and land cover issues to meet local and national needs
related to the landscape dynamics, including deforestation, carbon emissions, and public policies.

1. INTRODUCTION

Currently, new satellite and terrestrial remote sensing systems
produce such large amounts of data at fine temporal and ra-
diometric resolutions (Nativi et al., 2015) that new data stor-
ing solutions are dearly needed. Besides, the time required to
pre-process such amount of data diminishes the time actually
invested in analysis. Analysis Ready Data (ARD) and multi-
dimensional data cubes are preconditions to fulfil new analysis
demands and to increase the levels of detail and accuracy re-
quired in the a fast changing environment (Nativi et al., 2017).

The purpose of Earth observation (EO) data cubes is to organ-
ise the data to make their use so simply and intuitive that users
can focus on developing and testing their methods (Appel, Pe-
besma, 2019). An EO data cube is a four-dimensional array
relating dimensions to longitude, latitude, time, and spectral
bands (Appel, Pebesma, 2019). Around the world, EO data
cubes initiatives are providing open data for the common good
of society (Killough, 2018).

The first EO data cube was the Australian Geoscience Data
Cube (AGDC) (Dhu et al., 2017, Lewis et al., 2017), which
still produces and distributes Analysis Ready Data made from
Landsat images, enabling users to explore and increase the im-
pact of EO data (Committee on Earth Observation Sciences
(CEOS), n.d.). The AGDC runs on top of the Open Data Cube
(ODC) infrastructure, which is been used to create other na-
tional and regional data cubes such as those of Switzerland (Gi-
uliani et al., 2017), Colombia (Ariza-Porras et al., 2017, Bravo
∗ Corresponding author

et al., 2017), Africa (Killough, 2019), Armenia (Asmaryan et
al., 2019), China (Yao et al., 2018), and Mexico (Dhu et al.,
2019).

Other initiatives produce data cubes by combining images from
different sensors, such as the Cubesat Enabled Spatio-Temporal
Enhancement Method (CESTEM) and the Framework for Op-
erational Radiometric Correction for Environmental monitor-
ing (FORCE). CESTEM produces radiometric harmonisation
of images from Planet’s constellation, Landsat, Sentinel, and
MODIS (Houborg, McCabe, 2018) while FORCE harmonises
ARD data from Landsat 8 Operational Land Imager (OLI) and
Sentinel-2 MultiSpectral Instrument (MSI) using a software de-
veloped by Frantz (2019) .

The Brazil National Institute for Space Research (INPE) is de-
veloping the Brazil Data Cube (BDC) project to create ARD
data cubes of the Brazilian territory1. Among others data cubes,
BDC provides one made of images from the fourth China-
Brazil Earth Resources Satellite (CBERS-4). CBERS-4 sensors
provide medium resolution images in the visible and infrared
region of the electromagnetic spectrum.

A medium resolution CBERS-4 data cube could extend and im-
prove the scope of environmental monitoring studies such as de-
forestation mapping, greenhouse gas emission assessment, and
forest fire detection. In addition, it may encourage the scientific
community to research and develop new cartographic products
since several works have established data cubes as a techno-
logy for mapping land use and land cover (LULC) (Hamunyela
1 For more details, see http://brazildatacube.org/
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et al., 2016, Brooke et al., 2017, Lucas et al., 2019, Xi et al.,
2019) and for monitoring both forest (Hamunyela et al., 2017,
Hermosilla et al., 2018) and urbanisation (Killough, 2019).

In this study, we demonstrate the applicability of the CBERS-4
data cube for mapping LULC. Additionally, we present to the
scientific community a data cube that is already available on the
BDC project platform.

2. DATA CUBE INITIATIVES

The Australian Geoscience Data Cube (AGDC) has been produ-
cing ARD data from the Landsat and Sentinel-2/MSI satellites
since 2018. Its aim is to explore the EO potential by addressing
the volume, velocity, and data diversity challenges of EO big
data (Lewis et al., 2017). The AGCG applications range from
understanding environmental changes, such as water availabil-
ity and urban and agricultural expansion, to allow companies
and industries to have access to EO data so that they can innov-
ate and develop new products (Dhu et al., 2019).

The purpose of the Swiss data cube (SDC) is to monitor en-
vironmental changes, spatially and temporally, and to provide
ARD data so that Swiss scientific institutions can innovate and
generate information that improves knowledge about the Swiss
environment, in addition to enabling more effective responses
to problems of national importance (Giuliani et al., 2017). The
Swiss Data Cube (SDC) contains optical data from the Land-
sat and Sentinel-2 satellites and radar data from the Sentinel-1
(Dhu et al., 2019).

The Regional Data Cube for Africa (ARDC), launched in 2018,
comprises five countries: Ghana, Kenya, Senegal, Sierra Leone,
and Tanzania. ARDC’s goal is to provide access to EO data, in
free and open data infrastructure, to address the United Nations
Sustainable Development Goals (SDG), and other priorities in
each country (Killough, 2019). In addition, to capacity end-
users to apply EO ARD to address local and national needs.
The ARDC includes Landsat ARD, since 2000, but plan to add
Sentinel-1 and Sentinel-2/MSI data (Dhu et al., 2019).

The objective of the Brazil Data Cube (BDC) project, started in
2019, is to develop a platform for the analysis and visualisation
of large volumes of EO ARD and harmonise data from differ-
ent satellites and sensors, for the Brazilian biomes. Besides, to
create LULC maps and provide support for other Brazilian pro-
jects to monitor deforestation, burning, and land use and land
cover changes. The BDC consists of medium spatial resolution
sensors (20-30 m) from the Landsat 8/OLI, CBERS-4/WFI, and
Sentinel-2/MSI platforms, covering the entire Brazilian territ-
ory.

The Colombian Geoscience Data Cube (CDCol) aims to cover
the entire life cycle of the image analysis process, and therefore
provide ARD data to support Colombian institutions, which
will benefit from the information to support the forest and car-
bon monitoring system (Ariza-Porras et al., 2017, Bravo et al.,
2017). The CDCol initial input includes 15 years of satellite
images of Landsat 5, 7, and 8.

Armenia developed and implemented the first version of an Ar-
menian data cube, in partnership with the Swiss data cube, in
order to obtain data that support the challenges that the country
faces related to environmental issues and the lack of data (As-
maryan et al., 2019). The Armenian data cube includes Landsat

5, 7, 8, and Sentinel-2/MSI ARD over Armenia, from 2016 to
2019.

The China Data Cube (CDC) is being developed to meet
the needs of researchers in related areas, such as monitoring
changes in the ecosystem, floods, agriculture, climate, etc (Yao
et al., 2018). The China Data Cube (CDC), which uses the Open
Data Cube infrastructure, has inserted the China’s GF1 satellite
data and plans to include more China EO data in the CDC, such
as HJ1A/1B, ZY and other satellites as Landsat.

The Mexico Geospatial Data Cube (MGDC) is being de-
veloped, in collaboration with Geoscience Australia, at the Na-
tional Institute of Statistics and Geography of Mexico (INEGI).
The MGDC will contain ARD Landsat images since 1984, but
its architecture is prepared to receive Sentinel-2/MSI data (Dhu
et al., 2019). MGDC product images have already been used
to provide information on issues related to Natural Resources
and Agricultural Statistics in Mexico (Dhu et al., 2019). The
MGDC system is expected to be an INEGI’s transversal service
platform.

3. CBERS-4 DATA CUBE

The CBERS-4 data cube is one of the ARD cubes that the Brazil
Data Cube project has been developing. The satellite CBERS-4
was launched on December 2014 with four sensors, Panchro-
matic and Multispectral camera (PAN), Multispectral Camera
Regular (MUX), Wide Field Imaging Camera (WFI) and the
Multispectral and Thermal Imager (IRS). Their characteristics
are described in Table 1.

Sensor Spectral bands Resolution
Width range

imaged
Revisit

PAN

0.51− 0.85µm (Pan)

5m/10m 60km 5 days
0.52− 0.59µm (G)
0.63− 0.69µm (R)
0.77− 0.89µm (NIR)

MUX

0.45− 0.52µm (B)

20m 120km 26 days
0.52− 0.59µm (G)
0.63− 0.69µm (R)
0.77− 0.89µm (NIR)

IRS

0.50− 0.90µm (Pan)

40m/80m 120km 26 days
1.55− 1.75µm (SWIR)
2.08− 2.35µm (SWIR)
10.40− 12.50µm (TH)

WFI

0.45− 0.52µm (B)

64m 866km 5 days
0.52− 0.59µm (G)
0.63− 0.69µm (R)
0.77− 0.89µm (NIR)

Table 1. Summary of the characteristics of the CBERS-4
sensors. Source: http:

//www.cbers.inpe.br/sobre/cameras/cbers3-4.php

The CBERS-4 data cube was created using images from the
WFI sensor. The WFI images have 64m of spatial resolution
and the raw data are processed to produce co-registered, top
of atmosphere and surface reflectance ARD images (Dwyer
et al., 2018). Also, the indices NDVI and EVI, and a cloud
mask product are computed (Figure 1). From surface reflect-
ance product, we generate composite images using different
time periods, one month and 16 days. These periods encom-
pass, on average, 6 and 3 observed images, respectively. For
each period, after removing cloud masked pixels, we choose
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Figure 1. Data cube generation and LULC classification
workflow. Above: Analysis Ready Data (ARD) production in

five steps (data acquisition, conversion to radiance, top of
atmosphere (TOA) reflectance, surface reflectance, and temporal

compositing) provided by CBERS-4 data cube. Bellow: Data
preparation for LULC using time series data. Source: Adapted

from Giuliani et al. (2017) .

one value using two different strategies, the simple median and
the “stack” algorithm, that prioritises the non-cloud values of
images with less cloud cover. This process generated four tem-
poral compositing products. In this study, we used images from
the monthly composited product using “stack” algorithm.

All images are available on the BDC project portal. BDC ARD
data is supplied as tiled products defined in an equal area pro-
jection. The spatial footprint comprehends 1:250,000 grid with

a tile size of approximately 165×110km. All data is provided
in Cloud Optimised GeoTIFF (COG) format (Cloud Optimized
GeoTIFF, 2019) and described according to the Spatiotemporal
Asset Catalog (STAC) (Spatio Temporal Asset Catalog, 2019)
specification. The software used to build, access, and process
the CBERS-4 data cubes is open source and the code is avail-
able on the BDC project’s Github at https://github.com/
brazil-data-cube.

4. PROOF OF CONCEPT

In this section, we present an application of LULC classific-
ation. After delimiting the study area, the process consisted
of preparing the data cubes, obtaining the time series for the
samples, training and validating the random forest model, and
generating the LULC map (Figure 2).

4.1 Study area

The study area is located in the Cerrado biome, on the border
of three Brazilian states: Mato Grosso, Mato Grosso do Sul
and Goiás, Brazil (Figure 3). The period of analysis is from
September of 2018 to August of 2019.

The Cerrado is the second largest biome in South America, oc-
cupying an area of 2 million km2, about 22% of the Brazilian
territory. Considered as a global hotspot of biodiversity (Klink,
Machado, 2005), it presents an extreme abundance of endemic
species but it suffers an exceptional loss of habitat. Because
of its biological diversity, the Cerrado is recognised as the
richest savanna in the world, sheltering at least 11, 600 species
of catalogued native plants (Brazilian Ministry of Environment,
2019).

4.2 Data cube access and preparation

The CBERS-4 data cube can be accessed by the BDC portal or
by STAC service, which provides information about the images

Figure 2. Land use and land cover classification method.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-533-2020 | © Authors 2020. CC BY 4.0 License.

 
535

https://github.com/brazil-data-cube
https://github.com/brazil-data-cube


Figure 3. Left: study area in relation to Brazil and its biomes.
Right: CBERS-4/WFI image from June, 2018 of the study area

(RGB - 14/13/15 bands).

as well as the links to access their contents. The service API en-
ables automated access and preparation of the data cube. Here,
we computed new indices and filled null data using temporal
linear interpolation. We used the monthly composed images
data cube using the “stack” algorithm.

In addition to the two indices provided by this product (En-
hanced Vegetation Index (EVI) and Normalized Difference Ve-
getation Index (NDVI), we computed other four indices: Global
Environment Monitoring Index (GEMI), Green Normalized
Difference Vegetation Index (GNDVI), Normalized Difference
Water Index (NDWI2), Photosynthetic Vigour Ratio (PVR).
Resulting in six vegetation indices and four spectral bands:
blue, green, red, and near-infrared bands (Table 2).

Index Equation Source

EVI
2.5(nir−red)

(nir+6red−7.5blue)+1) (Huete et al., 1997)

GEMI η(1−0.25η)−(red−0.125)
(1−red)

η =
(2(nir2−red2)+1.5×nir+0.5×red)

(nir+red+0.5)
(Pinty, Verstraete, 1992)

GNDVI
(nir−green)
(nir+green)

(Gitelson et al., 1996)

NDVI
(nir−red)
(nir+red)

(Rouse et al., 1974)

NDWI2
(green−nir)
(green+nir)

(McFeeters, 1996)

PVR
(green−red)
(green+red)

(Metternicht, 2003)

Table 2. Summary of the vegetation indices.

The CBERS-4 data cube consists of images organised by date
and band. Organised by date, the images are stacked forming
time series for each attribute of each pixel. To fill eventual null
data in the time series, we interpolated the lacking data linearly
using the closest valid values available. After this processing,
we extracted the time series for each sample for the training
stage and used it later to generate the LULC maps.

4.3 Sample dataset

We merged two sample dataset, one coming from high resolu-
tion images, collected by Remote Sensing specialist, and the

other from the BDC project database. This dataset includes
1, 042 LULC samples divided into four classes: Natural Veget-
ation (NV), Pasture (P), Semi-Perennial Crop (SP Crop), and
Annual and Perennial Crop (AP Crop).

To evaluate the separability of these classes in the sample data-
set, we used a neural network Self-Organizing Map (SOM).
SOM is a suitable clustering method when working with time-
series data (Aghabozorgi et al., 2015), it is an unsupervised
neural network where the input layer is the sample dataset, and
the output layer is a data set of grouped neurons.

SOM allows us to map from high to low dimension spaces while
preserving the topology of the data and reducing the computa-
tional cost. SOM evaluates which spectral bands and vegeta-
tion indexes are best suited for LULC separability (Santos et
al., 2020). The SOM parameters were: a grid size of 5×6, a
learning rate decreasing from 0.05 to 0.01, and 300 iterations.

4.4 Random forest classification

The random forest algorithm (Breiman, 2001) is an ensemble
method based on a decision tree model. Its strategy consists in
developing many decision trees via bootstrap and random fea-
ture selection to reduce classification bias. The majority voting
schema is used to obtain the final classification model.

The classification was done using the sits R package (Camara et
al., 2018), an open source software developed by our research
group. For the classification, we used the full depth of CBERS
image time series to create larger dimensional spaces, and we
set the number of decision trees to 1000. At each growing tree,
only a fraction of the attributes are considered to split a node
according to the Gini index, used here as an attribute relevance
criterion.

To validate the resulting classification we used a 5-fold cross-
validation (Wiens et al., 2008). It ran five different assessments
using 80% of the samples for training and 20% for prediction.
The average accuracy of the five classifications was used to pro-
duce a single accuracy estimation.

5. RESULTS AND DISCUSSION

For the study area samples, the SOM clustering reduced the
size of the sampling dataset by 17.8%, going from 1, 042 to
856 samples. We used this filtered dataset to train the clas-
sification model. The user’s and producer’s accuracy for the
LULC classes mapped are presented in Table 3. The classifica-
tion quality assessment using 5-fold cross-validation (Wiens et
al., 2008) of the training samples showed an overall accuracy of
97.0% and a Kappa index of 0.96.

The results demonstrate that the CBERS-4/WFI data cube is not
only ideal for mapping LULC but also for detecting land use
and land cover change (LULCC), as it provides ARD image
time series. Currently, one of the biggest worries of the Cer-
rado biome is the rapid change occurred in LULC (Soterroni et
al., 2019). Agricultural crops and pasture areas have been ex-
panding over natural vegetation with considerable speed (Picoli
et al., 2020). Maps produced from data cube in the ARD format
can be a powerful tool for monitoring the dynamics of land use
and land cover in the Cerrado.

Besides, the CBERS-4/WFI data cube can be considered bet-
ter than MODIS products - widely used for mapping the Cer-
rado biome - because of its spatial resolution. For example,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-533-2020 | © Authors 2020. CC BY 4.0 License.

 
536



AP Crop NV P SP Crop UA

AP Crop 250 0 1 6 0.97

NV 0 245 0 0 1.00

P 0 0 211 5 0.98

SP Crop 6 0 5 123 0.92

PA 0.98 1.00 0.97 0.92

Table 3. Confusion matrix of CBERS-4 data cube obtained by
5-fold cross validation of classification of field data, and values
of producer’s accuracy (PA) and user’s accuracy (UA) for each

class: Annual and Perennial Crop (AP Crop), Natural Vegetation
(NA), Pasture (P), and Semi-Perennial Crop (SP Crop).

the spatial resolution of MODIS (250 x 250 m) causes spectral
mixing and limits pattern recognition in heterogeneous land-
scapes (Zhong et al., 2016) as the study region. For natural
formations, MODIS is unable to capture complex vegetation
gradients such as some sub-types of savanna (e.g., shrublands,
and grasslands) (Schwieder et al., 2016), which turns cerrado
areas spectrally similar to forest areas in the function of its dens-
ity (Simoes et al., 2020). For other vegetation classes, such as
pasturelands and agricultural vegetation the spatial resolution of
MODIS may cause spectral confusion due to its seasonal vari-
ation (Chaves et al., 2018, Picoli et al., 2018). As showed in
this work, these both situations can be improved by using the
CBERS-4/WFI data cube.

Figure 4 shows the resulting map with the spatial distribution of
LULC classes, from September 2018 to August 2019, using the
vegetation indices derived from the CBERS-4/WFI data cube
EVI, NDVI, GEMI, GNDVI, NDWI2, PVR, and the spectral
bands red, green, blue, and near-infrared, applying the random
forest algorithm.

Figure 4. Random forest classification of the study area, from
September 2018 to August 2019, using the CBERS-4/WFI data

cube.

The CBERS-4/WFI data cube can be used to monitor the ex-
pansion of agriculture, pasture, and urban areas, natural dis-
asters, and to map deforestation. Projects like the Monitoring
of the Brazilian Amazon Deforestation by Satellite (PRODES)
(Brazil’s National Institute for Space Research – INPE, 2020)
that already use CBERS-4 satellite data to map deforestation
across the Legal Amazon, can be benefited by incorporating the

CBERS-4/WFI data cube into its classification systems. Using
the CBERS-4 data cube, the technicians of this project will be
able to pass up the image processing steps and just focus on
detecting deforestation.

Other projects for monitoring LULC in Brazil, such as Terra-
Class (Almeida et al., 2016) and MapBiomas (Azevedo et al.,
2018), will also benefit from data cubes, as they will have time
series data in the ARD format to map Brazilian biomes. These
projects could allocate more human resources in the develop-
ment of mapping. Besides the benefits already mentioned, the
CBERS-4/WFI data cube can support public policies aimed to
mitigate the impacts of global environmental changes. For the
Brazilian context, the use of this product also can symbolise
more autonomy due to the national efforts and technology im-
plemented to develop and launch the satellite in partnership
with China.

6. NEXT STEPS

Recently, on December of 2019, a new satellite of the CBERS
program (CBERS-04A) was successfully launched carrying
sensors with the compatible specifications of those inboard of
CBERS-4. This launch ensures continuity of the image captur-
ing as well as an increment in the frequency of revisits. The
BDC project intends to implement in a single data cube images
from both CBERS-4 and CBERS-04A.

In the context of the BDC Project, other data cubes with me-
dium resolution are being generated and tested besides CBERS-
4/WFI, such as Sentinel-2/MSI and Landsat 8/OLI imagery.
Initially, the period of these data cubes will be from 2017 (the
launch of Sentinel-2B) to 2021 for the entire Brazilian territory.

Moreover, the BDC research team is studying multi-sources im-
age harmonisation strategies to produce spectrally harmonised
data cubes. The BDC project has been testing atmospheric cor-
rection algorithms and developed procedures to produce data
cubes containing harmonised surface reflectance images from
the Landsat 8/OLI and Sentinel-2/MSI satellites. This will in-
crease the data frequency and adequate observations to charac-
terise highly dynamic LULC processes.

7. CONCLUSIONS

Because of the large volume of EO data, such as the CBERS-
4 WFI satellite, which has data every 5 days since 2014, users
demand a lot of time to process and organise images. Since
the Brazil Data Cube project, users now have access to use EO
ARD to meet their needs.

The proof of concept presented in this paper show that the
LULC classification of the studied area using the EVI, NDVI,
GEMI, GNDVI, NDWI2, and PVR vegetation indices, and the
red, green, blue and near-infrared spectral bands is promising
for LULC mapping and monitoring. The map generated from
the CBERS-4 data cube provides important information that
can be used to understand the LULC dynamics and to monitor
human activities in Brazilian biomes.

Furthermore, the data cube provides a database to support the
scientific community with a wide range of applications, such as
monitoring deforestation, calculating carbon emissions, monit-
oring and hydrological modelling, among others.
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