
PVANET-HOUGH: DETECTION AND LOCATION OF CENTER PIVOT IRRIGATION 

SYSTEMS FROM SENTINEL-2 IMAGES 
 

 

J. W. Tang 1, 2, D. Arvor 3, T. Corpetti 3, P. Tang 1, * 

 
1 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China - (tangjw, tangping)@aircas.ac.cn 

2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China 
3 CNRS, UMR 6554 LETG, Rennes, France – (damien.arvor, thomas.corpetti)@univ-rennes2.fr 

 

Commission III, WG III/10 

 

 

KEY WORDS: Center Pivot Irrigation Systems, Object Detection, Deep Learning, Convolutional Neural Network, Hough 

Transform 

 

 

ABSTRACT: 

 

Irrigation systems play an important role in agriculture. As being labor-saving and water consumption efficient, center pivot 

irrigation systems are popular in many countries. Monitoring the distribution of center pivot irrigation systems can provide important 

information for agriculture production, water consumption and land use. Deep learning has become an effective method for image 

classification and object detection. In this paper, a new method to detect the precise shape of center pivot irrigation systems, 

PVANET-Hough, is proposed. The proposed method combines a lightweight real-time object detection network PVANET based on 

deep learning and accurate shape detection Hough transform to detect and accurately locate center pivot irrigation systems. The 

method proposed in this paper does not need any preprocessing, PVANET is lightweight and fast, Hough transform can accurately 

detect the shape of center pivot irrigation systems, and reduce the false alarms of PVANET at the mean time. Experiments with the 

Sentinel-2 images in Mato Grosso demonstrated the effectiveness of the proposed method. 
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1. INTRODUCTION 

Irrigation systems have import impact on the quality of 

agriculture production. The use of irrigation systems is an 

important part of the modernization of agriculture production 

and intensification management (Arvor et al., 2012). Mapping 

the distribution of irrigation systems helps in the understanding 

of agriculture production and consumption of water resources. 

Center pivot irrigation system is popular in countries like USA, 

Brazil and Israel. Center pivot irrigation systems are easy to 

recognize in satellite images, because the crops fields 

approximate to circular shape. Monitoring with satellite images 

can get the locations and distributions of center pivot irrigation 

systems, which is import information about ongoing 

development trends in agriculture. 

 

Detecting the distribution of center pivot irrigation systems in 

satellite images is cheap. Center pivot irrigation systems can be 

mapped by detecting circles in Satellite images, which is how 

humans interpret center pivot irrigation systems in satellite 

images. The basic method to automatically detect circles is 

Hough transform (Duda, Hart, 1971). Hough transform first 

convert each points in image space into parameter space, then 

search for objects by voting. However, using Hough transform 

directly to detect circular objects in satellite images has the 

drawbacks of low precision, long computation time and large 

data storage (Chiu et al., 2010). 

 

Recently, Deep learning has become an effective solution for 

the tasks of image classification (Huang et al., 2016) and object 

detection (Redmon, Farhadi, 2018). Especially, CNN 

(convolution neural network), has been applied to detect all 

kinds of objects in images. Zhang (Zhang et al. ， 2018) 

explored to use CNN to detect center pivot irrigation systems in 

TM images, the proposed method consists of three steps. The 

first step is preprocessing, which is masking the images with 

CDL (Landsat data and Crop Data Layer) to rule out non-

cropland areas. The second step is sliding a fixed sized window 

over the image, then fed the window image into LeNet-based, 

AlexNet-based or VGGNet-based networks to determine 

whether the window is a center pivot irrigation system or not. 

The third step is locating center pivot irrigation systems using a 

variance based approach. The proposed method has a high 

accuracy, but also has a lot of redundant computation, the 

process is very slow. 

 

Actually, as the neighborhood information always participating, 

CNN based methods have an innate drawback of not being able 

to detect the shapes precisely, CNN learns more about the 

implicit representations of shape and texture (Milletari et al., 

2016), the prediction of which is more relatively shape and 

location. Therefore other means are needed to detect the 

location of objects accurately, which is why (Zhang et al., 2018) 

uses variance based approach to locate the center pivot 

irrigation systems and requires preprocessing to reduce false 

alarms. 

 

With a prior Knowledge of the shape, a new method to detect 

the accurate shape of center irrigation systems, PVANET-

Hough, is proposed in this paper. The proposed method 

combines the deep learning method of object detection and 

accurate shape detection Hough transform, which integrates a 

lightweight real-time object detection network PVANET (Kim 

et al., 2016) and accurate shape detecting Hough voting to 
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detect and accurately locate center pivot irrigation systems. The 

method proposed in this paper does not need any preprocessing, 

PVANET is fast, Hough voting can accurately locate the center 

and shape of center pivot irrigation systems, and at the mean 

time reduce the false alarms of the results of PVANET as it 

cannot detect the shape precisely. 

 

The rest of the paper is organized as follows. Description of 

experiment data is in Section 2. The PVANET-Hough method 

is described in Section 3. Experiment results and discussion is 

presented in Section 4. Section 5 concludes the work. 

 

2. DATA 

2.1 Study Area 

The study area is located in the Brazilian state of Mato Grosso, 

in the southern Amazon as shown in Figure 1. Mato Grosso is 

located in the center-west of Brazil, third largest state by area, 

total area of which is 903357 square kilometers. Mato Grosso is 

a big state of agriculture, the biggest region for soybeans and 

corn, agriculture makes up 40.8% of the state’s GDP. Detecting 

the center pivot irrigation systems in Mato Grosso is of great 

importance to analyze the process of agricultural intensification 

in the state. 

 

Figure 1. The location of Mato Grosso in Brazil 

  

2.2 Images 

The satellite images used in the study are sentinel-2 images. 

More precisely, TCI (True Color Image) images are used to 

detect the center pivot irrigation systems. The spatial resolution 

is 10 meters. The images used in the study cover three major 

Amazon watersheds in Mato Grosso (Juruena, Teles Pires and 

Xingu river), It is around 750,000 km² and 2/3 of Mato Grosso, 

77 images in total, acquired from June to August 2013. The size 

of every image is 10980 * 10980 pixels. All the images are 

processed in the unified framework called PVANET-Hough to 

get the locations of the center pivot irrigation systems in the 

region. 

 

3. PVANET-HOUGH 

The proposed PVANET-Hough method consists of two parts: 

PVANET for detection of center pivot irrigation systems, 

Hough transform for accurate location of center pivot irrigation 

systems, as shown in Figure 2, which are described in the 

subsections. 

 

Figure 2. Flowchart of the PVANET-Hough method 

 

3.1 PVANET for Detection of Center Pivot Irrigation 

Systems 

3.1.1 The Architecture of PVANET: PVANET（Performa

nce vs Accuracy Network）is the name for deep but lightweigh

t neural networks for real-time object detection. This method ca

n achieve real-time object detection performance without losing

 accuracy compared to the other state-of-the-art systems, such a

s ResNet-101 (He et al., 2015). 

 

The structure of PVANET detection network is shown in Figure 

3. The pipeline of PVANET is the same as Faster R-CNN (Ren 

et al., 2015), which is “CNN feature extraction + region 

proposal + RoI classification”, with redesign on the feature 

extraction part, adopting building blocks including 

concatenated C.ReLU (Shang et al., 2016), Inception (Szegedy 

et al., 2015) and HyperNet (Kong et al., 2016) to make the 

network thin and light, maximize the computational efficiency. 

 

C.ReLU is illustrated in Figure 4. An interesting property of 

CNNs is observed, that in the early layers, the filters tend to 

form pairs. For every filter, there is another filter which is 

almost the opposite phase. Inspired by this observation, 

C.ReLU reduces the number of convolution channels by half, 

then concatenates the same outputs with negation, which is 

simply multiplies -1 to the output of convolution, leading to 2
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Figure 3. The structure of  PVANET

 

times speed-up of the early stage without losing accuracy. 

Scaling and shifting after concatenation is appended to allow 

each channel’s slope and activation threshold can be different 

from those of its opposite channel. 

 

Figure 4. C.ReLU 

Inception is one of the most cost-effective building block for 

capturing both small and large objects in an input image. To 

capture large objects, the receptive fields of the features of 

CNN should be large enough. On the other hand, to capture 

small objects, the receptive fields should be small enough to 

accurately localize them. As illustrated in Figure 5, Inception 

fulfills both requirements by congregating different sizes of 

kernels to the convolution layers. 1x1 convolution plays an 

import role by preserving the receptive field of the previous 

layer, slowing down the growth of receptive fields so that small 

objects can be precisely captured. In the implementation of 

Inception in PVANET. 5x5 convolution is replaced with a 

sequence of two 3x3 convolutions 

 

HyperNet: Multi-scale features are proven to be beneficial in 

many deep learning tasks (Kong et al., 2016; Bell et al., 2016). 

Combining shadow fine-grained details with deep highly-

abstracted information in feature layers helps the following 

region proposal network and classification network to detect 

objects of different scales. PVANET combines the last layer 

and two intermediate layers with scales of 2x and 4x of the last 

layer respectively. The middle size layer is chosen to be the 

reference layer and the down-scaled (pooling) 4x-scaled layer 

and the up-scaled (linear interpolation) last layer are 

concatenated. 

 

 

Figure 5. Inception 

 

3.1.2 Training and Validation of PVANET: We fine-tune 

the pre-trained model of PVANET from ILSVRC2012 training 

images for 1000-class image classification. To fine-tune 

PVANET, a set of images with center pivot irrigation systems 

are sampled to be training and validation samples. In this paper, 

images with the size of 500 * 500 are randomly cropped from a 

sentinel-2 image of Mato Grosso gained in July of 2013, 448 

images with center pivot irrigation systems are selected from 

the cropped images, with the center pivot irrigation systems 

annotated, are used for the training samples of PVANET. 

Examples of training samples are shown in Figure 6, both 

complete and incomplete center pivot irrigation systems are 

included in the training samples, randomly located in the 

images, 10% of the training samples are used for validation 

samples. 

 

The initial learning rate is set to be 0.001, when the loss is 

detected to be in a plateau, the learning rate will be decreased 

by a factor of 0.1. 

  

Figure 6. Examples of training samples 
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3.2 Accurate Location of Center Pivot Irrigation Systems 

by Hough Transform 

As CNN based object detection methods can only predict the 

location and shape of objects relatively, some objects with a 

shape similar to circle such as forest blocks may be mistakenly 

detected to be center pivot irrigation systems. Because the crops 

under center pivot irrigation systems have the unique shape of 

circle, we can detect these shapes to locate them and get the 

coordinates of the centers and radius. Hough transform is used 

in this paper. HT is highly reliable and adaptive to noise, 

transform, deformity and so on (Chuang et al., 2010). Hough 

transform calculates the maximum accumulated local results in 

a parameter space through voting algorithm. The collection of 

distinctive forms can be obtained. Therefore, the HT can be 

used to detect objects with particular shapes. We only detect 

circles here. 

 

The Hough circle detection is to map the edge pixels from 

image space to 3D parameter space, then an arbitrary point on 

the circle will be transformed into a right circular cone in the 

3D parameter space. All the image points on a circle whose 

cones will intersect at a single point in the 3D space. By 

searching a 3D Hough search space to find the centroid and 

radius of each circular object in an image space, this would 

mean far greater memory requirements and much slower speed. 

To solve these problems, researchers brought up some 

improved methods, 2-1 Hough Transform (21HT) is one of 

them, which is proposed in (Yuen et al., 2001). In the 21HT, to 

reduce the storage requirement, 2-D accumulator and a 1-D 

histogram are used to substitute 3D Hough search space.  

 

This paper uses the 21HT to realize fast process. Firstly, the 

image is passed through an edge detection phase. Secondly, for 

every nonzero point in the edge image, the local gradient is 

considered. 2-D accumulator is used to accumulate votes along 

the normal of each edge point. 1-D histogram as a radius 

histogram is used to identify the radius of circles of the distance 

of each point from a candidate center. The detection of false 

peaks in the center finding stage can lead to significant 

computational cost for the second stage, especially if a low 

threshold is used to detect small circles. Since only a single 2-D 

accumulator and a 1-D histogram are used, the storage space 

required for the method is quite small. Moreover, according to 

the prior knowledge, the radius of a circular can be limited to 

the scale of (rmin, rmax), further improve the detecting speed.  

The 21HT run much faster and helps overcome the problem of 

the otherwise sparse population of 3D accumulator. 

 

With the described method above, center pivot irrigations 

systems with the shape of circle can be accurately detected and 

located, as shown in Figure 7. 

 

4. RESULTS 

PVANET was implemented with Caffe. Training and testing 

were done in a machine with 8 cores, 16 GB RAM and 

NVIDIA GEFORCE GTX 1070. The training took 8 hours. We 

evaluate the results with the 77 images in Mato Grosso, the size 

of the image is 10980 * 10980 pixels, the image is cropped into 

blocks of 500 * 500 pixels with an overlap of 200 pixels 

between the neighborhood blocks, these blocks of images are 

fed into PVANET to detect the center pivot irrigation systems. 

After all the blocks of the image are detected, the duplicate 

detections between the blocks are removed to get the detections 

of the whole image. Hough transform is applied to the 

detections of PVANET to finally determine if the detection is a 

center pivot irrigation systems and get the accurate shape. 

 

Figure 7. Center pivot irrigation systems accurately detected by 

Hough circle detection 

PVANET and PVANET-Hough are compared in the 

experiment. Since Hough transform used in this paper is to 

exclude those PVANET mistakenly detected center pivot 

irrigation systems, so we mainly examine the ability of Hough 

transform to reduce the false detection rate. We use two 

quantitative indexes to evaluate the result: missed detection rate 

and false detection rate or precision and recall, since missed 

detection rate=1-recall and false detection rate=1-precision. 

Precision is defined as the number of correct detections over the 

number of correct detection plus the number of false alarms, 

which tells us how many of the detected center pivot irrigation 

systems are correct, while recall is defined as the number of 

correct detections over the number of ground truth, which tells 

us how many of the center pivot irrigation systems that should 

be detected are detected. The ground truth is manually 

identified. There are 641 center pivot irrigation systems in the 

images of Mato Grosso.  

 

The result of PVANET is shown in Table 1, there are 752 

detected candidates of center pivot irrigation systems by 

PVANET, 587 of the detection candidates are correct, 165 of 

the detection candidates are false, 54 center pivot irrigation 

systems are missed. The precision is 78.1%, the recall is 91.6%, 

the missed detection rate is 8.4% and the false detection rate is 

21.9%. Obviously, PVANET method has very high false 

detection rate. Figure 8 is some examples of the false detections 

of center pivot irrigation systems, it shows that a lot of forest 

patches with contour similar to circle and river bank are 

mistakenly detected by PVANET. 

Ground Truth Detected candidate 

center pivots by 

PVANET 

Correctly detected 

center pivots by 

PVANET 

641 752 587 

Table 1. Results of PVANET 
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Figure 8. Examples of false detections by PVANET 

The result of PVANET-Hough is shown in table 2, there are 

662 detected candidate center pivot irrigation systems, 583 of 

the detection are correct. That means that Hough transform 

decreased the number of detected candidates from 752 to 662 so 

that, there are 79 false detections left. Examples of false 

detections by PVANET-Hough are shown in Figure 9. They are 

forest patches and circular farmland. We can notice that 583 

detections are correct in all the candidate detections of 

PVANET-Hough, that means 58 center pivot irrigation systems 

are missed, 4 more are missed by the PVANET-Hough. Some 

missed center pivot irrigation systems by PVANET-Hough are 

shown in Figure 10. They are mainly incomplete center pivot 

irrigation systems at the border of images. The precision of 

PVANET-Hough is 88.1%, the recall is 91%, the missed 

detection rate is 9% and the false detection rate is 11.9%, we 

can see the false detection of PVANET-Hough is decreased by 

a large percent, with just a very small decrease in the recall.  

Ground Truth Detected candidate 

center pivots by 

PVANET-Hough 

Correctly detected 

center pivots by 

PVANET-Hough 

641 662 583 

Table 2. Results of PVANET-Hough 

  

Figure 9. Examples of false detections by PVANET-Hough 

  

Figure 10. Missed detections of PVANET-Hough (red ones) 

PVANET is not able to locate the shapes of center pivot 

irrigation systems accurately and there are many false alarms, 

as we can see from the result. Using Hough transform to the 

detections of PVANET can accurately locate the shapes of 

center pivot irrigation systems and reduce the false alarms of 

PVANET, which proves the effectiveness of the proposed 

method in this paper. Examples of the detection are shown in 

Fig 11. 

  

Figure 11. Examples of detections by PVANET-Hough 

 

5. CONCLUSION 

In this paper, PVANET-Hough, a method combining PVANET 

and Hough transform is proposed for the detection and accurate 

location of center pivot irrigation systems. PVANET is 

lightweight and fast, Hough transform can accurately locate the 

shapes of center pivot irrigation systems and meanwhile 

reducing the false alarm of CNN based method PVANET as it 

cannot precisely detect shapes. Experiment with the Sentinel-2 

images in Mato Grosso proved the effectiveness of the proposed 

method in reducing the false detections by PVANET. In the 

future, we will do further research on how to reduce the miss 

detections by modifying PVANET-Hough and further improve 

the ability to reduce the false detections. 
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