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ABSTRACT: 

 

Over the last 40 years, the light use efficiency (LUE) model has become a popular approach for gross primary productivity (GPP) 

estimation in the carbon and remote sensing communities. Despite the fact that the LUE model provides a simple but effective way to 

approximate GPP at ecosystem to global scales from remote sensing data, when implemented in real GPP modelling, however, the 

practical form of the model can vary. By reviewing different forms of LUE model and their performances at ecosystem to global scales, 

we conclude that the relationships between LUE and optical vegetation active indicators (OVAIs, including vegetation indices and 

sun-induced chlorophyll fluorescence-based products) across time and space are key for understanding and applying the LUE model. 

In this work, the relationships between LUE and OVAIs are investigated at flux-tower scale, using both remotely sensed and simulated 

datasets. We find that i) LUE-OVAI relationships during the season are highly site-dependent, which is complexed by seasonal changes 

of leaf pigment concentration, canopy structure, radiation and Vcmax; ii) LUE tends to converge during peak growing season, which 

enables applying pure OVAI-based LUE models without specifically parameterizing LUE and iii) Chlorophyll-sensitive OVAIs, 

especially machine-learning-based SIF-like signal, exhibits a potential to represent spatial variability of LUE during the peak growing 

season. We also show the power of time-series model simulations to improve the understanding of LUE-OVAI relationships at seasonal 

scale. 

 

 

1. INTRODUCTION 

Photosynthesis plays an essential role in global carbon cycle 

(Beer et al. 2010). Modelling gross primary productivity (GPP) 

quantifies the amount of total carbon fixation (prior to respiration) 

by terrestrial plants through photosynthesis (Running et al. 2004; 

Xiao et al. 2004). Remote sensing (RS) data hold a crucial and 

irreplaceable role in modelling GPP at multi spatio-temporal 

scales (Ollinger 2011). Originated from Monteith (1972), the 

light use efficiency (LUE) model has become a popular approach 

in the carbon and RS communities (Gitelson and Gamon 2015). 

Carbon assimilation is described by the LUE model as an 

integrated process of light absorption and carbon conversion 

through: 

 

GPP = PAR × fPAR × LUE = APAR × LUE          (1) 

 

where PAR is photosynthetically active radiation (solar radiation 

around 400 – 700 nm), fPAR is the fraction of PAR absorbed by 

green vegetation and the product of PAR and fPAR is termed as 

APAR (absorbed PAR). Spatial temporal GPP variations are 

assumed to be driven by three key factors: PAR, fPAR and LUE. 

Eq. (1) provides a simple but effective way to approximate GPP 

at ecosystem to global scales from RS data (Zhang et al. 2018c).  

 

When implemented in real GPP modelling, Eq. (1) has multiple 

forms. While PAR can be directly measured or inverted and 
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fPAR can be approximated using indicators based on optical 

remote sensing (including vegetation indices (VI) and solar-

induced chlorophyll fluorescence (SIF), so-called optical 

vegetation active indicators (OVAIs)), the way of dealing with 

LUE differs. A variety of production efficiency models (PEMs) 

using the LUE concept have been proposed in the last decades 

based on different definitions and physical meanings of LUE 

(Gitelson and Gamon 2015). 

 

A classic way that the concept of LUE is implemented in PEMs 

is assuming that actual LUE (LUEact) can be scaled using 

maximum LUE (LUEmax) and scaling factors that relate to 

environmental stress: 

 

GPP = APAR × LUEact = APAR × LUEmax × 𝑓(s1, s2, … ) (2) 

 

where s1 and s2 are stress indicators such as vapour pressure 

deficit (Xiao et al. 2004) and soil moisture (Stocker et al. 2018) 

and f is scaling function. At regional to global scales, LUEmax is 

mapped according to plant functional type (Running et al. 2004; 

Zhang et al. 2017) or more advanced, through upscaling tower-

based LUEmax, taking plant traits, climate and topology into 

account (Madani et al. 2014; Madani et al. 2017). Several long 

time-series global GPP products, including MODIS GPP product 

(Running et al. 2004) and VPM GPP (Zhang et al. 2017), have 

been produced based on Eq. (2). While LUEmax-based PEMs 

were commonly used for GPP estimation at regional to global 
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scales, at ecosystem level, simpler models that are only based on 

OVAIs have been proposed. For example, seasonal change of 

LUE has been found to be related to canopy chlorophyll in crops 

and the product of PAR and chlorophyll index was used to 

indicate GPP (Peng and Gitelson 2012; Peng et al. 2011). 

Similarly, Wu et al. (2010) proposed a VI-based LUE model, 

where VIs (including the normalized difference vegetation index, 

NDVI and the enhanced vegetation index, EVI) were used as 

LUE indicators at seasonal scale, and GPP can be therefore 

approximated by: 

 

GPP = APAR × LUE = APAR × 𝑓(OVAI)             (3) 

 

Since these pure OVAI-based PEMs have been shown to provide 

improved GPP estimations at ecosystem scales (Wagle et al. 2016; 

Wu et al. 2010), several recent studies have shown the potential 

of applying these models across different biomes and even at 

global scale. Without additional parameterization of LUE, 

Badgley et al. (2017) reported a near-universal linear relationship 

between near-infrared of vegetation (NIRv, the product of NDVI 

and near-infrared reflectance) and GPP across a wide range of 

biomes. Joiner et al. (2018) extended the application of Eq. (3) to 

global scale and showed its advantage over other state-of-the-art 

GPP estimations. These findings suggest OVAIs may carry 

important information on LUE across time and space and provide 

promising alternative solutions to estimate GPP at large scales. 

  

Despite differ in formulations, all of the reviewed PEMs use the 

concept of LUE more or less. Different models have been used 

from time to time to estimate GPP and all of them have been 

reported to provide reasonable GPP estimations from ecosystem 

to global scales. Therefore, there could be potential links among 

different PEMs. As introduced in previous context, spatial-

temporal variations of LUE are described in a variety of ways, 

which is the major difference among PEMs. In this sense, it is of 

primary importance to understand the spatio-temporal variability 

of LUE and its relationship to OVAIs, which could be key to 

further understand the fundamental basis and applicability of the 

proposed PEMs. In this context, the focus of the current study is 

to explore the relationship between LUE and OVAIs across time 

and space using both simulated and measured data, in order to 

better understand the potential links among different PEMs and 

to improve the use of LUE model in GPP estimation at ecosystem 

to global scales. 

 

2. INTRODUCTION 

2.1 FLUXNET 2015 dataset 

We used monthly GPP and PAR data obtained from FLUXNET 

2015 tier1 release (http://fluxnet.fluxdata.org/data/download-

data/). GPP was estimated from net ecosystem exchange (NEE) 

using either day-time (DT) (Lasslop et al. 2010) or night-time 

(NT) (Reichstein et al. 2005) partitioning method. In order to 

reduce the uncertainty introduced by partitioning, we applied a 

filtering method following (Zhang et al. 2018d). Only data with 

difference between values from the two methods smaller than 20% 

or 2 g C m-2 day-1 were used. The average of DT and NT GPP 

was finally used for analysis. PAR was approximated from 

shortwave radiation data using a scaling factor of 0.48. Because 

there is still a gap between flux tower footprint and remote 

sensing pixel, only sites with coefficient of determination (R2) 

between multi-year CSIF and GPP higher than 0.6 were used in 

order to reduce the impact of site heterogeneity. In total, 84 sites 

covering 9 different biomes were included in this study. 

 

2.2 OVAIs from satellite remote sensing 

In this study, five commonly used OVAIs for GPP estimation are 

used, including four VIs (NDVI, EVI, near-infrared reflectance 

of vegetation (NIRv) and MERIS terrestrial chlorophyll index 

(MTCI)) and one reproduced SIF-like product (continuous SIF, 

CSIF). 

 

Site-specific NDVI, EVI were derived from MODIS VI product 

(MOD13A3, 1 km, monthly) and NIRv was calculated as the 

product of monthly-mean NDVI and near-infrared reflectance 

(provided in MOD13A3). MTCI data were downloaded from 

CEDA website (http://data.ceda.ac.uk/neodc/mtci/data/global/, 

monthly, ~0.0416°).  

 

SIF is a novel OVAI that is closely related to chlorophyll and has 

been used as GPP proxies at seasonal to global scales (Guanter et 

al. 2014; Zhang et al. 2014). Instead of using currently available 

raw SIF products (e.g. GOME-2 or OCO-2 SIF), this study used 

CSIF, a reproduced SIF-like signal, in tower-based analyses. 

CSIF is a machine learning (ML) product based on OCO-2 far-

red SIF and MODIS visible and near-infrared (VNIR) reflectance 

(first four spectral bands, i.e. blue, green, red and NIR) as inputs 

(Zhang et al. 2018b). All-sky daily averaged CSIF from 2001 to 

2014 was used in this study. Original 4-daily CSIF was 

resampled to monthly using the number of days in the month of 

interest contained by each 4-daily estimate as weight. 

 

2.3 Time series radiative transfer and gas exchange 

simulations 

In order to better understand the relationship between LUE and 

OVAIs at seasonal scale, we performed time-series simulations 

for several flux-tower sites using the Soil-Canopy-Observation 

of Photosynthesis and the Energy balance (SCOPE) model (Tol 

2009). In this study, we used time-series SCOPE simulation data 

for 13 flux tower sites (Zhang et al. 2016). Specifically, leaf 

chlorophyll content (Cab) was inverted from MTCI, leaf area 

index (LAI) was derived from site-specific websites or RS- based 

product (MOD15A2) and meteorological data were recorded by 

flux tower measurements. Maximum carboxylation capacity 

(Vcmax), another key parameter that influences GPP simulation, 

was firstly set as biome-specific-seasonal-constant. Then 

seasonal-dynamic Vcmax inverted from in-situ GPP data (Zhang 

et al. 2018a) was used to better simulate GPP for US-Ha1 site. 

Detailed about this SCOPE-based dataset can be found in Zhang 

et al. (2016) and (Zhang et al. 2018a). Daily and monthly GPP, 

APAR and OVAIs were averaged from half-hourly or hourly 

simulations. Note that PAR absorbed by chlorophyll (APARchl.), 

which was reported to be more closely related to photosynthesis, 

was used in all SCOPE-based analyses. 

  

2.4 Linking LUE and OVAIs across time and space 

According to Eq. (1), LUE is defined as the ratio between GPP 

and APAR. While APAR is an output of SCOPE simulations, it 

is generally calculated as the product of PAR and fPAR in real 

situations. Typically, a linear and robust correlation between 

fPAR and greenness vegetation index (VI) can be found at 

ecosystem level (Gitelson et al. 2014; Peng et al. 2011). Among 

all the VIs, NDVI and the enhanced vegetation index (EVI) are 

mostly commonly used to represent fPAR (Walther et al. 2016; 

Wang et al. 2017). Although EVI was reported to be better related 

to chlorophyll and more resistant to canopy background (Huete 

et al. 2002; Zhang et al. 2018c), its sensitivity to NIR reflectance, 

which is not directly related to fPAR but is sensitive to canopy 

structure (Knyazikhin et al. 2013), sun-sensor geometry and leaf 
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dry matter content (Verrelst et al. 2015), may induce 

uncertainties when it is used as a fPAR proxy across a variety of 

sites. Simulations from the SCOPE model help to illustrate this 

issue (Figure 1). Therefore, NDVI was finally selected as a robust 

fPAR proxy for all sites in this study. 

 

  
Figure 1. Simulated relationship between fPARchlorophyll and VIs 

using inputs described in Table S1 (a and b for Case 1 and c and 

d for Case 2). PAR absorbed by chlorophyll was used to calculate 

fPARchlorophyll. 

 

In most cases, a bias could be found for NDVI-fPAR linear 

relationship, i.e fPAR is proportional to NDVI subtracting a bias: 

 

fPAR = 𝑘 × (NDVI − bias)                       (4) 

 

where the bias should be related to canopy background, which 

could be site-dependent, while k is determined by the Beer’s Law, 

which should be ideally a constant and independent of biome type. 

In this study, we applied a similar strategy used in Zhang et al. 

(2018c) calculating site-specific bias using the intercept of the 

linear regression between apparent SIF yield (i.e. the ratio 

between CSIF and PAR) and NDVI (Figure 2). 

 

 
Figure 2. An example (US-Ne1 site) of using apparent SIFy 

(CSIF divided by PAR) to calculate site-specific bias of NDVI. 

 

In this study, we first investigated the relationships between LUE 

and OVAIs at seasonal scale using both simulated and real data. 

Analysis based on SCOPE model were made on both daily and 

monthly basis while for real data, analysis was made at monthly 

scale. While the potential link between OVAIs and LUE at 

seasonal may help to illustrate the applicability of pure OVAI-

based PEMs at single ecosystem level, for GPP estimations at 

larger (e.g. regional to global) scales, the inherent differences in 

the ability of carbon assimilation among different ecosystems 

should be also considered. For pure OVAI-based PEMs, this part 

of difference is represented by OVAIs (Joiner et al. 2018). 

Therefore, we then analyzed the potential of different OVAIs to 

indicate inter-site LUE variations. Instead of using maximum 

LUE values for each site during the whole season, we calculated 

site-specific LUE only using data during un-stressed peak 

growing seasons, which were determined as the period within top 

5% bins over multi-year GPP estimations. Note that impacts from 

potential environmental stress are expected to be avoided by the 

top 5% criteria.  

 

3. RESULTS AND DISCUSSION 

3.1 Relationship between LUE and OVAI at seasonal scale 

 
Figure 3. Correlation between EVI and LUE at seasonal scale for 

all flux tower sites used (a) and for different biomes (b). IGBP in 

(b) indicates different biome types of flux tower sites: evergreen 

needle leaf forest (ENF), deciduous broadleaf forest (DBF, 

including mixed forest sites), cropland (CRO), grassland (GRA), 

woody savanna (WSA, including savanna), open shrubland and 

wetland (WET). 

 

Within the first step, we investigated the relationships between 

LUE and OVAIs at monthly scale on per-site basis based on 

FLUXNET 2015 dataset. Following Joiner et al. (2018), a two-

degree polynomial was used to fit potential seasonal LUE-OVAI 

correlation for all sites. Figure 3 shows the derived relationship 

between LUE and EVI for 82 flux tower sites used. A strong site 

dependency can be found for seasonal LUE-EVI correlations. For 

most sites, a relatively weak LUE-EVI correlation (with R2 lower 

than 0.5) could be found. For some sites, however, seasonal LUE 

and EVI are strongly correlated. In order to better understand the 

observed site-dependency of LUE-EVI correlation, we analyzed 

simulated data from SCOPE at monthly scale. Figure 4 shows the 

seasonal cycles of EVI and LUE for two sites showing 

contrasting LUE-EVI relationships based on both real and 

simulated data. It is shown by Figure 4 that results based on 

SCOPE simulations are overall consistent with those based on 

real data. A clear LUE seasonality, which is similar to the 

seasonal pattern of EVI, is found for US-Ha1 (Figure 4a), 

resulting in a strong LUE-EVI correlation for both real (Figure 

4b) and simulated data (Figure 4c). For RU-Fyo site, however, 

no clear LUE seasonality is shown and seasonal LUE and EVI 

seem to be uncorrelated. The lower seasonal variability of 

simulated LUE than observed LUE could be due to seasonal-

constant Vcmax assigned in simulations. We further used 

seasonal-dynamic Vcmax that inverted based on the gap between 

simulated GPP (with constant Vcmax) and flux tower-based GPP 

as input to better simulate seasonal LUE. Results (Figure 5) for 

US-Ha1 show that with a similar seasonal pattern of Vcmax, 

seasonal LUE and EVI exhibit a stronger linear correlation (R2 = 

0.907).  
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Figure 4. Time series (a, d) and scatter plots (b, c, e, f) showing contrasting relationships between monthly LUE and EVI at seasonal 

scale for US-Ha1 site (a-c, 2011-2013, deciduous broadleaf forest) and RU-Fyo site (d-f, 2007-2009, evergreen needleleaf forest). 

Results based on both real and simulated data are shown. Seasonal constant Vcmax values (57.7 and 62.5 for US-Ha1 and RU-Fyo, 

respectively) are used in SCOPE simulations. 

  
Figure 5. Simulated EVI and LUE seasonal cycles for US-Ha1 

site with Vcmax inverted from GPP. R2 is the coefficient of 

determination between monthly EVI and LUE.part of the LUE 

variability can be explained by NIR-sensitive (red-edge-sensitive) 

VIs; 

 

 
Figure 6. Simulated relationships between daily APAR and LUE 

during all seasons (a and b) and simulated LUE-EVI relationships 

with APAR between 130 W m-2 to 150 W m-2 (c and d) for US-

Ha1 and RU-Fyo.  

 

Despite the two sites are showing contrasting LUE-EVI 

relationships, the good consistency between results from real and 

simulated data makes it reasonable to discover possible reasons 

for the observed site-dependency of EVI-LUE relationship from 

SCOPE simulations. In SCOPE model, leaf-level LUE (i.e. 

photosynthesis quantum yield per APAR, φp) is mainly driven by 

the amount of APAR and Vcmax (van der Tol et al. 2014) (air 

temperature, which is also a seasonal-variable input of the 

simulations, has relatively weak influence on φp compared to 

APAR and Vcmax). Since results in Figure 4 are based on 

simulations with seasonal-constant Vcmax (57.7 and 62.5 for 

US-Ha1 and RU-Fyo, respectively), APAR might be the most 

important factor that influences LUE. Figure 5a and Figure 5b 

show the simulated relationships between daily APAR and LUE 

for the two sites at different EVI levels across the whole 

simulation periods. It is shown that for both sites, APAR and 

LUE are negatively correlated at each EVI level. It can be also 

interpreted that for certain APAR level, higher EVI is 

accompanied with higher LUE, which is further illustrated by 

Figure 6c and Figure 6d. One possible reason for the close 

relationship between LUE and EVI could be their common 

sensitivity to canopy chlorophyll, which is directly related to 

electron transportation rate and dominates the spectral 

reflectance of VNIR range (Peng et al. 2011; Wang et al. 2017). 

However, the LUE-EVI relationship is further complexed at 

seasonal scale by seasonal change of APAR, especially in the 

presence of clear-cloudy sky conditions. Canopy level LUE is 

determined by φp of all leaves within the canopy. Consequently, 

canopy level of LUE is not only related to absolute value of 

canopy APAR, but is also determined by vertical distribution of 

APAR within the canopy, which is related to leaf chlorophyll 

content and canopy structure and can be further represented by 

EVI. Therefore, APAR and EVI jointly influence observed LUE 

at canopy level and LUE-EVI relationships across season is also 

influenced by seasonal change of APAR. Site-specific seasonal 

changes of PAR, Cab and LAI could jointly affect the observed 

seasonality of LUE, resulting in possible site-dependency of 

LUE-EVI correlation. Although a clear seasonal pattern of 

inverted Vcmax is found for US-Ha1, it should be noted that the 

Vcmax seasonality is determined by the gap between actual and 

modelled photosynthesis (GPP). Therefore, expect for seasonal 

change of Vcmax, other factors like imperfect approximations of 

actual Cab and LAI and limitations of physical photosynthesis 

model could also lead to a seasonality of the gap between EC-

based and SCOPE-based GPP, which will further result in an 

inverted Vcmax seasonality. 
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3.2 Variability of LUE and OVAIs across sites and biomes 

 
Figure 7. Relationships between LUE based on GPP-EC and 

LUE based on different PEMs during peak growing seasons 

across flux tower sites. 

 

While the potential links between OVAIs and LUE at seasonal 

scale lay the fundamental basis for applying pure OVAI-based 

PEMs at single system, the ability of OVAIs to indicate LUE 

among different ecosystems determines the applicability of these 

PEMs at large scales. Figure 7 shows the relationships between 

LUE and 4 chlorophyll-sensitive OVAIs, NIRv, EVI, MTCI and 

CSIF. It can be interpreted that regardless of plant functional 

types (PFTs), all of the OVAIs show moderate strong correlations 

to LUE. Among the 4 studied OVAIs, LUE based on CSIF show 

the strongest relationship to LUE (R2 = 0.472) while MTCI shows 

the weakest (R2 = 0.329). NIRv and EVI show similar 

performances to track inter-site LUE differences (with R2 of 

0.421 and 0.394 for NIRv and EVI, respectively). We then 

analyzed the potential biome-dependency of LUE-OVAI 

relationship (only results for CSIF is shown here). Figure 8a 

shows the variability of LUE during peak growing seasons 

according to different biomes. Figure 8b shows the variation of 

GPP-CSIF ratio, which is also the ratio between LUE and LUEf, 

among different biomes. On average, cropland (CRO) exhibits 

the highest LUE while evergreen needleleaf forest (ENF) and 

open shrubland (OSH) gains the lowest. As for the GPP-SIF 

(LUE-LUEf) ratio, higher values are found in both ENF and CRO. 

 

 
Figure 8. LUE (a) and the ratio between GPP and CSIF (b) 

according to biome types. 

 

All of the 4 OVAIs used, including three VIs and one SIF-like 

signal, are shown to be related to LUE across different sites. For 

the three VIs (i.e. NIRv, EVI and MTCI) used in Figure 8, they 

are sensitive to NIR reflectance, which is also sensitive to LAI. 

NIR reflectance-sensitive VIs have been reported to be closely 

related to total canopy chlorophyll (the product of LAI and Cab) 

(Peng et al. 2011). Furthermore, at regional scale, NIR 

reflectance has been shown to be also related to foliar nitrogen 

content (Ollinger et al. 2008), although the physical basis behind 

the relationship is controversial (Knyazikhin et al. 2013). On this 

basis, the positive correlations between LUE and NIR 

reflectance-sensitive VIs are expected to be explained by their 

common sensitivity to canopy chlorophyll and nitrogen content. 

Similarly, CSIF is also closely related to NIR reflectance, not 

only because NIR reflectance is one of the inputs of the ML 

approach, but also due to the similarity between canopy 

scattering of far-red SIF and NIR photons (Liu et al. 2018; Yang 

and van der Tol 2018). Additional information that CSIF carries 

on LUE may also come from the closer relationship between SIF 

and Vcmax (Zhang et al. 2014; Zhang et al. 2018a) or visible 

band reflectance.  

 

On per biome basis, LUE shows significant difference among 

biomes (with p < 0.001 in ANOVA test) (Figure 8a). In contrast, 

GPP-CSIF ratio, which is a proxy of LUE-OVAI relationship, 

shows no significant biome dependency (with p = 0.742 in 

ANOVA test) (Figure 8b). This indicates that most biome-

dependency of LUE can be explained and represented by OVAIs. 

Yet ENF and CRO still show a higher GPP-CSIF ratio than other 

biomes (p = 0.079 in ANOVA test when ENF and CRO are 

grouped together and compared with other biomes). Canopy 

scattering of SIF (and also NIR photons) in a coniferous canopy 

is stronger than that in a broadleaf canopy with same LAI 

(Rautiainen et al. 2009). Besides, needles generally consist 

higher dry matter content than leaves, resulting in a lower single 

scattering albedo at far-red spectral range (Knyazikhin et al. 

2013). Therefore, CSIF in ENF could be lower due to a stronger 

re-absorption, which is a radiative transfer artifact and not related 

to GPP. As for crop sites, higher GPP-SIF ratio could be due to 

higher electron use efficiency of C4 crops (Guan et al. 2016), 

which cannot be presented by OVAIs (Liu et al. 2017; Wood et 

al. 2017). 

 

3.3 Implications for GPP estimation at ecosystem to global 

scales 

At ecosystem scale, pure OVAI-based PEMs have been used to 

estimate GPP. Results in Section 3.1 show that LUE-OVAI 

relationship at seasonal scale is complexed by the seasonal 

changes of APAR and Vcmax, which could be site-dependent 

and leads to contrasting seasonal LUE-OVAI relationships. The 

site dependency of LUE-OVAI relationship seems to exist for all 

biomes (Figure 3b), but DBF sites generally show higher R2 

values between seasonal LUE and OVAI than ENF sites. This 

may be due to the fact that DBF exhibits a stronger seasonal 

change of canopy and leaf structure, which may result in a clear 

LUE seasonality that is similar to canopy greenness (Wang et al. 

2017). It should be noted that this study used NDVI subtracting 

a bias as a robust fPARchl. proxy at seasonal scale across different 

sites (Figure 2), but NDVI may be more closely related to 

fPARtotal in real situations (Zhang et al. 2018c). Therefore, the 

seasonality of observed LUE seasonality based on real data may 

be partly due to the potential seasonality of fPARchl.-fPARtotal 

ratio. As it is challenging to separate fPARchl. from fPARtotal 

using OVAI, this part of change was regarded as LUE change in 

this study. 

 

While Eq. (3) uses OVAI to represent LUE, in other pure OVAI-

based PEMs, LUE is not specifically parameterized and GPP is 

directly represented by the product of PAR and a selected 

chlorophyll-sensitive OVAI (e.g. chlorophyll index and NIRv). 

On one hand, chlorophyll-sensitive OVAIs may carry 

information on LUE, as suggested by Figure 3 and Figure 8. On 

the other hand, the relatively good performances of these models 

may be also due to the fact that LUE can be quite stable for 

certain ecosystem during peak growing seasons (Gitelson et al. 

2018). This is also illustrated by Figure 4, where LUE for both 

selected sites are converged when EVI is high. It can be 

interpreted that most GPP variability during peak growing 

seasons can be captured by APAR, which can be represented by 
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the product of PAR and OVAI. Based on the fact that GPP during 

peak growing season makes the majority of annual GPP, for 

single ecosystem, pure OVAI-based PEMs may show good 

performances with or without specific parameterization of LUE 

using OVAI. In this context, understanding the spatial variability 

of LUE during peak growing season becomes even more crucial 

for GPP estimation at regional to global scales. 

 

Classic LUEmax-based PEMs use pre-defined LUEmax for 

different biomes. A major shortcoming for these PEMs is that 

LUEmax shows a relatively large variability within single PFT 

(Madani et al. 2014) (also shown by Figure 8a). Instead of using 

pre-defined biome-specific LUEmax, Madani et al. (2017) 

proposed to use spatially continuous LUE during unstressed peak 

growing seasons upscaled from flux tower-based LUE. More 

precisely, they defined the newly proposed LUE as optimum 

LUE (LUEopt, i.e. LUE under optimal environmental 

conditions). Results presented in Figure 8 show the great 

potential of chlorophyll-sensitive OVAIs to representing the 

spatial heterogeneity of LUEopt. The positive correlations 

between LUEopt and OVAIs also explain the observed 

convergence of EVI-based LUE among a variety of biomes 

(Zhang et al. 2018c) and the near-universal NIRv-GPP 

relationships across different flux tower sites (Badgley et al. 

2017). Among the four studied chlorophyll-sensitive OVAIs, 

CSIF-based LUE shows the highest correlation with actual LUE. 

Madani et al. (2017) reported that GOME-2 SIF can explain 36.3% 

of LUEopt variability. Results in Figure 7d show the potential of 

applying ML-based SIF-like signal in mapping spatially 

continuous LUEopt, especially after canopy structure effects in 

SIF (and also in spectral reflectance) and C3-C4 difference are 

properly modeled. 

 

4. SUMMARY 

In this study, we investigated the relationships between LUE and 

OVAIs across time and space, in order to better understand the 

fundamental basis of different PEMs. Specifically, we found that: 

1. LUE-OVAI relationships during the season were highly 

site-dependent, which was complexed by seasonal changes of 

leaf pigment concentration, canopy structure, radiation and 

Vcmax; 

2. LUE tended to converge during peak growing season, which 

enabled applying pure OVAI-based PEMs without specifically 

parameterizing LUE; 

3. Chlorophyll-sensitive OVAIs, especially ML-based SIF-

like signal, showed great potential to represent spatial 

heterogeneity of LUE during peak growing season. 

We also showed the power of time-series model simulations to 

improve the understanding of LUE-OVAI relationships at 

seasonal scale. At single ecosystem level, single chlorophyll-

sensitive OVAI may capture most information of photosynthesis-

related vegetation activity. At regional to global scales, mapping 

spatially-continuous LUE is most important in GPP estimation. 

Canopy structure effects in OVAIs and other physiological 

factors such as C3-C4 differences should be considered when 

relating LUE and OVAIs at large scales. It should be noted that 

the influence of environmental stress on LUE and LUE-OVAI 

relationship is not specifically discussed in this study, which 

needs further investigations. 
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