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ABSTRACT: 

 

A planetary body’s global shape provides both insight into its geologic evolution, and a key element of any Planetary Spatial Data 

Infrastructure (PSDI). NASA’s Cassini mission to Saturn acquired more than 600 moderate- to high-resolution images (<500 m/pixel) 

of the small, geologically active moon Enceladus. The moon’s internal global ocean and intriguing geology mark it as a candidate for 

future exploration and motivates the development of a PSDI. Recently, two PSDI foundational data sets were created: geodetic control 

and orthoimages. To provide the third foundational data set, we generate a new shape model for Enceladus from Cassini images and a 

dense photogrammetric control network (nearly 1 million tie points) using the U.S. Geological Survey’s Integrated Software for 

Imagers and Spectrometers (ISIS) and the Ames Stereo Pipeline (ASP).  The new shape model is near-global in extent and gridded to 

2.2 km/pixel, ~50 times better resolution than previous global models. Our calculated triaxial shape, rotation rate, and pole orientation 

for Enceladus is consistent with current International Astronomical Union (IAU) values to within the error; however, we determined a 

new prime meridian offset (Wo) of 7.063o. We calculate Enceladus’ long-wavelength topography by subtracting the best-fit triaxial 

ellipsoid from our shape model. The result is comparable to previous global models but can resolve topographic features as small as 

5-7 km across in certain areas. To evaluate the spatially varying quality of the model, we calculate the point density (variable from 5 

to more than 50 points per pixel), normalized median absolute deviation of the points within each pixel (typically less than 100 m), 

and the minimum expected vertical precision of each point (ranging from 29 m to 2 km).   

 

 

1. INTRODUCTION 

1.1 The importance of planetary shape and topography 

The global shape and topography of a planetary body provides 

insight into its interior structure, orbital dynamics, and thermal 

history. Characterizing a body’s shape is therefore necessary for 

understanding its evolution over time. On a more practical level, 

topography is also critical to the development of numerous higher 

order data products (e.g., orthoimages), and along with geodetic 

control and orthoimages, constitutes one of the three foundational 

data sets necessary for a Planetary Spatial Data Infrastructure 

(PSDI) (Laura et al. 2017). PSDI is the collection of spatial data, 

access mechanisms, standards, policies, and data users that 

enables effective application of spatial data to scientific problems 

(Laura et al. 2018). The three foundational products can be used 

in combination with other data sets to generate numerous higher 

order spatial framework data. An effective PSDI must also 

include a rigorous characterization of product quality and 

uncertainty for all data products. 

 

Here we describe a new global shape and topography (i.e., the 

deviation in shape from the best-fit ellipsoid) model for Saturn’s 

moon Enceladus, which provides the final element of a PSDI for 

this moon (see section 1.2). In section 2, we describe our 

photogrammetric approach to shape model generation, which 

conceptually follows that of Archinal et al. (2005) and Becker et 

al. (2016), who applied similar techniques to the Moon and 

Mercury, respectively. Our results are described in section 3, and 

a characterization of the spatially variable quality of the shape 

model follows in section 4. The shape model is publicly available 

as both a point cloud and gridded (interpolated) products at the 

Annex of NASA’s Planetary Data System (PDS) Cartography 

and Imaging Science Node, which is supported by the U.S. 

Geological Survey (USGS), where we also provide updated 

pointing  kernels (ck), and additional metadata (measures of 

quality). 

 

1.2 Why Enceladus? 

Despite its small size (251 km in radius), Saturn’s moon 

Enceladus is geologically active, with plumes of ice and gas 

emanating from four warm, parallel fractures at its south pole 

(Hansen et al. 2006, Porco et al. 2006, Spencer et al. 2006) (Fig. 

1). Salts detected in the plume by NASA’s Cassini spacecraft 

suggest the fractures are conduits to a liquid reservoir (Postberg 

et al. 2009) at a depth of just 4-14 km (Hemingway and Mittal 

2019). Detection of a large physical libration strongly suggests 

that the liquid reservoir is global in extent (Thomas et al. 2016) 

with an average ice shell thickness of 20-30 km (McKinnon 

2015; Hemingway and Mittal 2019). Although the south pole is 

the locus of current activity, much of Enceladus’ surface is 

geologically young, as indicated by extensive tectonic 

deformation and low impact crater density (Crow-Willard and 

Pappalardo 2015). Many of its craters have been extensively 

modified, indicating unusually high heat flow in Enceladus’ past 

(Bland et al. 2012). The current elevated heat flow at the south 

pole, global ocean, and past periods of high heat flow must be 

maintained by tidal heating, but the exact mechanism by which 

sufficient heat is generated within Enceladus remains unclear 

(e.g., Meyer and Wisdom 2007, Roberts and Nimmo 2008, 

Roberts 2015, Souček et al. 2019). 

 

Given Enceladus’ remarkable geology, its status as a confirmed 

ocean world, and its tendency to spew its interior into space 

(where it can “easily” be sampled by spacecraft), the moon is a 
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focus of scientific interest and a target for future exploration. 

NASA’s Cassini mission returned a wealth of image data of 

Enceladus (section 2.2). Unfortunately, inaccurate knowledge of 

the spacecraft position and pointing when the images were 

acquired make the data challenging to use: image locations on the 

surface can be inaccurate by several to tens of kilometers. This 

issue can be addressed by the development of a Planetary Spatial 

Data Infrastructure (PSDI) to enable the scientific community to 

effectively utilize geospatially accurate data returned by Cassini.  
 

Previously, Bland et al. (2018) described a photogrammetric 

control network for Enceladus that included a total of 586 Cassini 

Imaging Science Subsystem (ISS) (Porco et al. 2004) images of 

Enceladus (additional images were added later to bring the total 

number of images to 621). That work provided two of the three 

foundational PSDI products: photogrammetric control and 

orthorectified images (section 1.1).  We distinguish between 

photogrammetric control, in which there is no “ground,” and 

geodetic control, which uses laser altimetry data or some other 

means to determine absolute control. To date, no such data have 

been acquired for Enceladus, so photogrammetric control is the 

highest level of control achievable. We note that the control 

network of Bland et al. (2018), following IAU recommendations 

(Archinal et al. 2018, Table 2), did fix the location of the crater 

Salih at 5o W, which defines Enceladus’ longitude system and 

provides one geodetic reference point. We also note that the 

orthoimages produced by Bland et al. (2018) are projected to 

Enceladus’ triaxial shape rather than local topography. 

 

 
Figure 1: The surface of Saturn’s small moon Enceladus (251 km 

radius) is highly deformed, indicating a complex geologic 

history. Plumes of dust (mostly ice) and gas (mostly water vapor) 

emanate from its south pole (inset). Images were acquired by the 

ISS on NASA’s Cassini spacecraft and are publicly available 

through the Planetary Data System (PDS). 

 

1.3 Previous shape models 

Several global, or semi-global topographic data sets have 

previously been created for Enceladus. These data sets were 

derived from two different techniques: limb fitting, and stereo 

imaging. Porco et al. (2006) provided the first measurements of 

Enceladus triaxial shape from Cassini images of Enceladus’ limb 

(the approach was described more fully by Thomas et al. (2007)), 

and these measurements were subsequently updated by Thomas 

(2010) at the end of Cassini’s nominal mission, with the only 

change being a decrease in the uncertainty in the tidal (a) semi-

axis. The Thomas (2010) analysis derived the triaxial shape of 

Enceladus (a, b, c semi-axes) to within 200-300 m, but did not 

report on Enceladus’ regional or local topography.  

 

Schenk and McKinnon (2009) provided the first semi-global 

topography model for Enceladus by using stereo imaging to 

derive topography for ~50% of Enceladus’ surface. The model 

has a relatively small horizontal pixel scale of 200-950 m/pixel 

and a stated vertical precision of 50 to 140 m. Significantly, their 

analysis identified six large-scale depressions, 800-1500 m deep, 

that are not correlated with obvious surface geology, and 

confirmed the presence of a previously identified south polar 

depression (cf. Porco et al. 2006; Collins and Goodman 2007). 

The depressions might correspond to thin regions of the ice shell 

(Schenk and McKinnon 2009) or local regions of convection-

driven compaction (Besserer et al. 2013).   

 

The first truly global shape model of Enceladus was provided by 

Nimmo et al. (2011), who performed a spherical harmonic 

expansion of the Thomas (2010) limb data up to degree 8. 

Although the degree-8 expansion corresponds to a spatial scale 

of just 45o or ~200 km at the equator (λ~2πR/L, where R is 

Enceladus’ mean radius of 251 km, and L is the harmonic 

degree), the model enabled a more detailed evaluation of 

Enceladus’ long-wavelength global topography. Where they 

overlap, the shape derived by Nimmo et al. (2011) is in general 

agreement with the stereo model of Schenk and McKinnon 

(2009) and generally confirms, with some variation, the existence 

of the large-scale topographic depressions.   

 

Using a similar approach, but with the benefit of a more extensive 

data set, and the additional use of control points, Tajeddine et al. 

(2017) performed a spherical harmonic expansion of Enceladus 

limb data to degree 16, improving the spatial “resolution” by a 

factor of 2 relative to the Nimmo et al. (2011) model (to 22.5o or 

~100 km at the equator). The results are largely consistent with 

the lower degree shape model of Nimmo et al. (2011) and again 

reveal a chain of topographic basins that Tajeddine et al. (2017) 

argue are evidence of a relic equator, and thus true polar wander. 

However, the two models are different enough in their details that 

analysis of their implications for Enceladus’ interior structure 

yields modestly different results (Hemingway and Mittal 2019). 

 

The existing shape models for Enceladus thus have their 

strengths and weaknesses. The spherical harmonic expansions of 

Nimmo et al. (2011) and Tajeddine et al. (2017) are global in 

extent, but relatively low resolution. In contrast, the stereo model 

of Schenk and McKinnon (2009) is 2 orders of magnitude higher 

resolution (at least locally) but covers just a portion of Enceladus. 

Here we describe a new shape model for Enceladus created with 

a photogrammetric approach that balances resolution and 

coverage, providing a shape model that is nearly global (>92% 

coverage), relatively high resolution (2 pixel/degree or 2.2 

km/pixel at the equator), and vertically precise (root mean square 

radius uncertainty of 57 m).  
 

2. METHODOLOGY 

2.1 Overview 

We have created a global shape model of Enceladus using 625 

Cassini ISS images of Enceladus following the conceptual 

approach applied to Mercury MESSENGER data by Becker et al. 

(2016). We first established a dense network of image tie points 

and photogrammetrically solved for point latitude, longitude, and 

radius using a least squares bundle adjustment. The resulting 

point cloud was then interpolated to a regularly gridded 2.5D 
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global shape model. We subtracted a best-fit triaxial ellipsoid 

from the model to reveal the moon’s long-wavelength 

topography (local deviation from the ellipsoid). The data set and 

each of these steps are described in more detail below. We 

describe the shape model quality in section 4. 

 

2.2 The Cassini image data set 

NASA’s Cassini mission spent 13 years (2004 to 2017) in the 

Saturn system. The long mission duration and high-performing 

spacecraft enabled 23 targeted flybys of Enceladus. These flybys, 

and an additional ~30 more-distant flybys, returned more than 

22,000 images, including more than 600 images with a pixel scale 

better than 500 m/pixel, from Cassini’s ISS cameras. The ISS 

included a 2-m focal length, 0.35o field of view (FOV) narrow 

angle camera and a 0.2-m focal length 3.5o FOV wide angle 

camera that shared a 1024 by 1024 pixel charged couple device 

(CCD) detector (Porco et al. 2004).   

 

Although Cassini achieved global image coverage, the orbital 

dynamics of the mission, the scientific focus on Enceladus’ south 

pole, and the seasonal illumination constraints resulted in highly 

variable image quality across the satellite. For example, only a 

few images of the northern polar region were acquired due to it 

being dark during northern winter until late in the extended 

mission. Image coverage is also sparse in the trailing hemisphere 

due to the orbital dynamics of the mission: Cassini only flew over 

these areas early in the mission. Even where multiple flybys 

returned repeat coverage of the same areas, differences in flyby 

altitude and the location of the closest approach of each flyby 

resulted in large differences in image pixel scale at the same 

location. Illumination and viewing geometry also varied 

substantially between flybys. Many images include the moon’s 

limb, terminator, or both (incidence and emission angles up to 

90o) and phase angles reach a maximum of 178o.  

 

The multiple-flyby nature of the data set poses a substantial 

challenge for the image-to-image matching that is required to 

create a photogrammetric control network for the purposes of 

improving image locations and/or deriving shape information. 

High incidence angles create problematic shadows and high 

emission angles distort features and compromise measurement 

accuracy. Changes in illumination also substantially affect the 

appearance, and even visibility, of surface features (see Bland et 

al. 2018 for examples). Matching images with substantially 

different pixel scales is especially challenging. 

 

Despite these challenges, Bland et al. (2018) created a relatively 

sparse (compared to the present work) tie-point network and 

photogrammetrically updated the location of 586 images with 

pixel scale between 50 and 500 m/pixel, phase angle less than 

120o, and filter settings of CLR, GRN, IR3, and UV3 (Porco et 

al. 2004). Least squares bundle adjustment resulted in root-mean-

square (RMS) residuals of 0.45 pixels, corresponding to ground 

point uncertainties of 66, 51, and 46 m in latitude, longitude, and 

radius, respectively. Subsequently, 35 images of the north pole 

acquired late in the Cassini mission were tied to the network, 

creating a global set of 621 images. Additional high-resolution 

images were then tied to the global basemap on an image-by-

image basis. The resulting mosaics are available through the 

USGS Astropedia data portal at 

https://astrogeology.usgs.gov/search/map/Enceladus/Cassini/En

celadus_Cassini_mosaic_global_110m. These updated images 

form the basis for the work described here. Although points from 

the sparse network itself were not utilized, the updated image 

locations facilitated more efficient matching during construction 

of our new dense tie-point network. 

 

2.3 The dense photogrammetric control network 

To create a dense, global network of tie points we used an image-

by-image approach such that every image in the data set has its 

own individual tie-point network. These 621 individual networks 

were then merged to create the global network (Fig. 2). Four 

additional images were subsequently added to provide additional 

coverage in the trailing hemisphere, bringing the total number of 

images used to 625. 

 

For every image, we first established a regularly spaced grid of 

tie points with an initial density of one point every 20 line/sample 

(Fig. 2b,c). Increasing the density lead to computational 

difficulty due to the network size. Automated tie-point matching 

was performed between the reference image in question and 

every other overlapping image. To do so, we used an area-based 

approach with a maximum correlation algorithm via ISIS’s 

pointreg application (Garcia et al. 2015). A weighted centroiding 

approach was used to improve the match to subpixel accuracy. 

Matches below a Goodness-of-Fit threshold were ignored, and 

false matches were removed based on bundle adjustment 

residuals (section 2.4). Every successfully matched image 

provided an image “measure” for that tie point. Most tie points 

are tied to multiple other images, providing numerous measures 

and substantial network “depth,” which yields a 

photogrammetrically robust solution (Bland et al. 2018) and 

increases stereo strength. Because every image is associated with 

its own small network, matching between each overlapping 

image pair is attempted twice. That is, image-B is included in 

image-A’s network and image-A is include in image-B’s 

network. Tie points are identified in both directions but because 

images often only partially overlap and are of different 

resolution, points from each network occur at different 

line/sample locations and are therefore generally unique. The 625 

individual image networks were combined into a single global 

network using ISIS’s cnetmerge application. This approach has 

the benefit of correlating tie-point density with depth of image 

coverage at a location. That is, where many images overlap, point 

density is high, and where image coverage is limited, point 

density is lower. Spatial variation in tie-point density is therefore 

naturally indicative of local data density (although not 

necessarily quality, see section 4). The resulting tie-point 

network contains 892,457 points and more than 30 million image 

measures. The network is nearly ~90x more spatially dense than 

the network used by Bland et al. (2018). 

 

Our approach to control network generation differs from that of 

Becker et al. (2016) who used the OpenCV library (opencv.org) 

of feature-based matching algorithms (as implemented in ISIS’s 

findfeatures application) to create a dense network for Mercury. 

We found that our initial attempts at feature-based matching did 

not provide adequate spatial coverage (i.e., some areas had 

insufficient tie-point density), and that matching images with 

highly variable illumination conditions were more challenging 

then when area-based matching was used. However, given the 

large number of detector and extractor algorithms available, 

utilizing feature-based matching on challenging flyby data sets 

warrants additional investigation. 

 

2.4 Bundle adjustment 

Once the global network of tie points was established and point 

matching was complete, we performed a least squares bundle 

adjustment (Brown 1958) using the ISIS application jigsaw 

(Edmundson et al. 2012) to update camera pointing and image 

locations. All observations were weighted equally. In the 
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adjustment, we solved for the camera pointing (three rotation 

angles) and the 3D coordinates (latitude, longitude, and radius) 

of each tie point in the network.  We did not solve for spacecraft 

position, as doing so added additional parameters without 

improving the solution. A priori camera pointing (angles) was 

constrained to ± 0.5o, and a priori point radii were constrained to 

1000 m. In our final solution, we also constrained point latitude 

and longitude to 1000 m. This additional constraint improved 

convergence of our bundle solution and decreased point 

uncertainties. We used jigsaw iteratively to identify and remove 

false matches from the network. Measures with very high 

residuals after bundle adjustment often indicate a false match. 

These measures are removed from the network, and a new bundle 

adjustment is performed. This process is repeated until either all 

point residuals are within an acceptable tolerance or visual 

inspection indicates quality matches despite some high individual 

residuals. Our final bundle adjustment resulted in RMS ground 

point uncertainties of 37 m, 36 m, and 57 m, in latitude, 

longitude, and radius, respectively. The total RMS uncertainty in 

image location was 0.3 pixels. A more detailed description of the 

shape model quality is provided in section 4. 

 

 
Figure 2: Illustration of our approach to control network 

generation for Enceladus. a) The blue rectangle is the footprint of 

a single ISS image (our example image is 167 km across). Also 

shown are the outlines of every image footprint that overlaps our 

example image (equirectangular projection, west longitude). b) 

Each image has its own line/sample tie-point network (green 

points on image footprint, which is the highlighted footprint in 

‘a’). c) The same tie points as seen on the actual unprojected 

image. d) Merging two networks locally increases network 

density. e) The final distribution of tie points on our example 

image from all the individual merged networks (see panel a).   

 

Once a final bundle adjustment has been performed, the 

collection of 3D coordinates of each tie point (latitude, longitude, 

radius) constitute a point cloud that defines Enceladus’ shape. As 

a final step, we calculate the minimum expected vertical 

precision (EP) of each point (see section 4) and filter out any 

points with EP greater than ~2 km, which is the maximum 

topographic relief on Enceladus. Snapshots of the point cloud are 

shown in Fig. 3. 

 

 
Figure 3: Visualization of the 3D point cloud. A) The individual 

points. Regions with more points appear brighter. B) Mesh 

rendering of the point cloud performed in Meshlab (Cignoni et 

al. 2008). 

 

2.5 The triaxial shape solution 

The ISIS jigsaw application can also be used to calculate the best-

fit triaxial shape and orientation of Enceladus. Doing so requires 

specifying an initial “guess” and uncertainty values for each 

value. In total, we solved for the triaxial shape (a, b, c semi-axes), 

average radius, spin rate, pole orientation (right ascension and 

declination), and prime meridian offset (Wo). Because images 

were acquired over a range of true anomaly, we assumed the 

effect of libration on our solution is small. The results are 

described in section 3. 

 

2.6 Interpolation to a 2.5D global shape model 

The point cloud resulting from our photogrammetric solution is 

not uniform in spatial density. We therefore interpolated to a 

uniformly gridded 2.5D shape model using the Ames Stereo 

Pipeline (ASP) point2dem application (Beyer et al. 2018). We 

chose a grid spacing of 2 pixel/degree (ppd) (2.2 km/pixel at the 

equator) based on an analysis of areal coverage and point density 

(points per pixel) (Figure 4). At 2 ppd we achieve 92.5% 

coverage of Enceladus. Decreasing the resolution to 1 ppd 

reduces the resolution by a factor of 2 (4.4 km/pixel) but provides 

only a small increase in coverage (from 92.5% coverage to 

96.3%). Alternatively, increasing the resolution to 3 ppd 

decreases the coverage by 7 percentage points (from 92.5% 

coverage to 85.6%), which we believe is unacceptably low for a 

global product. We also find that a grid spacing of 2 ppd yields 

an average point density of 10.6 points per pixel (Fig. 4b), which 

enables more robust evaluation of point statistics in the gridded 

product (section 4). Using a resolution of 3 ppd decreases the 

number of points per pixel by a factor of 2. A mean density of 1 

point per pixel is achieved at 6 ppd (733 m/pixel) but such a high 

resolution only provides coverage over 57% of Enceladus. Thus, 

a grid spacing of 2 ppd provides a good balance of resolution, 

coverage, and point density. 

 

Radius values at each pixel were determined by a Gaussian 

weighted average of the points within each pixel. We used a 1-

pixel search window in point2dem, which eliminates any 

smoothing that results from including points outside the pixel in 

the average. No additional gap-filling or smoothing was applied. 

The gridded shape model is shown in Fig. 5. 
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Figure 4: Statistics used for determining shape model 

interpolation. A) The percent coverage of Enceladus as a function 

of pixel size (larger pixels result in more complete coverage). B) 

The number of points per pixel as a function of pixel size. 
 

2.7 Calculating Enceladus’ long-wavelength topography 

In addition to Enceladus’ global shape, which is strongly triaxial, 

we also calculated the long-wavelength topography, which we 

define as local deviation in radius from the best-fit triaxial shape. 

To do this, we calculate the expected radius at each point 

(latitude/longitude) in our point cloud assuming the smooth 

triaxial shape derived in section 2.5 and then subtract it from the 

local (“true”) radius value for that point derived from our bundle 

solution. The result is a set of latitude/longitude/elevation points, 

where the elevation is relative to the best-fit ellipsoid. As with 

the shape, we interpolated the topography data to a fixed grid 

using point2dem with a 2 ppd grid size and Gaussian weighting. 

The gridded topography is shown in Fig. 6. 

 

3. BASIC CHARACTERISTICS OF ENCELADUS’ 

SHAPE AND TOPOGRAPHY 

3.1 Enceladus’ triaxial shape 

Direct interpolation of the point cloud to a gridded 2.5D product 

yields a nearly continuous shape model for Enceladus (Fig. 5). 

Data gaps (mostly in the trailing hemisphere) appear as black 

spots or regions where the underlying grayscale basemap shows 

through. As expected, the model is dominated by Enceladus’ 

triaxial shape which stems from the tidal distortion of the moon 

by Saturn and results in a long tidal axis (a) that is oriented 

toward/way from Saturn, a short polar axis (c), and an 

intermediate axis (b). The jigsaw solution (section 2.7) yields a, 

b, and c semi-axes of 256.3 km, 251.2 km, and 248.3 km, 

respectively. The values are consistent with the previous 

determination by Bland et al. (2018), who used a similar method 

but much sparser network, and are within the uncertainty of the 

current IAU values (Archinal et al. 2018, their table 5). 

 

 
Figure 5: A) The gridded 2.5D global shape model of Enceladus. 

The model is dominated by the moon’s triaxial shape. Values are 

relative to a mean sphere with radius 251.5 km (total range of 

+5300 to -3900 m): yellows are high, and blues are low. 

Equirectangular projection in west longitude. B) As in A but 

overlain on an image mosaic of Enceladus. 

 

Again using jigsaw, we calculate a spin rate that is effectively 

identical to the IAU value (262.73198 vs. 262.7318996 

degrees/day), and we find a small modification to the pole 

position (J2000.0 right ascension and declination of 40.56o and 

83.56o compared to the IAU values of 40.66o and 83.52o). Our 

new values are more similar to the IAU values than those 

reported in Bland et al. (2018). Jigsaw also yields Wo of 6.088o, 

which is somewhat smaller than the IAU value of 6.32o (Archinal 

et al. 2018, their Table 2). Following Bland et al. (2018), we also 

calculate Wo using a more physical approach, in which we set a 

tie point within the center of the crater Salih (which is located at 

5o W longitude and defines the Enceladus coordinate system) and 

determine the longitude adjustment necessary to maintain Salih’s 

correct position. This approach yielded a Wo of 7.063o, similar to 

that of the sparse network (7.089o) reported in Bland et al. (2018), 

but significantly larger than the IAU value. The reason for the 

inconsistency between the two approaches remains unclear and 

will require further validation of the jigsaw body solver.    

 

3.2 Long-wavelength topography 

Figure 6 shows our gridded 2.5D topographic model. Here the 

topography is relative to our best-fit ellipsoid. Several features 

are notable in the topography. The expected asymmetry (based 

on the earlier shape determination, e.g., Porco et al. (2006)) 

between the northern and southern hemispheres is apparent. The 

south pole is 200-400 m below the triaxial shape and ~500-1000 

m lower than the north pole. The model also clearly shows a chain 

of depressions stretching across the anti-Saturnian hemisphere 

from southeast to northwest. The deepest depression (near 150o 

W, -12o S) sits ~800 m beneath the reference ellipsoid, and more 
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than 1 km below the topography directly to the west. The 

depressions become shallower moving to the northwest, with the 

northern-most depression (near 210o W, 45o N) having a 

maximum depth of ~500 m. In our model, obvious basins do not 

extend farther north or west, although the region is modestly 

lower (~100 m) than its surrounding. This contrasts with the 

lower-resolution model of Tajeddine et al. (2017), which 

identified a small, shallow basin extending farther west.  

 

Our model also resolves a deep and extensive basin in the 

northern portion of the trailing hemisphere (300o W, 28o N) that 

extends west to the sub-Saturnian hemisphere (0o W and 50o N). 

The quality of the shape model is relatively poor in this region, 

with sparse data and limited stereo (section 4); however, the 

broad outline of the basin is easily distinguished. The basin in our 

model is ~700 m deep. The region was identified as two separate 

basins by Schenk and McKinnon (2009), but this is likely due to 

a data gap in their model (where our data are also poor). 

Interestingly, the model of Tajeddine et al. (2017) also resolves a 

single deep basin centered at 330o W (farther west relative to our 

current model and that of Schenk and McKinnon (2009)) with 

much smaller longitudinal extent.   

 

 
Figure 6: The gridded topography of Enceladus (values relative 

to the best-fit ellipsoid). Panels are as in Fig. 5. 

 

The long-wavelength topography of Enceladus’ leading 

hemisphere is also notable. The northwestern half consists of a 

broad depression 250-300 km in diameter and ~600 m deep, 

whereas the southeastern half consists of a broad high that sits 

~800-1000 m above the reference. This large-scale topographic 

structure is not resolved in the Tajeddine et al. (2017) model, 

which shows a relatively flat region with a few small topographic 

depressions and highs. The region was not covered in the high-

resolution stereo model of Schenk and McKinnon (2009).  

 

In some regions, our shape model clearly resolves smaller-scale 

topography associated with actual surface features. Relatively 

small craters (~7 km in diameter) are easily distinguished near 

180o W, 0o N, even without the underlaying base image. We also 

resolve high-standing crater rims in these regions. Farther north, 

the rim of the large crater Dunyazad stands out above the 

depression to its west and south. Topography around the south 

polar terrain is also clearly associated with features, although the 

relationship is more complex. The band of ridges at 105o W is 

high standing, as is Cashmere Sulci: the pronounced set of ridges 

south of the deep trough Labtayt Sulci. Labtayt Sulci itself is also 

resolved, although the model is noisy in the region. Between 

those two sets of ridges, the shape model has a clear artefact, as 

indicated by an abrupt change in elevation across what appears 

to be an image seam. This type of artefact is rare in the model, 

and the root cause is not yet clear. Polar projections of the south 

pole reveal that the model resolves (barely) the large fractures 

associated with plume eruptions. The observations of such small-

scale features reveal the power of this new data set.  

 

4. EVALUATING SHAPE MODEL QUALITY 

Generating foundational data sets is necessary for the 

construction of a PSDI; however, a measure of the quality of that 

data set is also necessary to help ensure that data are used 

appropriately. Below we describe measures of the quality of the 

shape model. Given the highly variable image data set from 

which it was derived (section 2.2), shape model quality is also 

highly spatially variable. 

 

4.1 Data density and variability 

One of the simplest measures of data quality is data density: 

literally how many points were included in each pixel. As 

discussed in section 2.2, image coverage of Enceladus is highly 

variable, resulting in highly variable point density. Figure 7a 

shows a map of the point density of the model, which ranges from 

162 points per 2.2-km pixel to 0 points per pixel. Point density is 

highest near the sub- and anti-Saturnian points, especially in the 

equatorial region near 210o W where typical point counts are 40-

60. This region includes both a few relatively high-resolution 

images and numerous, overlapping lower-resolution images (Fig. 

2). Point density outside of these regions (dark grey) are typically 

much lower: often just 5-10 points. The mean point density for 

the model is 10.6 points per pixel (mean is 7 points per pixel). 

Point density is a useful measure of where the data are but is of 

limited use in understanding the actual quality of the data. Pixels 

with high point density might still be low quality if, for example, 

all the images have similar viewing geometry (low stereo 

strength). Alternatively, pixels with low point density may be 

high-quality if all the points were derived from excellent stereo 

views. 

 

To better assess the variability of the points within each pixel we 

calculated the normalized median absolute deviation (NMAD) 

(Fig. 7b), which is a robust measure of the statistical dispersion 

of the data (i.e., more resilient to outliers than, e.g., standard 

deviation). Yellow pixels indicate that the NMAD is less than the 

precision of our bundle solution (57 m). Blue pixels indicate 

NMAD > 100 m, and thus highlight regions where point 

measurements are more variable. We note that some of this 

variability is “real”: NMAD values are high near resolved craters 

(e.g., 200o W, 3o N), which results from actual topographic 

variation. NMAD values are typically less than 250 m, except for 

small isolated regions with limited data coverage. 

 

4.2 Evaluating stereo strength 

In general, stereo imaging was not a primary driver during the 

acquisition of Cassini ISS images. The availability of “good” 

stereo is therefore as much a function of happenstance as 

planning. In order to evaluate the spatial variability of the stereo 

strength of our model, we calculated the expected vertical 

precision (EP) of every pairwise combination of images that 

contribute to a given point in the model and report the minimum 
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EP as a characteristic value for each point. We follow Kirk et al. 

(2003) and define EP = ρS/(p/h), where S is the RMS pixel scale 

of the two images, (p/h) is the parallax to height ratio of the 

images, and ρ is the quality of the matching in fractions of a pixel. 

We conservatively take ρ to be 1 (pixel, rather than subpixel 

matching) due to the often large disparity in pixel scale between 

the stereo images for each point. The result is that the EP reported 

here is likely an upper limit. The resulting minimum EP is shown 

in Fig. 8. The best 10% of the data have EP between 29 and 111 

m, and 70% of the data have EP < 200 m. EP is highest at the 

poles where similar viewing geometry (south pole) and lack of 

data (north pole) severely limits stereo quality. 

  

 
Figure 7: A) The number of points (from the point cloud) per 

pixel in the gridded product. White > 40; grey shades in 4 bins 

from lightest to darkest, 31-40, 21-30, 11-20, 1-10; black is no 

data. B) The normalized median absolute deviation in three 

categories: 0-57 m (yellow), 57-100 m (green), and > 100 m 

(blue). Panels are as in Fig. 5. 

 

5. CONCLUSION 

We have generated a publicly available, global, high-resolution 

(relative to existing products) shape model for Saturn’s moon 

Enceladus, which is the target of ongoing scientific research and 

future exploration. The spatially variable quality of the model has 

been well-characterized. The model provides the final 

foundational data product necessary for an Enceladus PSDI and 

demonstrates the applicability of the technique to future outer 

Solar System missions, such as NASA’s Europa Clipper and the 

European Space Agency’s Jupiter Icy moons Explorer (JUICE) 

mission. 
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