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ABSTRACT: 
 
In this paper, a novel automatic crater detection algorithm (CDA) based on traditional texture feature and random projection depth 
function has been proposed. By using traditional texture feature, mathematical morphology is used to identify crater initially. To further 
reduce the false detection rate, random projection depth function is used. For this purpose, firstly, gray level co-occurrence matrix and 
a novel grade level co-occurrence matrix are both used to further obtain the texture features of these candidate craters. Secondly, based 
on the above collected features, random projection depth function is used to refine the crater candidate detection results. LRO Narrow 
Angle Camera (NAC) mosaic images (1 m/pixel) and Wide-angle Camera (WAC) mosaic images (100 m/pixel) are used to test the 
accuracy of proposed method. The experimental results indicate our proposed method is robust to detect craters located in different 
terrains. 
 

1. INTRODUCTION 

Craters have been used as important landmarks for high-precise 
landing of lander, autonomous spacecraft and rover navigation 
and control (Yu et al., 2014; Wang et al., 2015). Furthermore, 
craters also play an important role in the study of planets 
chronology (Barlow, 2015). The size frequency distribution of 
primary craters can provide the primary mechanism for 
establishing chronology of planetary surfaces (Head et al., 2010). 
In this way, an automatic crater detection method is necessary. 
 
Over time, a number of automated crater detection algorithms 
(CDA) have been developed. By assuming that the shape of 
craters is circular, techniques such like Hough transform (Kiryati, 
1991), circle fitting (Salamuniccar et al., 2011) and template 
matching (Flores-Mendez, 2003; Bandeira et al., 2007) are 
always used. Considering under certain light conditions, the 
sunward side of craters always present as locally brightest 
feature and the backside of craters present as locally darkest 
feature, the technique of highlight-shadow region matching is 
also widely used (Urbach, 2007). And the highlight-shadow 
feature has been proved to be an effective method for detecting 
craters located in various terrains (Urbach and Stepinski, 2009). 
In addition, with the continuous development of computer vision 
technology, machine learning techniques are widely used 
(Lienhart et al., 2002; Ratsch et al., 2001), including support 
vector machines (SVMs) (Suykens et al., 1999), boosting 
approach (Bandeira et al., 2012), decision tree (Mishra et al., 
2013) and CNNs (Palafox et al., 2017). These methods do not 
rely on expert’s domain knowledge, but depend on learning the 
features based on training samples, which are more efficient for 
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detecting multi-scale caters. However, these methods request a 
lot of labelled data for training and their performance depends 
on the quality and number of training data, in addition, the model 
parameters are complex. 
 
In this paper, a novel automatic CDA has been proposed. Firstly, 
the candidate detection method is based on the algorithm 
proposed in (Urbach et al., 2009) with our modifications which 
lead to a more adaptive results to our whole proposed method. 
Secondly, candidate regions are further classified as crater or 
non-crater regions using gray level co-occurrence matrix 
(Gadelmawla, 2004) and grade level co-occurrence matrix and 
random projected depth function. In contrast to other CDAs, the 
proposed method does not rely on strong assumptions about 
crater edge shape, and does not rely on large amount of labelled 
data, however, it focuses on the current scene, taking all 
candidate crater region as input samples, and by using the idea 
of anomaly detection, the candidate crater regions will be refined. 
Using this strategy, the real craters can be detected while the non- 
crater regions are rejected. 

2. METHOD 

2.1 Candidate Craters Detection 

The crater detection method proposed by Urbach et al. (2009) 
has been proved as a convenient and efficient method to detect 
candidate region of craters. This method can detect almost all 
small-scale craters but also include many false detected craters. 
In this way, these detected crates, including correctly detected 
and false detected, can be further classified by random projection 
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depth function. We use this method with our modifications in the 
proposed CDA and it will be described briefly. The key insight 
of Urbach et al. (2009) is to consider that the crater candidates 
can be recognized as a pair of crescent-like highlight and shadow 
regions. Under the lower solar elevation angle condition, the 
above described feature is significant and the crater detection 
result is well, however, those degraded craters might be missed 
as they may not show clear crescent-like illuminated and 
shadowed patterns. In this way, the proposed method does not 
used shape filters as Urbach et al. (2009) did, and the main idea 
is to segment highlight and shadow regions from the image 
which satisfy the area constrain. The method identifies and 
processes highlight and shadow regions simultaneously by using 
both the original image and inverted image. Firstly, the oversize 
shape features are removed by using median filter. Secondly, the 
shape features lack of sufficient contrasts are removed by using 
power filter. Thirdly, the undersize shape features are removed 
by using mathematical morphology operators. And then, shape 
filters are used to identify highlight and shadow shapes which 
have geometries consistent with being parts of craters. Finally, 
the remaining highlight and shadow regions are matched to each 
other to form the candidate craters. 
 
2.2 Texture Features Extraction of Candidate Craters 

For these candidate craters regions, we first extract their texture 
features by using gray level co-occurrence matrix (Gadelmawla, 
2004) and grade level co-occurrence matrix.  
 
2.2.1 Gray level co-occurrence matrix 
The gray level co-occurrence matrix (GLCM) is a reliable 
method to describe the texture of a gray image by quantifying 
the spatial distribution between the pairs of pixels. Given a gray  
level image I = {I (xi, yi), i = 1,2,…, n, (xi, yi)∈ D}, where i is 
the index of pixels, n is the number of pixels, (xi, yi) denotes the 
spatial coordinate of pixel i, D ∈R2 is the image domain, Ii is the 
gray intensity of pixel i. Given an element Gd, θ (Ni, Nj) of the 
GLCM of an image, where Ni is the ith quantized gray level of 
pixel i, d is the distance of pixel i and pixel j, calculated as ((yj - 
yi)2+(xj - xi)2)1/2, and θ is the orientation of the pair of pixel, 
calculated as arctan((yj - yi)/ (xj - xi)). In order to generate a 
GLCM for an image, three parameters should be confirmed in 
advance, that are the distance d, the orientation θ and the 
quantized gray level Ng. The size of the GLCM is affected by 
the Ng, the larger Ng, the larger the dimension of GLCM. In this 
way, GLCM matrix of a gray image can be expressed as follows, 
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where G d, θ (Ni, Nj) is calculated by counting how often pairs 
with specific quantized gray levels of Ni and Nj and in a specified 
spatial relationship. The Gd, θ is then normalized to make the sum 
of all the elements equal to one. Based on G d, θ (Ni, Nj), GLCM 
indices can be computed. In this paper, according to our a large 
number of experimental results, it is shown that for these crater 
candidate regions, our GLCM indices can describe the texture 
feature efficiently. 
 
1) Energy (Gadelmawla, 2004) 
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The energy is valued by the sum of squares of GLCM elements, 
measuring the texture uniformity, or pixel pair repetitions. When 
f1 is large, the texture is depth and the energy is large; otherwise, 
when f1 is small, the texture is fine and the energy is small. High 
energy occurs when the distribution of GLCM elements is 
constant or periodic. 
 
2) Contrast (Gadelmawla, 2004) 
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The contrast measures the drastic change of gray level between 
contiguous pixels, reflecting the depth of the texture. If the 
texture dramatically changed, the contrast is large and the effect 
is clear; otherwise, if the contrast is small, the texture is smooth 
and the effect is fuzzy. The more pairs of pixels with high 
contrast, the greater the value.  
 
3) Homogeneity (Gadelmawla, 2004) 
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The homogeneity measures the change of the texture of local 
area. It is sensitive to the presence of near diagonal elements in 
a GLCM, which reflects the similarity of gray level between 
adjacent pixels. The higher the value of homogeneity is, the 
smaller the changes of the texture happen in the different areas 
of an image. 
 
4) Correlation (Gadelmawla, 2004) 
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The correlation measures the consistency of image texture, 
reflecting the similarity of elements of GLCM in row or column 
direction. When the matrix element values are equal, the 
correlation value is large; on the contrary, if the matrix pixel 
values differ greatly, the correlation value is small. If there is a 
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horizontal texture in the image, the correlation value of the 
horizontal matrix is greater than that of the rest of the matrix. 

 
 

2.2.2 Grade level co-occurrence matrix 
After carefully analyzing the textures of craters and non-craters 
images, the textures of craters can be further effectively 
represented by grade of each pixel within each image block, both 
the magnitude and direction. In this way, gradient co-occurrence 
matrix is proposed to extract the texture features of the candidate 
crater image blocks. 
 
In order to calculate the gradient co-occurrence matrix, the 
gradient of each pixel within each block should be calculated 
firstly to form gradient magnitude image Im = { Im (xi, yi), i = 
1,2,…, n, (xi, yi)∈ D} and gradient direction image Iα= { Iα(xi, 
yi), i = 1,2,…, n, (xi, yi)∈ D}. The gradient of each pixel is 
calculated by using the convolution template as dx = [-1 0 1], dy 
= [-1 0 1] T, and for pixel i(xi, yi), its gradient is calculated as, 

( , ) ( +1, ) ( 1, )x i i i i i iI x y I x y I x y= − −   (6) 

( , ) ( , 1) ( , 1)y i i i i i iI x y I x y I x y= + − −  (7) 

where Ix(xi, yi), Iy(xi, yi) is the gradient value of pixel i in 
horizontal direction and vertical direction respectively. And then 
for pixel i, the magnitude Im(xi, yi) and direction Iα(xi, yi) of 
gradient are calculated as follows, 
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Based on Im and Iα,, the construction of gradient co-occurrence 
matrix is straightforward. Similar with the method to construct 
GLCM, the gradient magnitude image Im is first quantized into 
pre-divided grade levels, and different grade values are mapped 
into corresponding grade magnitude level. In the same way, the 
gradient direction image Iα is also mapped into corresponding 
grade direction level. Then, the elements of gradient co-
occurrence matrix are calculated by counting how often pairs of 
pixels with specific gradient magnitude levels and specific 
gradient direction levels, that is given Nm and Nα,, how often the 
pairs of pixels satisfying Im(xi, yi) ∈ Nm,i, Im(xj yj) ∈ Nm,j, Iα(xi, yi) 
∈ Nα, Iα(xj yj) ∈ Nα. The gradient co-occurrence matrix is then 
normalized to make the sum of all the elements equal to one. For 
a given Nα, the generic element of the matrix is noted Gm, α (Nmi, 
Nmi) and based on them, gradient co-occurrence matrix indices 
can be computed. In this paper, two gradient co-occurrence 
matrix indices have been selected. 
 
1) Contrast of gradient distribution 
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2) Homogeneity of gradient distribution 
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Based on the above recognitions, for calculating GLCM matrix, 
the orientation θ is along the illumination direction and 
perpendicular to illumination direction(quantized into integral 
multiple of 45°), and GLCM matrix of each orientation has been 
calculated, and four statistical indices from each GLCM matrix 
have been extracted. For calculating gradient co-occurrence 
matrix, the gradient direction α is along the illumination 
direction and perpendicular to illumination direction (quantized 
into integral multiple of 45°). Finally, 12-dimensional feature 
vector vf  (4 features of each GLCM for 2 orientations, 2 
features of each gradient co-occurrence matrix for 2 orientations) 
of each crater candidate region has been extracted.  
 
2.3 Random Projection Depth Function for False Craters 

Elimination 

Analogous to linear order in one dimension, projection depth 
function provides an ordering for each point in a 
multidimensional data set from the ‘center’ of to ‘outlier’ values, 
that is, with respect to a data cloud or a probability distribution 
it assigns to each point its degree of centrality. The definition of 
a projection depth function was firstly proposed by Donoho 
(1992), and it is based on the definition of outlier. Outlier refers 
to the data that is far greater than or less than other data in the 
data set, showing obvious deviation. In general, outliers are 
different from gross errors. They are real and normal data in the 
data set, but they only show some extremes.  
For a given dataset X = {Xi ; i = 1, ..., n}, where i is the index of 
data point, n is the total number of data points in the dataset; Xi 

= (xi1 , xi2 , ... , xid)Τ is the data point, and T is the transpose 
operator. The outlier function is defined as follows (Zuo, 2003), 

T T

T
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i
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u X u X
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where u∈Rd，||u||2 = 1, MED is the median and MAD is the 
median absolute deviation. MAD is a robust estimator of 
variability and is defined as follows (Zuo, 2003), 

T T TMAD( ) MED MED( )= −u X u X u X  (13) 

Compared with traditional (µ(⋅), σ(⋅)), the pair of robust 
estimators (MED(⋅), MAD(⋅)) are not seriously affected by 
outliers. In this way, with respect to a multivariate data set, 
projection depth function measures the centrality of a data point 
(a vector Xi) as the maximum outliers of the one-dimensional 
scale functional in any one-dimensional projection, and is 
defined as (Zuo, 2003), 

1

( , ) 1 sup ( , , )
d

i iPD O
−

∈

 = + 
 Ru

X X u X X  (14) 

where sup(⋅) is supremum operator.  
 
Considering that in (14), an infinite set of random projections 
need to be calculated to obtain PD(Xi, X), however, it is 
impossible in practice. In our case, following the suggestion of 
(Zuo, 2006) that replacing the supremum in (14) by a maximum 
over a finite number of randomly chosen projection. Therefore, 
a stochastic approximation of the random projection depth 
PD(Xi, X) can be calculated by using m random projections 
uniformly distribute in Rd as follows (Zuo, 2003), 

( ) 1
( , , ) 1 max ( , , )i iu

PD m O
−

∈
= +

U
X X u X X (15) 
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where U = {u1, u2, …, um} with ui∈Rd. 
 
As discussed above, random projection depth function provides 
a vector ordering in the vector space, from the ’deepest’ to 
‘outward’ ordering. In our paper, given a vector data set V = { vf1, 
vf 2, …, vf i…, v f n}, where n is number of candidate crater regions, 
vf i is a 12-dimensional feature vector described by gray level co-
occurrence matrix and grade level co-occurrence matrix of ith 
candidate crater region. In this way, random projection depth 
value for each candidate crater region can be calculated as, 

( ) 1
( , , ) 1 max ( , , )fi fiu

PD m O
−

∈
= +

U
v V u v V (16) 

where u∈R12, m = 1000. 

 
The random projection depth function can provide an order from 
the centre to the outside of the dataset, that is, the closer the data 
points are to the centre of the dataset, the greater the random 
projection depth value, and vice versa. The data set centre is the 
median of the data set, with the maximum random projection 
depth value. The order of any two data points in the dataset is: 

( , , ) ( , , )fi fj fi fjPD m PD m< ↔ <v v v V v V   (17) 

where ↔ is the equivalent operator, the relationship of equation 
(17) indicates the centre degree of vf i is less than that of vf j. If 
the vector space V satisfies the following two conditions: (1) V 
= {VB, VF}. that is the data set has two components which are 
target data VB with certain characteristics and outlier data VF 
with different characteristics comparing with data. (2) VB ∩ VF 
= ∅ and #{VB } > #{VF}, where represents the number of 
elements in the dataset. Obviously, our candidate crater regions 
vector data set V satisfies the above two conditions, therefore, 
random projection depth function is an efficient way to refine the 
crater detection result. 
 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Data Set  

The first kind data set we selected is Lunar Reconnaissance 
Orbiter Camera (LROC) mages. The second kind data used for 
crater detection is Wide-angle Camera (WAC) “morphologic” 
mosaic images, which was created by mosaicking monochrome 
(643 nm) WAC images with an average 60° solar altitude angle.  
 
For elevation purpose, the ground truth craters were manually 
identified in ArcMap software by using CraterTool. To guarantee 
the reliability of the ground truth detection, two operators had 
identified crates from these images and the detected results were 
combined in the end. Three indexes were used to evaluate the 
performance of the proposed approach which are the integrity 
rate (TDR), the accuracy rate (FDR), and the detection rate (DR). 
These three indexes are defined as follows (Umenyiora et al., 
2012), 

TPTDR
TP FN

=
+

    (18) 

FPFDR
TP FP

=
+

    (19) 

TPDR
TP FN FP

=
+ +

   (20) 

where TP is the true positive and is defined as the number of 
correctly detected, FP is the false positive and is defined as the 
number of incorrectly detected, FN is the false negative and is 
defined as the number of missed detected.  
3.2 Detection Results and Analysis 

For the first data set, the selected area is located between 
longitudes of 199.607°E ~ 199.609°E, and the latitudes of 
45.156°S ~ 15.158°S. The resolution of this image is 1m/px. This 
selected test areas contain diverse types and sizes of craters. It 
can be seen from the image the illumination is non-uniformity. 
In addition, the terrain of the selected area is very rugged. All 
these factors contribute to challenges to the proposed method to 
detect the crater exactly. Figure 1 shows detected craters, and the 
detection result is show as red circles. The total extraction is 
2138, the maximum diameter of these extracted crater is 203m 
and the minimum diameter of these extracted crater is 5m. The 
detailed quantitative analysis result is presented in Table1. 
 

 
Figure 1. The detection result of craters in the LROC image 

 
From above detected result, it can be seen that our proposed 
method can detect different scales craters, especially these small-
scale craters. At the same time, it can be seen that our proposed 
method is not affected by light direction and nonuniformity of 
light. The incorrectly detected craters are always those next to 
the ravine, whose texture features are similar with craters. The 
miss detected craters are those texture features have been 
distorted largely.  
 
For the second data set, the test site is located between longitudes 
of 49°E ~ 69°E, and the latitudes of 41°N ~ 45°N. The resolution 
of this image is 100-m/px. The size of the image is 1000×1000 
pixel. Most craters in this image appear as ‘bowl-like’. The 
ground truth craters used for verifying the accuracy of proposed 
method is the data set made by Robbins(Robbins, 2019). The 
data set is a new, global database of lunar impact craters, 
estimated to be a complete census of all craters with diameters 
larger than 1-2 km. The Figure 2 shows both the detected result 
and craters of Robbins’ data set. Given that there are more than 
ten thousand craters, in order to show them more clearly, all 
these craters are presents as their centres. Craters of ground truth 
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craters are indicated by red dots, and craters of detected results 
are indicated by blue dots.  
 
It can be seen from the Figure 2 that the amounts of craters 
detected by proposed method are larger than the Robbins’ data 

set. That is because our propose method can detected multi-scale 
craters, for this area, the maximum diameter of detected crater is 
21600m and the minimum diameter of detected crater is 500m, 
while the diameters of craters from Robbins’ data set are 
all >1000m.  

 

 

Figure 2. A comparison of the crater detection results between the proposed method and Robbins’ data set 

 

 

Figure 3. A comparison of the crater detection results between the proposed method and Robbins’ data set (diameter>1000m) 

 
 
In this way, according to diameter, we further divided our 
detected results into two parts that are craters with diameters > 
1000m and craters with diameters < 1000m. In Figure 3, we 
present craters with diameter > 1km, where craters of ground 
truth craters are indicated by red dots, and craters of detected 
results are indicated by blue dots. We can find that for some of 
the centres of craters detected by proposed method and Robbins 
are totally overlapped, and some of them although not 
completely coincident, the location is very close. According to 
the detection result, the miss detected craters are those have 
seriously degraded, and the whole area almost has no shadow 
and highlight region. The quantitative evaluation of craters with 
diameters > 1000m is shown in Table 1. 
 
 

 TDR FDR DR 

Data Set 1 0.8812 0.9104 0.8586 

Data Set 2 0.8643 0.9012 0.8455 

Table 1. Quantitative evaluation of Data Set 1 and Data Set 2. 
 
Furthermore, we cropped an area where the craters with diameter 
of <1000m are more concentrated, as presented in Figure 2 with 
red rectangle, and the detected result are presented in detail in 
Figure 4. The crater detection result indicates that for these 
terrain relatively flat areas, the proposed can detect almost all 
craters. 

 

Figure 4. The detection result of craters (diameter <1000m) 
 

4. CONCLUSION 

In this paper, we proposed a crater detection method based on 
GLCM、grade level co-occurrence matrix and random projection 
depth function. By using highlight-shadow feature, candidate 
crater regions are detected. However, the false detective ratio is 
high, therefore, the random project depth function has been used 
to reduce the false detective ratio, and the method is efficient. In 
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this way, we were able to verify average greater than 80% of 
ground truth craters. Specifically, the propose method is good at 
detecting multi-scale craters especially the small-scale craters. In 
addition, the proposed method is robust to illumination direction 
and illumination nonuniformity and complexity of terrain. 
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