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ABSTRACT: 

 

Flood is one of the most damaging natural hazards in urban areas in many places around the world as well as the city of Fredericton, 

New Brunswick, Canada. Recently, Fredericton has been flooded in two consecutive years in 2018 and 2019. Due to the complicated 

behaviour of water when a river overflows its bank, estimating the flood extent is challenging. The issue gets even more challenging 

when several different factors are affecting the water flow, like the land texture or the surface flatness, with varying degrees of intensity. 

Recently, machine learning algorithms and statistical methods are being used in many research studies for generating flood 

susceptibility maps using topographical, hydrological, and geological conditioning factors. One of the major issues that researchers 

have been facing is the complexity and the number of features required to input in a machine-learning algorithm to produce acceptable 

results. In this research, we used Random Forest to model the 2018 flood in Fredericton and analyzed the effect of several combinations 

of 12 different flood conditioning factors. The factors were tested against a Sentinel-2 optical satellite image available around the flood 

peak day. The highest accuracy was obtained using only 5 factors namely, altitude, slope, aspect, distance from the river, and land-

use/cover with 97.57% overall accuracy and 95.14% kappa coefficient. 

 

1. INTRODUCTION 

Flood is one of the most destructive natural hazards that is rapidly 

growing as a result of global warming and climate change 

(Schiermeier 2011; Gaur, Gaur, and Simonovic 2018). There are 

different types of floods including coastal flood, flash flood, and 

river flood. One of the significant challenges in flood mapping is 

to provide an accurate estimation of flood extent and damage 

amount in affected areas. There are various techniques for 

estimating flood behaviour including hydrodynamic models, 

simplified conceptual models, and empirical methods (Teng et al. 

2017). (1) The hydrodynamic models are mainly divided into 1D, 

2D, and 3D and use complex mathematical equations to simulate 

fluid motion. Depending on the topography of a region and 

floodplain, and the required level of accuracy, different models 

can be selected for demonstrating flood damage and extent in 

affected areas (Teng et al. 2017). (2) Simplified conceptual 

models are not as detailed as hydrodynamic models and require 

less amount of data but were able to acquire highly acceptable 

results in many case studies (Teng et al. 2017; Momo 2014; Liu 

et al. 2016; Speckhann et al. 2018). (3) Empirical methods 

include all the flood maps which are generated using 

observations. These observations can be satellite images, aerial 

photographs, surveying, etc. The accuracy of the flood maps 

generated by the observations is totally dependent on the 

accuracy of the observations, which represents the limitations of 

empirical methods. Nevertheless, the output of empirical 

methods is used in a variety of ways for the validation of different 

models. On the other hand, machine learning algorithms and 
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statistical methods are being increasingly used for generating 

flood susceptibility maps in many research studies. Numerous 

researchers have implemented extensive investigations and 

applied different algorithms to various datasets (Tehrany, Jones, 

and Shabani 2019; Rahmati, Pourghasemi, and Melesse 2016; 

Youssef et al. 2016; Kia et al. 2012). Using machine learning, 

different factors, referred to as conditioning factors, are used to 

generate flood susceptibility maps (Tehrany, Pradhan, and Jebur 

2014), or estimate the amount of damage (Tehrany, Pradhan, and 

Jebur 2014).  

One of the major issues that researchers have been facing is the 

complexity and the number of conditioning factors that refer to 

either hydrological, topographical or geological layers. Also,  it 

is possible to provide more conditioning factors to machine 

learning algorithms and expect to achieve better results. In this 

research, we have examined several different scenarios with 

different combinations of 12 conditioning factors including 

altitude, slope, aspect, distance from river, land-use/cover, terrain 

wetness index (TWI), terrain roughness index (TRI), stream 

power index (SPI), curvature, plan curvature, profile curvature, 

and height above the nearest drainage (HAND). The Random 

Forest algorithm (Ho 1995; Breiman 2001), which creates a 

multitude of decision trees and provides an estimation of the 

importance of the parameters in decision making, is used for this 

analysis. The algorithm’s robustness, low bias, the capability of 

handling unbalanced data, high dimensional data, and its quick 

prediction makes it a useful tool for this research among other 

machine learning methods. In this paper, first the study area and 

the dataset are introduced in section 2, then the methodology, 
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results and discussion, and the conclusion are presented in 

sections 3, 4, and 5, respectively.  

 

2. STUDY AREA AND DATASET 

This study focuses on the downtown and surrounding areas of the 

city of Fredericton, the capital of the province of New Brunswick, 

Canada. The city is located in the west-central part of the 

province along the Saint John River. Due to the geographical 

location of the city, every year the Saint John River gets frozen 

because of the cold winters. Usually, at the end of each April, the 

frozen river starts to meltdown, and it leads to a significant rise 

in the water level. In late April 2018, the water level at the Saint 

John River raised to the historic elevation of 8.13 meters. This 

event was recorded as one of the most damaging flooding events 

in the history of Fredericton, which affected a total of 12000 

properties around the province. The general topography of 

Fredericton is flat in the areas close to the river and connected 

streams, but the elevation rises as we get farther from the river. 

The elevation ranges from around 190 m, west of Fredericton to 

just above sea level in the area of study. A dam, named 

Mactaquac dam, is located around 19 kilometres upstream from 

the city which contains a small pond and is not able to hold the 

melted ice for long so the water must be released to the river.  

 

 
 

Figure 1. NDWI showing the water extent before the flood 

 

 
 

Figure 2. NDWI and sample points generated from Sentinel-2 

satellite image at the flood peak 

 

3. METHODOLOGY 

Random Forest is one of the most robust, efficient, and highly 

flexible ensemble classifiers that creates a multitude of decision 

trees (Breiman 2001). The algorithm uses random bootstrapped 

samples from training data to predict the probability of a pixel 

being flooded or not. The algorithm runs arbitrary binary trees 

that perform a subset of observations over the bootstrapping 

approach. From the original dataset, a random selection of the 

training data is considered for creating the model, and the 

disregarded data is described as out of bag (OOB) (Catani et al. 

2013). Random Forest also predicts the importance of each 

variable as well. In the first step, the prediction error of the OOB 

part of the data, and then for permuting each variable is recorded. 

The difference between the two is averaged over all trees and 

normalized by the standard deviation of the differences. The 

second measure is the cumulative decrease in impurities of nodes 

from splitting onto the conditioning factor, averaged over all trees 

(Liaw and Wiener 2002). 

 

3.1  Flood Conditioning Factors 

In order to obtain the flood model using Random Forest, several 

conditioning factors that contribute to flooding were selected. For 

the analysis, various combinations of datasets were constructed. 

The selection of conditioning factors depends on the area of the 

study and its characteristics (Kia et al. 2012). For this research, 

the conditioning factors were selected based on expert’s analysis 

and the information from the literature (Kia et al. 2012).  

A total of 12 conditioning factors, all shown in Figure 3 and 4, 

were selected for flood mapping using Random Forest, namely: 

altitude, slope, aspect, distance from the river, land-use/cover, 

TWI, TRI, SPI, curvature, plan curvature, profile curvature, and 

HAND. High accuracy topographic data is one of the most 

important parameters required for precisely modelling the flood 

extent (Bates, Marks, and Horritt 2003).  In this research we used 

the altitude layer (Digital Terrain Model, DTM), which was 

obtained from light detection and ranging (LiDAR) with 1m 

spatial resolution and slope, aspect, TWI, TRI, SPI, curvature, 

plan curvature, and profile curvature were derived from the 

altitude layer in ArcGIS 10.6.1 software. The distance from the 

river layer was generated using the Euclidean distance tool within 

the ArcGIS software. The distance was calculated from the river 

boundary polygon shapefile provided with GeoNB, the 

geographic data catalogue website of the province of New 

Brunswick. The Land-use/cover layer was made by overlaying 

available polygons within the catalogue GeoNB website 

containing seven classes of Urban, Forest, Gras Land, Bare Land, 

Roads, Water, and Wetlands. However, after overlaying all the 

polygons, there were still existing unclassified areas that were 

filled by classifying a Sentinel-2 satellite image. TWI is the 

cumulative upslope and it represents the potential of water 

accumulation in certain areas based on the tendency of 

gravitational forces; for the formula please refer to (BEVEN and 

Kirkby 1979). To express the amount of elevation difference 

specifically between the adjacent cells of a DTM, we have used 

TRI which is given in (Riley, DeGloria, and Elliot 1999). 

Stream’s erosion is measured by SPI which is also seen as a 

conditioning factor reflecting the stability of an area; for the 

formula, please see (Moore, Grayson, and Ladson 1991). 

Curvature, plan curvature, and profile curvatures layers were 

considered as conditioning factors as parameters that show the 

level of flatness in the area. The formula for these parameters can 

be found in (Heerdegen and Beran 1982). HAND model is an 

adjusted elevation layer that is normalized toward the nearest 

stream (Rennó et al. 2008). The elevation of each pixel in the 

HAND layer is calculated based on the D-infinity flow direction 

(Tarboton 1997) and the elevation difference of each pixel 

(Nobre et al. 2016). The other conditioning factors are the 

derivatives of altitude, i.e., slope and aspect which play an 

important role in recognizing the vulnerable areas to flood. 
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The conditioning factors mentioned above are ordinal and 

nominal ones. Thus, for a better implication of Random Forest, 

all ordinal factors were normalized from 0 to 1 (Ihsan, Idris, and 

Abdullah 2013). All the conditioning factors were arranged to 

have the same extent containing the whole city of Fredericton and 

surrounding areas. The created databases of conditioning factors 

constructed grids of 22448 columns and 11533 rows (~ 258 km2).  

Generally, areas with lower elevation, flat surface, and rough 

surface with low potential for absorption are more prone to flood 

(Tehrany, Jones, and Shabani 2019). 

 

3.2 Algorithm Training 

 The precision of the data used for generating a flood model has 

a very high impact on the accuracy of the flood model itself 

(Merz, Thieken, and Gocht 2007). Several sample points were 

collected through site visits at the time of flood events around the 

city. Also, Sentinel-2 satellite images were used for generating 

sample points that were taken at the time of the flood. For 

generating sample points from the satellite image, pre-flood 

(Figure 1.) and flood-peak (Figure 2.) images were used, which 

were taken on April 22nd, 2018 and May 02nd, 2018, respectively. 

To identify water pixels, a normalized difference water index 

(NDWI) indicator was derived from the images; the formula for 

which can be found in (Gao 1996). Using the ground truth data 

and by visually inspecting the NDWI layer, a total of 740 flooded 

and non-flooded samples were generated. To prevent the class 

imbalance issue, an equal number of flooded and not-flooded 

points were generated, which were distributed evenly in the area 

close to the river boundary. Then, the sample points were 

randomly divided into two groups of training (70%) with 259 

flooded and 259 not-flooded points, and testing (30%), with 111 

flooded and 111 not-flooded points. The random selection of the 

points helps to avoid auto correlation.  

 

3.3 Algorithm Implementation 

The Random Forest algorithm was implemented in RStudio 

1.2.1335.The hyperparameters and the implementation criteria 

were selected based on the literature (Rahmati, Pourghasemi, and 

Melesse 2016). To run the algorithm, it is necessary to define the 

number of parameters and trees (Youssef et al. 2016). In this 

research, each implemented scenario used a different number of 

conditioning factors, as parameters, and the number of trees was 

set to 1000 for all the different test scenarios. 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 3. Conditioning factors used in the Random Forest classifier (part 1): (a) Altitude (b) Slope (c) Aspect (d) Distance from river 

(e) Land-use/cover (f) TWI 12 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4. Conditioning factors used in the Random Forest classifier (part 2): (a) TRI (b) SPI (c) Curvature (d) Plan curvature (e) 

Profile curvature (f) HAND 

 

Scenario 1 Conditioning Factors 

1-a Altitude-Slope-Aspect- Distance- Land-use/cover 

1-b Altitude-Slope-Aspect- Distance- Land-use/cover -TWI 

1-c Altitude-Slope-Aspect- Distance- Land-use/cover -TWI-TRI 

1-d Altitude-Slope-Aspect- Distance- Land-use/cover -TWI-TRI-SPI 

1-e Altitude-Slope-Aspect- Distance- Land-use/cover -TWI-TRI-SPI-Curvature 

1-f Altitude-Slope-Aspect- Distance- Land-use/cover -TWI-TRI-SPI-Curvature-Plan Curvature 

1-g Altitude-Slope-Aspect-Distance-Land-use/cover-TWI-TRI-SPI-Curvature-Plan Curvature-Profile Curvature 

1-h Altitude-Slope-Aspect-Distance-Land-use/cover-TWI-TRI-SPI-Curvature-Plan Curvature-Profile Curvature-HAND 

1-i Altitude-Slope-Distance- Land-use/cover -TWI-TRI-SPI-Curvature-Plan Curvature-Profile Curvature-HAND 

1-j Altitude-Slope-Distance- Land-use/cover -TWI-SPI-Curvature-Plan Curvature-Profile Curvature-HAND 

1-k Altitude-Slope-Distance- Land-use/cover -TWI-Curvature-Plan Curvature-Profile Curvature-HAND 

1-l Altitude-Slope- Distance- Land-use/cover -Curvature-Plan Curvature-Profile Curvature-HAND 

1-m Altitude-Slope-Distance- Land-use/cover -Curvature-Plan Curvature-HAND 

1-n Altitude-Slope- Distance- Land-use/cover -Plan Curvature-HAND 

1-o Altitude-Slope- Distance- Land-use/cover -HAND 

1-p Altitude-Distance- Land-use/cover -HAND 

Table 1. Combinations of different conditioning factors implemented in Scenario 1 
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In order to identify the most important conditioning factors for 

flood mapping, different conditioning factors were tested in two 

separate scenarios In Scenario 1, the Random Forest algorithm 

was trained using five conditioning factors which are most 

frequently used in the literature namely: altitude, slope, aspect, 

distance from river, and land-use/cover (Tehrany, Jones, and 

Shabani 2019; Tehrany, Pradhan, and Jebur 2014; Tehrany et al. 

2014; Rahmati, Pourghasemi, and Melesse 2016). These five 

condition factors were used to predict the flooded pixels using 

random forest (Figure 5). Then, the remaining conditioning 

factors were added to the five condition factors one by one until 

we used all the 12 conditioning factors for training and prediction 

(Table 1 Scenarios 1-a to 1-h). The Random Forest algorithm 

prioritizes the conditioning factors based on their degree of 

importance. Therefore, for the next step, conditioning factors 

with the least degree of importance were removed from the 

combinations, and we continued removing the least important 

conditioning factors until there were four conditioning factors left 

only (Table 1 Scenarios 1-i to 1-p). In Scenario 2 (Table 2.), we 

grouped the correlated conditioning factors together and made 

sure that only one conditioning factor from each group is used in 

each combination for training and prediction. Altitude and 

HAND conditioning factors were grouped together as they both 

are elevation based.   Slope, TWI, TRI, SPI, curvature, plan 

curvature, and profile curvature grouped together as well as they 

all are Slope-based conditioning factors.  

 

Table 2. Combinations of different conditioning factors for 

implementations in Scenario 2 

 

After implementing the Random Forest algorithm to different 

combinations of conditioning factors, a probability map with 

values from 0 to 1 was generated from each implementation. The 

value of each pixel represents the probability of that pixel being 

flooded or not. The probability map of each scenario then was 

classified into 5 classes of very low, low, moderate, high, and 

very high using Jenks natural breaks classification method (North 

2009). High and very high classes of the probability maps were 

considered to be flooded areas in this research. 

 

4. RESULTS & DISCUSSION 

Through Random Forest analysis the flooded and not flooded 

areas were distinguished using several different combinations of 

conditioning factors, through two different test scenarios, as 

shown in Tables 1 and 2.  

 

Figure 5. Random Forest output using altitude, slope, aspect, 

distance from the river, and land-use/cover 

 

In order to model the 2018 flood map in Fredericton, we used the 

Random Forest algorithm by considering various combinations 

of 12 different conditioning factors contributing to flooding with 

different degrees of impact. As can be seen from Figure 6, 

Scenario 1-a distinguished flooded and not-flooded pixels 

accurately. However, as we kept adding the conditioning factors 

(Scenario 1-a to 1-h), the accuracy didn’t increase. This shows 

that adding extra conditioning factors does not guarantee 

producing higher accuracies. This could be due to the negative 

importance of certain conditioning factors. Thus, in the next step, 

we kept removing the least important conditioning factors 

(Scenario 1-i to 1-p), while the accuracy didn’t increase either. 

An explanation for that could be maybe since some conditioning 

factors were correlated, they could collectively degrade the 

accuracy. In Figure 7., the highest overall accuracy and kappa 

coefficient (Campbell and Wynne 2011) of 97.57% and 95.13% 

respectively, belong to Scenario 1-a where only five conditioning 

factors of altitude, slope, aspect, distance from rive, and land-

use/cover were used.  

Since correlated conditioning factors could negatively affect the 

accuracy, In Scenario 2, we insured only uncorrelated 

conditioning factors are embedded in each combination. The 

best-acquired accuracy in Scenario 2 is achieved using slope, 

aspect, distance, land-use/cover, and HAND conditioning factors 

(Figure 8) in which flooded, and not-flooded pixels were 

distinguished with an overall accuracy and kappa coefficient of 

97.57% and 95.14% respectively. This confirms that using 

altitude or the HAND does not change the final flood prediction 

accuracy.  

 

 
 

Figure 6. User and producer accuracy of flooded and not-

flooded sample points in the first series of implementations 

Scenario 

2 

Conditioning factors 

2-a Slope-Aspect-Distance- Land-use/cover -HAND 

2-b Aspect-Distance- Land-use/cover -TWI-HAND 

2-c Aspect-Distance- Land-use/cover -TRI-HAND 

2-d Aspect-Distance- Land-use/cover -SPI-HAND 

2-e Aspect-Distance- Land-use/cover -Curvature-

HAND 

2-f Aspect-Distance- Land-use/cover -Plan Curvature-

HAND 

2-g Aspect-Distance-Land-use/cover-Profile 

Curvature-HAND 

2-h Altitude-Aspect-Distance- Land-use/cover -TWI 

2-i Altitude-Aspect-Distance- Land-use/cover -TRI 

2-j Altitude-Aspect-Distance- Land-use/cover -SPI 

2-k Altitude-Aspect-Distance- Land-use/cover -

Curvature 

2-l Altitude-Aspect-Distance- Land-use/cover -Plan 

Curvature 

2-m Altitude-Aspect-Distance- Land-use/cover -Profile 

Curvature 
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Figure 7. Overall Accuracy and Kappa Coefficient of the first 

series of implementations 

 

 
 

Figure 8. User and producer accuracy of flooded and not-

flooded sample points  

 

 
 

Figure 9. Overall Accuracy and Kappa Coefficient of the second 

series of implementations 

 

Overall, among various conditioning factors, the most important 

conditioning factors for flood mapping, which produced the 

highest accuracies in both scenarios, were either altitude or 

HAND model, slope, aspect. distance from river, and land-

use/cover. 

 

5. CONCLUSION 

Flood is one of the most catastrophic events that many countries 

around the world are experiencing. The city of Fredericton 

experienced a severe flood in 2018 and 2019 which caused 

considerable damage to urban infrastructures and residential 

buildings. There are several geological conditioning factors that 

contribute to flood mapping, but it is essential to identify the most 

effective ones for the analysis that could provide the best results. 

Applying similar research to another region will provide useful 

for impact assessment, prediction of vulnerable areas, and rescue 

assessment.  

In this research, several combinations of conditioning factors 

were analyzed to find the combination that provides the most 

accurate flood model using the Random Forest algorithm. Results 

revealed that having correlated conditioning factors can degrade 

the prediction accuracy. Five conditioning factors of altitude or 

HAND model, slope, aspect, distance from the river, and land-

use/cover provided the most accurate results. Furthermore, the 

following conclusions were achieved: 

• Adding extra conditioning factors does not increase the 

accuracy of predictions. 

• Including correlated layers decreases the accuracy of 

predictions. 

• HAND and altitude layers are both major factors in 

flooding having similar effects on the final accuracy. 
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