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ABSTRACT: 

 

Himalayan glaciers have retreated rapidly in recent years. Resultant glacial lakes in the region pose potential catastrophic threats to 

downstream communities, especially under a changing climate. The potential for Glacial Lake Outburst Floods (GLOFs) has increased 

and studies have assessed the risks of those in Nepal and prioritised several glacial lakes for urgent and closer investigation. The risk 

posed by the Tsho Rolpa Glacial Lake is one of the most serious in Nepal. To investigate the feasibility of high-frequency monitoring 

of glacial lake evolution by remote sensing, this paper proposes a workflow for automated glacial lake boundary extraction and 

evolution using a time series of Sentinel optical imagery. The waterbody is segmented and vectorised using bimodal histograms from 

water indices. The vectorised lake boundary is validated against reference data extracted from rigorous contemporary unmanned aerial 

vehicle (UAV)-based photogrammetric survey. Lake boundaries were subsequently extracted at four different epochs to evaluate the 

evolution of the lake, especially at the glacier terminus. The final lake area was estimated at 1.61 km2, significantly larger than the 

areal extent last formally reported. A 0.99 m/day maximum, and a 0.45 m/day average, horizontal glacier retreat rates were estimated. 

The reported research has demonstrated the potential of remote sensing time series to monitor glacial lake evolution, which is 

particularly important for lakes in remote mountain regions that are otherwise difficult to access. 

 

 

1. INTRODUCTION  

Glacial lakes are constantly evolving due to glacier dynamics, 

which are affected by climate and environmental conditions, as 

well as anthropogenic activities (Richardson and Reynolds, 

2000). The risk of Glacial Lake Outburst Floods (GLOFs) 

increase when the glacier retreat rate increases as a result of rising 

temperatures. A GLOF typically involves a sudden flood wave 

descending downstream and can cause catastrophic damages to 

communities, resources and infrastructure (Rana et al., 2000; 

Richardson and Reynolds, 2000). The glaciers in the Himalayas 

have retreated significantly in recent decades, indicative of the 

impact of global climate change. As a result, glacial lakes in the 

region have grown rapidly, and so has the risk of GLOFs.  

 

Since 1960s, 23 GLOF events have been recorded for Nepal. Out 

of the 23 events, 10 GLOFs had a trans-boundary impact as 

damage occurred both inside and outside Nepal, specifically in 

Tibet Autonomous Region (TAR) as well as China (ICIMOD, 

2011). Over the last five years, two GLOF events with 

catastrophic trans-boundary impacts were reported. The first 

event occurred on the 5th July 2016 in Zhangzangbo valley, TAR, 

China, causing damage along the Bhotekoshi River in Nepal  

(IMHE, 2016; The Kathmandu Post, 2017). The second event 

occurred on the 20th April 2017 in Barun Valley, Nepal (Byers et 

al., 2019). These recent events demonstrate that continuous 

investigations to evaluate the risks of GLOFs are a necessity. 

 

There are more than a thousand glacial lakes in Nepal. Research 

has been conducted to assess the risks of glacial lakes and those 

with the highest risks have been prioritised for further 

                                                                 
*  Corresponding author 

 

investigations. 21 lakes have been identified as critical, one of 

them being Tsho Rolpa (ICIMOD, 2011). Tsho Rolpa is located 

northeast of Kathmandu in the Rolwaling Valley, Dolakha 

District, Nepal, at an altitude of 4,580 m (Figure 1). The lake is 

the largest moraine-dammed proglacial lake in the the Nepalese 

Himalayas (Rana et al., 2000). It was formed only in the last 60 

years or so, and its surface area and water volume have evolved 

rapidly (Shrestha and Nakagawa, 2014). It is currently c. 3.45 km 

long and 0.50 km wide, fed by the Trakarding Glacier to the 

southeast (ICIMOD, 2011). 

 

The study of Tsho Rolpa began in the early 1990s (Rana et al., 

2000). The lowering of the lake water level and monitoring water 

fluctuation were already recommended at that time. The 

monitoring of the lake area, depth and the growth pattern were 

followed, and topographic surveys of downstream villages were 

carried out. Later studies suggested that buried ice was present in 

the end moraine and near islands located in the lake. 

Geotechnical analysis concluded that the moraine dam was stable 

if no large-scale event such as an earthquake occurred, but that it 

will eventually fail within a timescale of 100 years if no 

mitigation was taken. A mitigation programme was therefore 

introduced in 2000, including the construction of an open channel 

through the end moraine. The water level was subsequently 

lowered by three metres and the risk of a GLOF was reduced by 

an estimated 20%. Nevertheless, the Tsho Rolpa Lake is still 

considered to be one of the most dangerous lakes in Nepal and is 

continuously monitored by the Nepalese government. 
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Research by Kargel et al. (2016) reported apparent tension cracks 

on the moraine dam at Tsho Rolpa that were caused by the 

movement (c. 1.5 m horizontally and 0.5 m vertically) of moraine 

materials due to the 2015 Gorkha earthquake. Another study by 

Shrestha and Nakagawa (2014) analysed the outburst flood 

scenarios of Tsho Rolpa using numerical models to simulate the 

failure of moraine dam due to seepage and water overtopping. 

However, there is a consensus that any attempt to forecast a 

GLOF event is extremely difficult. There is therefore an urgent 

need to monitor the lake on a regular basis. As the lake is located 

in a remote valley and at a high altitude, regular visits can prove 

challenging and even dangerous. This research therefore aimed 

to demonstrate the capability of remote sensing to monitor the 

evolution of the Tsho Rolpa Glacial Lake. 

 

Remote sensing satellite images, both radar and optical, have 

been widely used to measure and monitor the characteristics of 

glaciers, to delineate the changes of a glacier’s terminus position 

(Racoviteanu et al., 2008), as well as to detect water content on 

the Earth surface (Yue and Liu, 2019). With increased spatial and 

temporal resolutions, it has proved feasible to measure the 

boundary changes of glacial lakes and the glacier terminus 

position through time (Racoviteanu et al., 2008; Li and Sheng, 

2012; Strozzi et al., 2012; Yue and Liu, 2019). Accurate glacial 

lake boundary estimation by remote sensing is important for at 

least two reasons: 1) to monitor lake evolution on a regular basis 

with a high level of automation; 2) to help estimate water volume 

given bathymetry data, which generally have to be obtained 

onsite but not necessarily regularly. 

 

Regarding Tsho Rolpa Glacial Lake, some remediation measures 

have been applied to reduce the risk of dam failure. Due to the 

outlet channel constructed at the end moraine (northwest of the 

lake) in 2000, the water volume was reduced and does not change 

significantly due to constant water discharge. It has been assumed 

that the lake boundary does not vary significantly, especially the 

boundary close to the dam. This implies that the boundaries 

extracted from remote sensing data in recent years should not 

differ much. By 2000, Landsat imagery showed that the lake area 

was 1.53 km2 after the water level had been reduced (ICIMOD, 

2011). Since then, the lake’s growth slowed, and was mainly 

driven by the melting of the hanging glacier at the opposite end 

of the lake. Satellite images acquired in 2005 (Landsat) and 2007 

(AVNIR-2) indicated the area as 1.535 km2 and 1.538 km2, 

respectively. Bathymetric surveys have been repeated several 

times since 1993, with a maximum measured depth of 132 m. 

Through field investigation, the lake is observed to be deepening 

and the rate increases from northwest to southeast across the end 

moraine, with an average rate of 0.43 m/year. Using bathymetric 

data, the water volume of the lake can be estimated and the 

reported volume in 2011 was 85.94 million m3 (ICIMOD, 2011). 

 

As aforementioned, open-source low resolution remote sensing 

data, e.g., Landsat, has already been used to estimate lake 

boundaries (Li and Sheng, 2012), and has been validated by 

sparse ground measurements. This research utilises Copernicus 

Sentinel satellite remote sensing imagery to extract more accurate 

lake boundaries at a higher spatial resolution. The results are 

validated by Unmanned Aerial Vehicle (UAV)-based 

photogrammetry and compared with previous estimations to 

investigate the lake evolution. Ultimately, the technique could be 

expanded to other glacial lakes that are not remediated but are at 

equally high risk to GLOFs. 

 

2. METHODOLOGY 

The methodological workflow consists of three main stages.  

Stage 1 applies a pan-sharpening approach to the satellite image 

series to enhance spatial resolution individually per band and per 

epoch. Many remotely sensed images include a panchromatic 

band, which has the highest spatial resolution, and the pan-

sharpening approach fuses this band with all other multispectral 

bands of significantly lower spatial resolution whilst maintaining 

their higher range of spectral information. There is a plethora of 

pan-sharpening approaches available, as described in 

Nikolakopoulos (2008). However, with the absence of a 

panchromatic band in the Sentinel-2 image series, the pan-

sharpening approach has been substituted with other band fusion 

techniques (Lanaras et al., 2018). One example is the super-

resolution algorithm, Superres, developed by Brodu (2017). This 

approach extracts geometric information per pixel from all bands 

to refine the low bands’ resolution while preserving the pixels’ 

spectral indices. It uses the enhanced spatial resolution of visible 

and near infra-red bands to refine the low resolution of 

multispectral bands (Table 1). Superres is adopted here as a 

plugin of the open-source Sentinel Application Platform SNAP 

(2018) software package.  

 

In Stage 2, various water indices are constructed using different 

combinations of the previously super resolved bands (see also 

Table 1 for band details). The six indices used here have been 

widely applied for water body extraction, as seen in Schwatke et 

al. (2019), Yang et al. (2017) and Rokni et al. (2014), and are 

described in the equations below: 

 

1. Normalized Difference Water Index (NDWI) 

2. New Water Index (NWI) 

3. Modified Normalized Difference Water Index (MNDWI) 

4. Addition of NDWI and MNDWI (NDWIplusMNDWI) 

5. Automated Water Extraction Index for Non-Shadow Areas 

(AWEInsh) 

6. Automated Water Extraction Index for Shadow Areas 

(AWEIsh) 

 

NDWI = (Green - NIR) / (Green + NIR) (1) 

NWI = 100 * (Blue - (NIR - SWIR1 + SWIR2) / 

Blue + (NIR - SWIR1 + SWIR2)) 

(2) 

MNDWI = (Green - SWIR1) / (Green - SWIR1) (3) 

NDWIplusMNDWI = NDWI + MNDWI (4) 

AWEInsh = 4 * (Green - SWIR1) -

(0.25 * NIR + 2.75 * SWIR2) 

(5) 

AWEIsh = Blue + 2.5 * Green - 1.5 * (NIR + SWIR1) 

- 0.25 * SWIR2 

(6) 

 

The NDWI index has been used for decades in remote sensing to 

distinguish water bodies from other categories such as land and 

vegetation (McFeeters, 1996). However, it has been found that 

NDWI provides unsuccessful classification when noisy land 

background pixels are mixed with water bodies (Xu, 2006). This 

has been overcome with the introduction of MNDWI (Xu, 2006) 

where the NIR band has been substituted with the SWIR1 band, 

as described in Equation 3. The NWI index based on Equation 2 

considers more infra-red bands than the other indices. The 

constant multiplier equal to 100 is adopted here as in Schwatke 

et al. (2019) to increase the low values. Equation 4 describes a 

combination of the NDWI and MNDWI indices when added 

together. The two variants of the AWEI, AWEInsh and AWEInsh 

in Equations 5 and 6 respectively, have been mainly implemented 

on satellite images that include pixels with dark surfaces and 

shadows (Feyisa et al., 2014; Yang et al., 2017).  
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After implementing the aforementioned water indices in the 

SNAP software package, six raster images are produced that each 

of them classifies “water” and “non-water” regions. To generate 

a bimodal product of these two categories, the well-established 

Otsu’s histogram thresholding method (Otsu, 1979), adopted in 

Matlab, is applied to each generated index. After applying the 

calculated threshold, six bimodal raster maps are constructed 

with digital values equal to 1 representing the waterbody and 0 

corresponding to land (i.e. non-water region). These raster maps 

are then vectorised in ArcGIS to generate polyline features of the 

Tsho Rolpa Lake boundary (Figure 3).  

 

The methodological pipeline is applied to a reference satellite 

epoch, which is temporally close to the UAV campaign 

conducted on 16-05-2019 at Tsho Rolpa. This was the first UAV 

campaign that has ever been carried out at the study site and was 

considered to constitute the reference dataset. An assessment 

process investigates an optimal index that closely fits to the lake 

boundary extracted from UAV-based photogrammetric process. 

In order to achieve such comparison, polylines or polygons are 

typically divided into a set of points. Several measures have been 

used in previous studies to compare the similarity of a pair of 

polylines or polygons, such as a) the nearest Euclidean distance 

between a set of points from a reference polyline (Bishop-Taylor 

et al., 2019); b) the Hausdorff distance which corresponds to the 

maximum offset between two shapes (Alt et al., 2003); c) ratio of 

squared root of area to perimeter (Comber et al., 2003); d) 

sinuosity and relative sinuosity (Anderson et al., 2014).  

 

Here, the sinuosity (S) and the relative sinuosity (RS) metrics 

were adopted, as expressed in Equations 7 and 8 below: 

 

S = L(t) / L(sf)      (7) 

 

RS = S(ref) / S(i)     (8) 

 

where L(t) is the total length of a polyline, i.e. the cumulative 

length of all line segments, and L(sf) is the distance between the 

start and finish locations. S(ref) is the UAV-extracted polyline 

and S(i) the derived polylines with i from one to six, 

corresponding to the six indices. The two metrics here are tested 

for the most stable part of the lake around the outlet instead of 

the closed lake boundary to avoid zero sinuosity of a closed loop.  

 

S was initially introduced as a metric in geomorphological 

studies for the derivation of the geometry of river channels 

(Chorley et al., 1984). It indicates the ratio between the 

meandering length of a stream and the straight line distance 

(McCuen, 1998). RS has been used to evaluate the degree of 

similarity between multiple polylines that represent line stream 

networks reconstructed from various datasets, such as lidar-based 

and airborne photogrammetry-derived point clouds (Anderson et 

al., 2014). Here, RS is implemented to assess the closeness of fit 

between reference (i.e. UAV-based) and Sentinel-derived 

polylines of the lake. To calculate S and RS, the Hawth’s analysis 

open-source line metric toolbox (Hawth, 2020), embedded in 

ArcGIS, was adopted. 

 

Stage 3 investigates the lake’s boundary evolution and potentially 

predict the glacier’s movement rate. An open source toolbox 

called Digital Shoreline Analysis System (DSAS; Himmelstoss 

et al. (2018)) has been initially developed to assess temporal 

coastal changes by the U.S. Geological Survey (Gibbs and 

Richmond, 2017). Recent research by Yue and Liu (2019) 

implemented the DSAS tool to estimate annual lake boundary 

variations in China using Landsat imagery. This tool, embedded 

in ArcGIS, can calculate temporal positional change of a 

boundary providing change rate statistics using a linear 

regression analysis. The DSAS tool can also estimate changes 

within a specified temporal horizon based on the historical 

movement rates with the aid of Kalman Filtering.  

 

 

3. SENTINEL AND UAV DATASETS 

Sentinel-2 multispectral imagery (MSI) of Level-2A was 

acquired from the Copernicus Open Access Hub at four epochs 

18-05-2019, 12-06-2019 17-07-2019 and 16-08-2019. The first 

epoch was the closest (two-day separation) to the reference UAV 

campaign with zero cloud coverage over Tsho Rolpa (Figure 1). 

To test the methodology a difference of approximately 30 days 

between epochs was selected. The Sentinel-2 bands, as listed in 

Table 1, were super-resolved yielding in a 10 m spatial 

resolution, after implementing the plugin Superres in SNAP, 

according to Stage 1 of the methodology. To reduce 

computational effort, a subset region of 4.2 km x 3 km out of the 

original 100 km x 100 km Sentinel image tile was extracted and 

utilised at all methodological stages. The false colour infrared 

composite, shown in Figure 1, was constructed based on the B8, 

B4 and B3 band combination. 

 

 
 

Figure 1. Tsho Rolpa Glacial Lake overview using a false 

colour infrared composite from Sentinel-2 acquired on 18-05-

2019. Inset map shows the location of the lake in Nepal. 

 

Band Description Wavelength 

[nm] 

Spatial 

resolution [m] 

1 

Coastal 

aerosol 433-453 60 

2 Blue 458-523 10 

3 Green 543-578 10 

4 Red 650-680 10 

5 

Vegetation 

Red Edge 698-713 20 

6 

Vegetation 

Red Edge 733-748 20 

7 

Vegetation 

Red Edge 779-793 20 

8 NIR 785-900 10 

8A Narrow NIR 855-875 20 

9 Water vapour 935-955 60 

10 SWIR-Cirrus 1365-1385 60 

11 SWIR1 1565-1655 20 

12 SWIR2 2100-2280 20 

Table 1. Sentinel-2 bands with original spatial resolution  

prior to pan-sharpening.   
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In the UAV campaign (Figure 2a), 448 images were captured 

from a fixed-wing UAV (eBee; SenseFly (2019)), covering an 

area of approximately 7.064 km2. The eBee carries a Sony Cyber-

shot DSC-WX220 lightweight digital camera with a 4.572 mm 

nominal focal length, and a 1/2.3” (7.76 mm) Exmor RTM CMOS 

sensor. The DSC-WX220 camera creates an image of 

4896 x 3672 pixels corresponding to a chip size of 

6.17 x 4.63 mm.  

 

To ensure that UAV-photogrammetric output is georeferenced 

into a common fixed reference frame (WGS84/UTM Zone 45N), 

seven ground control points (GCPs) were surveyed using GNSS 

rapid static mode with eight-minute observations per point 

(Figure 2). An average 3D relative accuracy of 0.005 m was 

estimated after post-processing with GNSS observations from a 

base station located at a relatively stable terrain close to the outlet 

channel. Average root mean square errors (RMSEs) equal to 

0.025 m, 0.082 m and 0.067 m were calculated in X, Y, Z axes 

respectively, using the Structure-from-Motion (SfM) 

photogrammetric software package Pix4D (2016). To achieve 

this the seven GCPs were incorporated in the Pix4D self-

calibrating bundle adjustment. The resulting digital elevation 

model (DEM) and orthomosaic were reconstructed with 0.120 m 

spatial resolution.  

 

 

 
 

Figure 2. (a) GNSS survey at a GCP overlooking the lake. (b) 

SenseFly eBee camera setup before flight. 

 

 

4. RESULTS AND ANALYSIS 

After conducting Stage 1 and 2 of the methodological workflow, 

six polylines of the lake boundary were constructed at the first 

Sentinel epoch, as shown in Figure 3. To evaluate the six water 

indices, only the area depicted in Figure 3 was used for this test, 

instead of the full lake boundary. This area surrounds the outlet 

channel (end moraine; northwest) with a distinctive separation 

between lake’s water and land where no mixed noise is formed 

by snow or icy regions. Icy areas were observed at the glacier 

terminus in the UAV orthomosaic, which cannot clearly be 

identified on Sentinel images.  Moreover, the boundaries around 

the island shown in Figure 3 were not taken into consideration 

here, in order to simplify the polyline assessment task. It should 

be noted that the freely-available Sentinel-2 Level-2A products 

are georeferenced in WGS84/UTM Zone 45N and are both 

atmospherically and radiometrically corrected. This allowed 

direct application of the water indices without a further 

reflectance correction procedure.  

 

By visual inspection, it is evident that some indices are relatively 

similar to each other, such as the AWEInsh and AWEIsh, as well 

as the NDWIplusMNDWI with the NDWI. The step-wise pattern 

in all polylines is caused by the vectorisation procedure. The size 

of the step is equal to 10 m spatial resolution of the super-

resolved Sentinel bands after applying the Superres algorithm. 

The S and RS indices were calculated without simplifying the 

polylines further, and reported in Table 2.  

 

When RS is closer to unity the polyline fits better to the UAV 

reference polyline. The smallest RS value of 0.81 indicates that 

NWI provides the worst fit among all, also shown in Figure 3. 

This is because NWI raster map did not provide a sharp bimodal 

histogram and Otsu’s method did not provide successful results 

as it did for the other indices. According to Nakmuenwai et al. 

(2017), Otsu’s method is limited when histograms are unimodal 

rather than bimodal. The NDWIplusMNDWI provided one of the 

clearest bimodal histograms with sharp peaks and a deep valley 

between them. For that reason, among those indices with RS 

values greater than 0.90, the NDWIplusMNDWI was chosen for 

use in lake boundary extraction from the Sentinel-2 image series.  

 

 
 

Figure 3. Water indices at the outlet of the Tsho Rolpa Glacial 

Lake on 18-05-2019, superimposed over the UAV-constructed 

orthomosaic. 

 

Polyline S RS 

NDWIplusMNDWI 4.86 0.94 

NDWI 4.90 0.93 

NWI 5.62 0.81 

MNDWI 4.82 0.95 

AWEInsh 5.41 0.84 

AWEIsh 4.82 0.95 

UAV  4.57 1.00 

Table 2. Sinuosity (S) and relative sinuosity (RS) per polyline 

 (epoch: 18-05-2019). 

 

An example of a sharp bimodal histogram of the 

NDWIplusMNDWI index is shown in Figure 4 for the final 

Sentinel epoch on 16-08-2019. Threshold from Otsu’s method 

was calculated equal to 0.4922. This indicates that pixels with 

values greater than the threshold are part of the lake while any 

other pixel belongs to land. Reducing the original size of Sentinel 

image tiles ensured that only Tsho Rolpa Lake and its 

surroundings were included in the workflow with pixels 

indicating water, rocky surface and sediments. 

 

The aforementioned workflow was repeated for the four Sentinel-

2 image-series, as seen in Figure 5a. The vectorised polylines, 

representing the lake’s boundaries, were generated with the 

NDWIplusMNDWI index and are depicted by different colours 

in Figure 5a. The lake’s boundary on 18-05-2019 (shown in 

yellow in Figure 5a and b) coincides with the boundary seen on 
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the UAV-constructed orthomosaic. It should be noted that UAV 

imagery was captured early in the morning to prevent sun 

reflections in the imagery. Because of this, some parts of the lake, 

mainly those close to the glacier terminus, were glacier ice 

covered by fresh snow, as seen in Figure 5a. However, the snow 

did not affect the boundary extraction from the Sentinel-2 image. 

The lake’s boundaries in June, July and August (shown in Figure 

5a in red, black and magenta, respectively), follow the cracks 

observed on the glacier terminus from the UAV orthomosaic.  

 

 

Figure 4. Histogram for the NDWIplusMNDWI index on  

16-08-2019. Otsu’s threshold is highlighted in red. 

 

To evaluate the variations of the lake’s boundaries using the 

DSAS toolbox, a baseline was manually generated (see Figure 5b 

in green). DSAS calculates the distances between the baseline 

and each polyline intersection point along transects (dashed line 

in Figure 5b). These transects were constructed every 20 m apart. 

DSAS applies a linear regression analysis to estimate a change 

rate per transect. For instance, Figure 6 demonstrates the analysis 

for the transect AB shown in Figure 5b. A linear regression line 

is determined by fitting a least squares regression to the distances 

shown in y-axis in Figure 6. As a result of the linear regression, 

the slope of the estimated line equals -0.99 and corresponds to 

the change rate at this particular location. The negative sign 

implies erosion, i.e. glacier retreat. It was estimated that the 

maximum horizontal glacier retreat of 0.99 m/day occurred in 

that location (transect AB). DSAS estimated an average 

horizontal glacier retreat of 0.45 m/day across all transects, as 

shown in Figure 5b.  

 

The surface area and perimeter of the lake were calculated for 

three of the epochs and reported in Table 3. Due to cloud 

coverage it was not possible to extract the entire lake boundary 

at the final epoch in August 2019. The lake had a surface area of 

1.538 km2 in 2007 as reported in ICIMOD (2011). Since then the 

lake has grown with a difference of 0.074 km2. The monthly 

variations of the calculated area are possibly attributed to the 

glacier retreat during the monsoon period. However, a decrease 

in area with an increase in perimeter between May and June 2019 

was observed (see Table 3). This is caused by the fact that the 

17-07-2019 lake boundary was underestimated as few parts in 

NE of the lake were categorised as water instead of land. A 

comprehensive investigation to further minimise errors due to the 

sub-pixel segmentation and vectorisation procedure (e.g. Bishop-

Taylor et al. (2019)) is essential.  

 

 
 

Figure 5. (a) Detailed view of the glacier terminus with the lake 

boundaries from the four Sentinel epochs, superimposed over 

(a) the UAV orthomosaic and (b) the false colour infrared 

composite of Sentinel-2 on 16-08-2019. Baseline and transects 

are indicated in (b) as constructed with the DSAS toolbox to 

estimate glacier retreat rate. 

 

The aforementioned regression analysis estimated the monthly 

variations of the lake’s boundaries, as seen in Figure 5b. As 

expected, the lake boundary changes mainly over the glacier 

terminus (SE) and not over the end moraine (NW) (Figure 1). 

This is probably due to the constructed dam in 2000 around the 

natural water outlet at the end moraine. However, to support this 

statement a further investigation of the lake’s boundary from 

historical satellite images would be necessary. 

 

 

 

 
 

 

Figure 6. Regression analysis for transect AB seen in Figure 5b. 

 

Epoch Area [m2] Perimeter [m] 

18-05-2019 1,593,900 10,740 

12-06-2019 1,592,300 10,860 

17-07-2019 1,612,000 10,960 

Table 3. Lake surface area and perimeter per epoch. 
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5. CONCLUSIONS 

The presented research proposes a workflow for waterbody 

boundary extraction and evolution in an automated fashion using 

Sentinel optical imagery at Tsho Rolpa Glacial Lake, Nepal. The 

research demonstrates the potential of remote sensing time series 

to monitor glacial lake evolution, which is particularly important 

for those remote lakes which are difficult to access. The research 

can be expanded to analyse monthly and annually boundary 

change rates from Sentinel image series beyond the year 2019 

starting from the beginning of investigations into the Tsho Rolpa 

Glacial Lake in the early 1990s. In this case data sources other 

than Sentinel satellites should be considered. Moreover, the 

research has the potential to inform forecasting of glacier retreat 

rate into the near future. 

 

Even though Sentinel Level-2A products are already 

georeferenced, further analysis is necessary to ensure that no 

systematic error will propagate through the workflow in the 

satellite time series. The water/land segmentation and 

vectorisation procedure will be further improved, with the aid of 

edge detectors, convolution kernels and smoothing algorithms 

(e.g. Liu and Jezek (2004)), to enhance the bimodal histograms 

and automatically generate a smooth lake boundary. Further 

considerations to identify mixed pixels of snow, ice and 

sediments around the lake’s boundary would also enhance the 

segmentation process.  

 

In parallel with the sinuosity metric, alternative approaches to 

compare the reference lake boundary extracted from UAV-based 

photogrammetry against the boundaries extracted from various 

Sentinel-2 indices are also being investigated (e.g. nearest 

Euclidean distance, Hausdorff distance, etc.). Whilst the 

workflow currently estimates the temporal planimetric variations 

of the lake’s boundary, ultimately the work could be extended to 

monitor water volume variations by incorporating lake level 

observations from gauges and bathymetric measurements. 
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