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ABSTRACT: 
 
Sugarcane is a perennial crop that contributes to nearly 80% of the global sugar-based products. Therefore, sugarcane growers 

and food companies are seeking ways to address the concerns related to sugarcane crop yield and health. In this study, a spatial 

and spectral analysis on the peak growth stage of the sugarcane fields in Bundaberg, Queensland, Australia is performed using 

the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) derived from high-

resolution WorldView-2 (WV2) images and multispectral Unmanned Aerial Vehicle (UAV) images. Two topics are chosen 

for this study: 1) the difference and correlation between NDVI and NDRE that are commonly used to estimate Leaf Area 

Index, a common crop parameter for the assessment of crop yield and health stages; 2) the impact of spatial resolution on the 

systematic difference in the abovementioned two Vegetation Indices (VIs). The statistical correlation analysis between the 

WV2 and UAV images produced correlation coefficients of 0.68 and 0.71 for NDVI and NDRE, respectively. In addition, an 

overall comparison of the WV2 and UAV-derived VIs indicated that the UAV images produced a better accuracy than the 

WV2 images because UAV can effectively distinguish various status of vegetation owing to its high spatial resolution. The 

results illustrated a strong positive correlation between NDVI and NDRE, each derived from the WV2 and UAV images, and 

the correlation coefficients were 0.81 and 0.90, respectively, i.e. the correlation between NDVI and NDRE is higher in the 

UAV images than the WV2 images.  

 

1. INTRODUCTION 

With the increase of the world population, the amount of 

food and farming sources needs to be upgraded too. 

Precision agriculture (PA) is one of the most effective 

methods that have been implied to decrease cost, resolve 

environmental complication and enhance quality and 

quantity of the agricultural products (Lambert and 

Lowenberg-DeBoer, 2000). Decisions on the farming 

operations and the maximization of the efficiency of 

outputs in PA need high spatial and temporal resolution 

data of crop status (Huang et al., 2013).  Such data could 

be gained from Remote Sensing (RS) platforms because 
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of their multispectral and temporal characteristics to 

distinguish the yield stage (Taherei Ghazvinei et al., 2018; 

Vieira et al., 2012). The key RS platforms used in PA to 

gather information about the crop features to monitor crop 

yield and health are Unmanned Aerial Vehicles (UAVs) 

and satellites. Several researchers have applied satellite 

imagery for sugarcane classification (Mutanga et al., 

2013), monitoring land use (Abdel‐Rahman and Ahmed, 

2008a), varietal identification (Abdel‐Rahman and 

Ahmed, 2008b), and Nitrogen (N) status monitoring 

(Bégué et al., 2010; Lamb, 2000; Simões et al., 2009). In 

the sugarcane yield management, satellite data such as 

Moderate Resolution Imaging Spectroradiometer 
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(MODIS) (Xavier et al., 2006), Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) 

(Almeida et al., 2006), Landsat (Rudorff et al., 2010) and 

others have been utilized to detect and map the crop 

change (Hui Lin et al., 2009; Zhou et al., 2015). However, 

there are still notable limitations in the applications of 

satellite data in terms of resolution, extent, cost, revisit 

time and weather constraints (Atzberger et al., 2015). The 

UAV platform with distinctive characteristics, namely 

lower operation expense, high spatial resolution (<1m), 

high temporal frequency and real-time capacity, gives the 

real-time information to farmers (Ampatzidis and Partel, 

2019; Maresma et al., 2016). Consequently, monitoring 

crop yield status, estimating nutrient status, quantify crop 

water demand, estimation of plant growth, and many other 

practices of PA are feasible by utilizing UAVs.  

Sugarcane, a perennial crop, is suitable to grow in tropical 

and subtropical areas such as India, Australia, and Brazil 

(Abdel-Rahman and Ahmed, 2008a; Rudorff et al., 2010). 

Optimization and accurate estimation of sugarcane crop 

production could be evaluated by monitoring variability of 

crop growth and health status during the growing season. 

The significance of obtaining trustworthy and frequently 

updated data from sugarcane lands should be considered 

in PA strategies to sustain the future of the industry. The 

most crucial component of crops in order to analyse crop 

growth stage and to predict crop yield is Leaf Area Index 

(LAI) (Haboudane, 2004), which is an important 

descriptor of many biological and physical processes of 

vegetation, including photosynthesis, respiration, nutrient 

cycling, transpiration and rainfall interception (Tian et al., 

2017). A strong correlation has been found between 

canopy vegetation indices (VIs) and LAI, hence VIs are 

often used to estimate LAI in remote sensing methods 

(Tian et al., 2017). 

The Normalized Difference Vegetation Index (NDVI) is 

one of the most commonly used VIs to estimate LAI, 

Nitrogen concentration, and biomass (Poorter et al., 1990), 

as it could reduce the atmospheric attenuation and shading 

impacts (Technol, 2007). Green Normalized Difference 

Vegetation Index (GNDVI) has been used by several 

authors to predict sugarcane yield and determine the 

temporal differences (Rahman and J. Robson, 2016). The 

Global Vegetation Index (GVI), likewise NDVI, is based 

on the contrast between the spectral responses of the 

visible and Near-Infrared (NIR) regions, but has the 

advantage of considering red, NIR, blue, and green bands 

to incorporate the influence of photosynthetic pigments 

and water content present in leaves (Benvenuti and Weill, 

2010). 

For the lower amount of chlorophyll, the reflectance from 

spectral region between the red and NIR bands, termed as 

the ‘red edge’ band, increases whereas the reflectance 

from NIR decreases (Diacono et al., 2013). Therefore, the 

extracted information from the red edge band combined 

with VIs could play a significant role for computing LAI. 

Hence, by substituting the red band with the red edge 

band, the Normalized Difference RedEdge (NDRE) index 

as a variant of the NDVI can be obtained as a reliable 

measure for chlorophyll and LAI status (Tilling et al., 

2007).  

The usage of any VIs requires careful attention to their 

strengths and defects and the demanding applications. The 

critical issues which could not be completely solved are 

the selection of the most appropriate data regarding 

temporal, spatial, and spectral resolution, and the selection 

of the most proper VIs to study the connection between 

VIs and LAI for crop status monitoring. To the best of our 

knowledge, no previous study has mapped LAI in a 

sugarcane field with both NDRE and NDVI in order to 

compare these VIs. In addition, the drawbacks and 

advantages for characterizing the sugarcane LAI from 

UAV images and from very high spatial resolution 

satellite images remain a knowledge gap in the existing 

literature. 

This study was conducted for a sugarcane field in 

Bundaberg, Queensland, Australia. The overall aim of this 

paper is to map sugarcane crop LAI with UAV images and 

conduct a comparison with WorldView-2 (WV2) data. 

The two major specific objectives are: to analyse NDVI 

and NDRE for UAV and WV2 for sugarcane in the study 

area and compare the overall performance of UAV and 

WV2.  

2. DATASETS AND METHODS 

2.1 Study Area 

The sugarcane fields in Australia can be found along a 

2,000-km strip of land on the east coast from northern 

New South Wales to the northern Queensland. About one-

third of this crop is grown in the northern Queensland. The 
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study area is in the Bundaberg region, Queensland (24°50' 

S, 152°24' E), and has an area of 3 hectares (Figure 1). 

 
Figure 1. Sugarcane distribution map (left) and the study 

area (right) 

 
2.2 Data 

A collection of multispectral images acquired from a UAV 

integrated MicaSense RedEdge sensor were orthorectified 

and mosaicked through Pix4Dmapper software package. 

The UAV ortho multispectral image with a 3-cm spatial 

resolution was acquired on March 31, 2019. The sensor 

includes five bands: blue (460–510 nm), green (545–575 

nm), red (630–690 nm), red edge (712–722 nm) and NIR 

(820–860 nm).  

The WV2 product used in this study is a multispectral 

image with a 2-m spatial resolution, which was acquired 

on March 20, 2019, at an off-nadir view angle of 18.9° and 

0% cloud cover. The multispectral image includes eight 

bands: coastal blue (400–450 nm), blue (450–510 nm), 

green (510–580 nm), yellow (585–625 nm), red (630–690 

nm), red edge (705–745 nm), NIR1 (770–895 nm), and 

NIR2 (860–1040 nm).  

3. METHODOLOGY 

The NDVI and NDRE indices as the main parameters for 

characterizing the crop LAI, were derived from the two 

datasets, respectively from UAV and WV2, for the 

sugarcane fields corresponding to the approximately 

maximum LAI (March) over the year 2019. According to 

(Hui Lin et al., 2009), the life cycle of this annual irrigated 

crop includes five important growth stages. The period of 

sugarcane crop growth depending on the district varies 

from 10 to 18 months. The crop with the maximum LAI 

in the month of March in Australia, is harvested between 

June and November, and regrows for harvesting 

approximately 12 months later (Everingham et al., 2009). 
The NDVI is a combination of two spectral bands, which 

was computed by Equation (1) in order to measure the 

presence of chlorophyll. A high NDVI value occurs at the 

peak of chlorophyll content that crops intensively absorbs 

red light and reflects NIR light (Bédard et al., 2006).  

��ܦ�        =  ሺ��� − �݁݀ሻ ሺ��� + �݁݀ሻ⁄                     (1) 

NDRE can be formulated by the Red edge and NIR bands 

based on Equation (2). It is sensitive to chlorophyll content 

and variability in leaves. High values of NDRE show 

higher levels of chlorophyll content. 

ܧ�ܦ� =  ሺ��� − �݁݀ ݁݀�݁ሻ ሺ��� + �݁݀ ݁݀�݁ሻ⁄     (2) 

An overall analysis of the UAV and WV2 data in terms of 

pixel level NDRE and NDVI was conducted to understand 

the difference in the spectral and spectrum variation on 

NDRE and NDVI, and to conduct comparison of the 

spatial resolution effect of different RS data on the crop 

yield estimation. Because of the much higher spectral and 

spatial resolution of the UAV images, the amount of 

information and spectral variation of UAV-based NDRE 

and NDVI are much larger than those of WV2. For the 

comparison between UAV and WV2, the NDRE and 

NDVI images of UAV were down resampled to the spatial 

resolution of the WV2 data based on the cubic convolution 

method.  

To further quantify the difference between NDVI and 

NDRE, a total of four indicators based on statistics 

methods were considered i.e. maximum, minimum, mean, 

and standard deviation (S.D.). To analyse the absolute 

chlorophyll content, these statistical parameters were 

calculated only at sugarcane fields without considering 

any other features.  In addition, a correlation analysis was 

carried out for the UAV and WV2 datasets, to observe the 

effect of spatial resolution changes in NDVI and NDRE 

maps. The correlation coefficient (R2) is one of the most 

significant descriptors to describe the trend model 

between two different variables (Albarakat, 2019). 
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4. RESULTS 

4.1 COMPARISON OF NDVI AND NDRE 

We performed a comparative analysis on NDVI and 

NDRE, both obtained from the UAV and WV2 data. The 

NDVI and NDRE at their original spatial resolution of the 

UAV and WV2 data are shown in Figures 2 and 3. To 

understand the relationship of the spatial patterns between 

the NDVI and NDRE values derived from the two sensors, 

the UAV data have been resampled to the same spatial 

resolution as the WV2 data (Figure 4). Table 1 contains 

statistical parameters that show the maximum value, 

minimum value, mean value, and S.D. value of the NDVI 

and NDRE between UAV and WV2 data. The first three 

parameters were used to describe the difference response 

between NDVI and NDRE to the different chlorophyll 

content. The minimum and maximum response ranges for 

the UAV data are in the similar range for both VIs, but the 

mean value is higher for NDVI. Therefore, it can be 

concluded that NDRE is more spread out than NDVI in 

the UAV data. Also, regarding the WV2 data, NDVI 

shows more discrete response range rather than NDRE. 

This conclusion could be also seen in difference maps 

obtained by subtracting NDVI_UAV from NDRE_UAV 

and NDVI_WV2 from NDRE_WV2 (Figure 5) where 

NDVI_UAV and NDRE_UAV represent the respective 

vegetation indices obtained from the UAV data, and 

NDVI_WV2 and NDRE_WV2 from the WV2 data. S.D. 

parameter indicates how much spectral detail is present in 

an area (Tian et al., 2017). A large S.D. value means that 

the pixel value frequency distribution is more dispersed. 

The results indicate that NDRE can be a more effective in 

the UAV data. And for the WV2 data, NDVI works better.  

 

 
Max Min Mean S.D. 

UAV WV2 UAV WV2 UAV WV2 UAV WV2 

N
D

V
I 

0.98 0.91 0.10 0.10 0.85 0.80 0.08 0.06 

N
D

R
E

 

0.88 0.45 0.01 0.05 0.54 0.29 0.08 0.05 

Table 1. Statistics for the NDVI and NDRE of two 
different datasets 

The comparison results of R2 for the two representative 

NDVI_UAV with NDRE_UAV and NDVI_WV2 with 

NDRE_WV2 to measure the sugarcane LAI content 

indicated that the NDRE is the optimal VI  for mapping the 

LAI with a UAV image, whereas the NDVI is more 

suitable for WV2 (Table 2), but both achieved a 

satisfactory accuracy. It could be concluded that the 

spectrum range of bands and spatial resolution are 

significant factors to select the proper VIs. 

 
NDVI 
UAV 

NDRE 
UAV 

NDVI 
WV2 

NDRE 
WV2 

NDVI 
UAV 

1 0.90 0.68 0.53 

NDRE 
UAV 

 1 0.59 0.71 

NDVI 
WV2 

  1 0.81 

NDRE 
WV2 

   1 

Table 2. Statistical correlation analysis between the 
satellite and UAV images 

 

Figure 2. NDVI (left) and NDRE (right) from UAV data 

 
Figure 3. NDVI (left) and NDRE (right) from WV2 data 
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Figure 4. UAV-derived NDVI (left) and NDRE (right) 

resampled to the spatial resolution of WV2 

 
Figure 5. The difference maps between UAV vegetation 

indices (left) and WV2 vegetation indices (right).  
 

4.2 COMPARISON OF UAV AND WV2 

UAV NDVI and NDRE values are larger than WV2 NDVI 

and NDRE values when mapping the sugarcane crop LAI. 

As for the WV2 data, the mean NDVI value and the mean 

NDRE value are 0.05 and 0.25 less than of the UAV 

results, indicating that the sensitivity of WV2 to the LAI 

is lower than that of UAV.  

Table 1 shows that the S.D. of UAV NDVI and NDRE are 

higher than that of WV2 NDVI and NDRE, 0.02 and 0.03 

respectively, which indicates that the amount of details 

and spectral variation of UAV data are more abundant. In 

other words, UAV provides more information than WV2. 

This is mainly because of the spatial resolution of UAV 

that is much higher than that of WV2. A comparison of the 

R2 results between NDVI_UAV with NDVI_WV2, and 

NDRE_UAV with NDRE_WV2, in Table 2, indicates that 

the chlorophyll contents are more clear from the UAV 

data, which is consistent with the results of S.D. reported 

in Table 1.  

In addition, difference maps of NDVI_UAV with 

NDVI_WV2 and NDVI_UAV and NDRE_WV2 indicate 

that the UAV data is more sensitive to chlorophyll 

contents in sugarcane crop (Figure 6) than the WV2 data. 

In conclusion, the large variation of the chlorophyll 

contents as indicated by the VIs derived from UAV 

indicates that the high spatial resolution provides great 

potential to characterize the high accuracy sugarcane LAI. 

 
Figure 6. The difference maps between NDVIs (left) and 

NDREs (right) 
 

5. CONCLUSION 

In this study, two VIs (NDVI and NDRE), which are often 

used for the estimation of LAI, were characterised using 

UAV and WV2 data in sugarcane fields. The results 

obtained from a statistical analysis showed that the NDRE 

had the optimal accuracy for UAV, whereas the NDVI 

achieved a higher accuracy for WV2. A comparison of 

WV2-derived LAI and UAV-derived LAI was conducted, 

which suggested that using high spatial resolution RS data 

can lead to meaningful outputs for PA in the estimation of 

sugarcane chlorophyll contents. Future work is to use and 

validate the results in other crops with other VIs.  
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