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ABSTRACT: 
 
Traditionally the accuracy assessment of a hard raster-based land use land cover (LULC) map uses a reference data set that contains 
one LULC class per pixel, which is the class that has the largest area in each pixel. However, when mixed pixels exist in the reference 
data, this is a simplification of reality that has implications for both the accuracy assessment and subsequent applications of LULC 
maps, such as area estimation. This paper demonstrates how the use of class proportions in the reference data set can be used easily 
within regular accuracy assessment procedures and how the use of class proportions can affect the final accuracy assessment. Using 
the CORINE land cover map (CLC) and the more detailed Urban Atlas (UA), two accuracy assessments of the raster version of CLC 
were undertaken using UA as the reference and considering for each pixel: (i) the class proportions retained from the UA; and (ii) the 
class with the majority area. The results show that for the study area and the classes considered here, all accuracy indices decrease 
when the class proportions are considered in the reference database, achieving a maximum difference of 16% between the two 
approaches. This demonstrates that if the UA is considered as representing reality, then the true accuracy of CLC is lower than the 
value obtained when using the reference data set that assigns only one class to each pixel. Arguments for and against using class 
proportions in reference data sets are then provided and discussed.  
 
 

1. INTRODUCTION 

1.1 Accuracy assessment of LULC maps 

Land use land cover (LULC) maps are usually produced through 
the classification of satellite imagery. If a pixel-based approach 
is considered, the classification assigns one of the classes in the 
nomenclature adopted by the user to each pixel in the image. The 
assignment of the class to a pixel can be undertaken using many 
different classification approaches. Depending on the approach 
chosen, this may result in the assignment of different classes to 
some of the same pixels, even when the same training areas are 
used (Li et al., 2014; Mather & Tso, 2016). Moreover, for maps 
with a low or medium spatial resolution, many of the pixels may, 
in reality, include several classes, i.e., they are mixed pixels. In 
this case, the class that occupies the largest proportion of the pixel 
is usually assigned to that pixel (Li et al., 2014). Because of all 
these difficulties, the accuracy assessment of the per-pixel based 
LULC maps is a very important step in the map production, as it 
will define its usability in different applications, ensuring that the 
map is of sufficient quality for each application.  
 
Object-based approaches may also be used to produce LULC 
maps. However, the accuracy assessment of object-based and 
per-pixel based LULC maps should be done using different 
approaches, as not only the thematic aspects need to be validated 
in the former approach, but also the validity of the generated 
objects (Ye et al., 2018; Tiede et al., 2010; Albrecht et al., 2010). 
Therefore, in this paper our focus is on the accuracy assessment 
of LULC maps based on a per-pixel approach.  
 

 
*  Corresponding author 
 

For these, the accuracy assessment is usually done by selecting a 
sample of spatial units, frequently based on individual pixels, 
with a pre-defined sampling protocol (Stehman, 2009). The “true 
LULC class” is then identified, for example, by photo 
interpretation of very high-resolution images and/or field visits 
and assigned to these sample units to create a reference data set. 
A comparison of the map class and the reference class is then 
made for all sample units by creating a confusion matrix, from 
which accuracy indices can be extracted, such as the user’s and 
producer’s accuracy per class, and the overall accuracy (e.g. 
Olofsson et al., 2014; Stehman & Foody, 2019).  
 
The quality of the reference database is, thus, crucial for accuracy 
assessment, and may in fact have a large influence on the 
accuracy indices obtained (Foody, 2010; McRoberts et al., 2018). 
Therefore, the definition of the procedures and methodologies 
used to obtain the “true LULC class”, known as the reference 
condition, is very important.  
 
1.2 Creation of reference data 

The most common method used to assess the accuracy of a crisp 
raster-based LULC map is to select one class for each spatial unit 
of the reference database (e.g. Olofsson et al., 2014; Stehman & 
Foody, 2019). However, this task is not easy and there are many 
difficulties and sources of uncertainty in this process, including 
the unavailability of very high-resolution imagery in some 
regions for performing photo interpretation (Lesiv et al., 2018), 
the subjectivity of class selection (McRoberts et al., 2018) and 
the fact that some of the pixels are mixed pixels and include 
regions that correspond to different classes (Stehman & Foody, 
2019).  
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Other approaches have already been suggested, such as selecting 
a primary and secondary class (e.g. Woodcock et al., 1996), the 
use of a linguistic scale to express the correctness of assigning 
each LULC class to each spatial unit and then using a fuzzy 
approach to generate accuracy indicators (Gopal & Woodcock, 
1994; Sarmento et al., 2013, 2015; Woodcock & Gopal, 2000), 
or the assignment of fuzzy class memberships based on the 
desired or target output of the classification and computing the 
distance between these values and the outputs of the 
classification (Foody & Arora, 1996). However, these 
methodologies have not been applied frequently. The approach 
most frequently used is still the selection of the class occupying 
the majority of the spatial unit. When using this approach to 
assess the accuracy of a crisp raster LULC map, the accuracy 
assessment is, in fact, evaluating if the LULC map was produced 
according to the specifications, independent of the minimum 
mapping unit (MMU) (which may also be included in the 
assessment if an analysis of the pixel neighbourhood is made to 
determine the surrounding LULC), i.e., if the class assigned to 
each pixel is, in reality, the class occupying the majority of the 
pixels. However, even though it is usually stated that the 
reference database should report the “true LULC class”, this 
approach requires a simplification of reality, as mixed pixels are 
converted to pixels corresponding to only one class. Hence, this 
does not assess the accuracy of the map in relation to “reality” 
but a simplified version of reality. 
 
1.3 Aim of this study 

The aim of this paper is to propose that the accuracy assessment 
of raster-based LULC maps, in particular those with low and 
medium spatial resolutions, should be performed with reference 
databases that include further information about reality, by 
identifying, for each pixel, the proportion of that pixel that is 
occupied by each of the classes in the chosen nomenclature. The 
use of such a reference database to assess the accuracy of crisp 
LULC maps requires an adaptation to the procedures used to 
create the confusion matrices. However, such adaptations can be 
easily done. In fact, they have already been proposed for 
assessing the accuracy of soft classifications (Pontius Jr, & 
Cheuk, 2006), but can be used to assess crisp LULC maps with 
reference data that report more than one class per spatial unit. 
 
To illustrate the use of such an approach, the methodology is 
applied here to the validation of the 2012 CORINE land cover 
(CLC) map using the more detailed Urban Atlas (UA) LULC 
map for 2012, for a study area located in continental Portugal. As 
the reference data set (UA) is available for all of the study area in 
this situation, no sampling in used. This allows us to compare the 
differences in the outputs of the validation when using reference 
data in which the class is chosen that occupies the majority of the 
pixel as well as the proportions of several classes that exist in 
each pixel.  
 
The results show that for the study area and the classes 
considered here, all accuracy indices decrease when the class 
proportions are considered in the reference database, achieving a 
maximum difference of 16%. This demonstrates that if you 
consider the UA as representing reality, then the true accuracy of 
CLC is lower than the value obtained when using the reference 
data set that assigns only one class to each pixel. These 
differences also influence the area estimation of the classes, 
which is one of the most relevant pieces of information that 
frequently needs to be estimated from LULC maps. This shows 
the relevance of this subject and the need to develop methods that 
are easy to use but provide more reliable accuracy estimations, 

and that assess the quality of the maps in relation to “real” world 
conditions. 
 

2. STUDY AREA AND DATA 

2.1 Study area 

The selected study area was a region around Coimbra city 
(Portugal) with a total area of 734.4 km2. The region includes the 
city of Coimbra, with around 100 000 inhabitants, at its centre, a 
surrounding area that includes smaller villages, agricultural fields 
as well as forested regions, and a section of the Mondego River 
(Figure 1). 
 

 
Figure 1. Study area: a region in Portugal containing the city of 

Coimbra 
 
2.2 Data 

The data used in this study are: 1) The 2012 version of the 
CORINE Land Cover (CLC) product in raster format with 100 m 
spatial resolution and 2) the 2012 version of Urban Atlas (UA). 
The CLC is a Pan-European product initiated in 1985 that has 
updates for 2000, 2006, 2012 and 2018. The nomenclature of 
CLC includes 44 classes hierarchically structured into 3 levels of 
detail. It has an MMU of 25 ha for areal phenomena and a 
minimum width of 100 m for linear phenomena. Level 1 (the 
most general level) includes the 5 classes described in Table 1. 
 
Class  
(Code - name) Class description 

1-Artificial 
surfaces 

Land with dominant influence and without 
agricultural land use - includes all artificial 
structures and their associated non-sealed 
and vegetated surfaces 

2-Agricultural 
areas 

Agricultural, semi-natural areas, including 
arable land, permanent crops, pastures, 
orchards, complex and mixed cultivation 
patterns 

3-Forest and 
semi natural 
areas 

Forests, herbaceous vegetation and open 
spaces with little or no vegetation 

4-Wetlands Inland and coastal wetlands 
5-Water bodies Inland and marine waters 
Table 1. Level 1 classes from the CLC and UA nomenclatures, 

which are the classes used in this study 
 
UA is a product available only for urban areas in Europe. 
Versions for 2006 and 2012 are available for 319 and 785 urban 
areas in Europe, respectively. UA nomenclature includes 27 
classes structured into 4 hierarchical levels. The level 1 
nomenclature of UA is identical to the CLC nomenclature 
(Table 1), which is the one used in this study. The urban classes 
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of UA have an MMU of 0.25 ha and the rural classes have an 
MMU of 1 ha.  
 
Figures 2 and 3 show the level 1 classes of CLC (2012) and UA 
(2012) for the study area, respectively. Table 2 shows the area 
occupied in the study area by each class in the CLC and UA, in 
km2 and as a percentage of the total study area. 
 

 
Figure 2. CORINE Land Cover (2012) for the study area 

 

 
Figure 3. Urban Atlas (2012) for the study area 

 
Classes  
Code - Name 

ACLC AUA ACLC-AUA 
km2 % km2 % km2 % 

1-Artificial 
surfaces 

54.7 7.4 114.5 15.6 -59.8 -8.2 

2-Agricultural 
areas 

284.9 38.8 245.7 33.5 39.2 5.3 

3-Forest and 
semi natural 
areas 

386.7 52.7 367.2 50.0 19.5 2.7 

4-Wetlands 1.4 0.2 0.8 0.1 0.6 0.1 
5-Water bodies 6.7 0.9 6.2 0.8 0.5 0.1 
Sum 734.4 100 734.4 100 --- --- 

Table 2. Areas (in km2) of the classes in the study area obtained 
from CLC (ACLC) and UA (AUA), their percentage relative to the 

study area, and the difference between ACLC and AUA   
 
It can be seen that there is a large difference in the areas between 
the two LULC products, mainly for class 1 (Artificial surfaces), 
where the area of this class in UA is more than double that of the 
area in CLC, corresponding to 7.4% and 15.6% of the whole 
study area for CLC and UA, respectively. This difference is 
probably due to the differences in the MMUs of both products, 
as a large proportion of urban areas in this region are not mapped 
in the CLC because they correspond to small villages spread 
along the territory, mixed with agriculture as well as natural and 
semi-natural areas. The area of all other classes is overestimated 
in the CLC when compared to the UA; this overestimation is the 
largest for class 2 (Agricultural areas) at 39.1 km2 (5.3% of the 
study area).  

3. METHODOLOGY 

The differences in the areas of the classes obtained in the CLC 
and UA for the study area presented in the previous section 
(Table 2) show a bias that may be relevant for some applications 
if this fact is not taken into consideration. Therefore, in order to 
provide a good understanding of the possible applications of the 
products, the accuracy assessment should not be done only in 
relation to the map specifications, but also using reference data 
that represents reality as closely as possible. The methodology 
used in this study to illustrate this is explained in the following 
two subsections, addressing: 1) the approaches used to create the 
reference data sets; 2) the methods used to perform the accuracy 
assessment, both with proportions and with the dominant class 
per pixel.   
 
3.1 Reference data to validate LULC maps 

In this paper, the reference database is created in two different 
ways: 1) recording only the class occupying the majority of the 
pixel (referred to as Refmaj); 2) recording the proportion of each 
class present in each pixel (referred to as Refprop). Table 3 shows 
an example of both reference databases for a set of 4 pixels shown 
in Figure 4. Note that Refmaj can always be extracted from Refprop 
by choosing the class with the largest proportion. 
 
Pixel 
ID (k) 

Map 
class i 
(CLC) 

Refprop Refmaj 
Reference 
class j (UA) 

Proportion in 
pixel - ppij (k) 

Reference 
class j (UA) 

Proportion in 
pixel - ppij (k) 

1 1 1 pp11 (1) = 0.7 1 pp11 (1) = 1 
2 pp12 (1) = 0.2 2 pp12 (1) = 0 
3 pp13 (1) = 0.1 3 pp13 (1) = 0 

2 1 1 pp11 (2) = 0.8 1 pp11 (2) = 1 
2 pp12 (2) = 0.2 2 pp12 (2) = 0 
3 pp13 (2) = 0 3 pp13 (2) = 0 

3 2 1 pp21 (3) = 0.4 1 pp21 (3) = 0 
2 pp22 (3) = 0.6 2 pp22 (3) = 1 
3 pp23 (3) = 0 3 pp23 (3) = 0 

4 3 1 pp31 (4) = 0 1 pp31 (4) = 0 
 2 pp32 (4) = 0.3 2 pp32 (4) = 0 

3 pp33 (4) = 0.7 3 pp33 (4) = 1 
Table 3. Example of reference databases Refprop and Refmaj 

corresponding to the four pixels shown in Figure 4 
 

 
Figure 4: Example of the pixels partially occupied by the classes 
of interest. These pixels were used to extract the reference data 
shown in Table 3: a) Pixel ID=1; b) Pixel ID=2; c) Pixel ID=3; 

d) Pixel ID=4 
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3.2 Accuracy assessment 

3.2.1 Creation of confusion matrices: Each cell of the 
confusion matrix, where the rows correspond to the classes in the 
map and the columns to the reference database, is computed 
using equation (1): 

 𝑐!" =	$ 𝑝𝑝!"(𝑠)
#

$%&
 (1) 

 
where  cij = the value of the cell in row i and column j in the 

confusion matrix 
 r = the number of spatial units in the reference database 
 𝑝𝑝!"(𝑠) = the proportion of class j in the spatial unit s 

that is assigned in the map to class i. 
 
This corresponds to both the Minimum operator and the 
Composite operator as proposed by Pontius & Cheuk (2006), 
which produce the same result when the map results from a hard 
classification (i.e., when only one class is assigned to each pixel). 
In this case it is the reference data that have partial membership 
in the classes, instead of the map pixels, as in maps resulting from 
soft classifications. 
 
Table 4 shows how the example pixels in Table 3 can contribute 
to the confusion matrix when the Refprop data set is used. Table 5 
shows the traditional confusion matrix obtained with Refmaj for 
the same example pixels. 
 

Classes 1 2 3 Sum (pixels) 
1 0.7+0.8 =1.5 0.2+0.2=0.4 0.1+0=0.1 2 
2 0.4 0.6 0 1 
3 0 0.3 0.7 1 

Sum 
(pixels) 

1.9 1.3 0.8 4 

Table 4. Confusion matrix obtained with the example pixels 
shown in Table 3 (Refprop) 

 
Classes 1 2 3 Sum (pixels) 

1 1+1 =2 0+0=0 0+0=0 2 
2 0 1 0 1 
3 0 0 1 1 

Sum 
(pixels) 

2 1 1 4 

Table 5. Confusion matrix obtained with the example pixels 
shown in Table 3 (Refmaj) 

 
It can be seen that in both matrices, the sum of the rows will be 
the same, as we are using the same map for both; therefore, the 
class in the map is the same for all pixels in the reference 
database. However, the sum of the columns will be different in 
both matrices, because the area occupied by each class in the 
reference data is not the same. Hence, the sum of the columns 
when Refprop is used will be decimal numbers instead of integers. 
 
3.2.2 Accuracy indices: These are computed from the 
confusion matrices generated in section 3.2.1 using the same 
formulas as for traditional matrices. The users’ accuracy of class 
i, the producer’s accuracy of class j and the overall accuracy are 
obtained using equations (2), (3) and (4), respectively. 
 

 𝑈𝐴! =	
𝑐!!

∑ 𝑐!'(
'%&

 (2) 

 

 𝑃𝐴" =	
𝑐""

∑ 𝑐'"(
'%&

 (3) 

 

 𝑂𝐴 =	
∑ 𝑐''(
'%&
𝑛  (4) 

 
where  cij = the value of the cell in row i and column j in the 

confusion matrix 
 n = the number of classes in the map. 
 

4. RESULTS 

The following subsections provide the results obtained for the 
accuracy indices using the Refmaj and Refprop reference databases, 
as well as the area estimates that can be obtained when using one 
or the other. 
   
4.1 Accuracy indices 

Table 6 and Table 7 show, respectively, the confusion matrices 
and the accuracy indices obtained with Refmaj and Refprop using 
the methodologies explained in section 3.2. Table 8 shows the 
difference between the corresponding values obtained with both 
reference data sets. 
 
Classes 1 2 3 4 5 Sum 

(pixels) 
UAmaj 
(%) 

1 4522 573 319 0 58 5472 83 
2 4575 18995 4834 6 86 28496 67 
3 880 5414 32351 2 19 38666 84 
4 0 48 12 70 5 135 52 
5 12 167 126 0 366 671 55 
Sum 
(pixels) 9989 25197 37642 78 534 73440  

Area sum 
(km2) 99.9 252.0 376.4 0.8 5.3 734.4  

PAmaj (%) 45 75 86 90 69 OAmaj:77% 
Table 6. Confusion matrix with the class majority per pixel 
(Refmaj) and the accuracy indices: User’s Accuracy (UA), 
Producer’s Accuracy (PA) and Overall Accuracy (OA). 

 
Classes 1 2 3 4 5 Sum 

(pixels) 
UAprop 

(%) 
1 4269 719 425 0 56 5469 78 
2 5352 17987 4980 8 167 28494 63 
3 1799 5657 31144 2 62 38664 81 
4 1 49 15 65 4 134 48 
5 30 153 158 0 328 669 49 
Sum 
(pixels) 

11453.2 24567
.2 

36723.5 76 620.1 73440  

Area sum 
(km2) 

114.5 245.7 367.2 0.76 6.2 734.4  

PAprop (%) 37 73 85 86 53 OAprop: 73% 
Table 7. Confusion matrix with the proportion of classes per 

pixel (Refprop) and the accuracy indices: User’s Accuracy (UA), 
Producer’s Accuracy (PA) and Overall Accuracy (OA). 

 
Class User’s Accuracy (%) Producer’s accuracy (%) 

UAmaj UAprop UAmaj-UAprop PAmaj PAprop PAmaj-PAprop 
1 83 78 5 45 37 8 
2 67 63 4 75 73 2 
3 84 81 3 86 85 1 
4 52 48 4 90 86 4 
5 55 49 6 69 53 16 
OAmaj (%) 77 
OAprop (%) 73 
OAmaj- OAprop (%) 4 
Table 8. Comparison of the accuracy indices obtained with the 
reference database Refmaj and Refprop: User’s Accuracy (UAmaj 

and UAprop), Producer’s Accuracy (PAmaj and PAprop) and 
Overall Accuracy (OAmaj and OAprop). 
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The results in Table 8 show that all the accuracy indices obtained 
with the reference database containing the majority class (Refmaj) 
have higher values than the ones obtained with the reference 
database where the class proportions were considered (Refprop). 
The larger difference was obtained for the Producer’s Accuracy 
of class 5 (Water bodies), with a difference of 16%, and the 
smallest was also obtained for the Producer’s Accuracy, but for 
class 3 (Forest and semi natural areas), with a value of 1%. The 
overall accuracy of the CLC evaluated with the Refmaj was 4% 
higher than the one obtained with Refprop. This difference occurs 
because, when using Refmaj, the pixel is considered to be 100% 
correctly classified (contributing to the accuracy assessment with 
a value of 1 in the cell of the confusion matrix corresponding to 
the agreement between classes) as long as at least 50% of it 
includes the class assigned to the pixel in the map, even if the 
other 50% of the pixel includes, in reality, other classes. For this 
same example, the accuracy assessment made with Refprop will 
only consider an agreement of 50% (0.5 in the cell of the 
confusion matrix corresponding to the agreement between 
classes), which in fact, corresponds to the real agreement 
between reality and the map, independently of the map 
specifications. 
 
4.2 Accuracy of area estimates 

The correct estimation of class areas in LULC maps is very 
important (Stehman & Foody, 2019). This estimation may be 
done using the LULC map, but as the map may have errors, this 
estimation may be incorrect. As the reference database has more 
reliable data, Olofsson et al. (2014) recommend that the area 
estimation should be based on the reference database used for 
accuracy assessment instead of the LULC map. When comparing 
the area classes estimated with the Refmaj and Refprop reference 
databases (eighth line of Tables 6 and 7) with the true class areas 
shown in Table 2 (considering that UA represents ground truth), 
it can be seen that when considering the proportions, the true 
areas of the classes are correctly expressed in the reference data 
(Refprop), while this is not true for Refmaj. In this case study, as the 
UA was used as the reference, and therefore no sampling 
approach was used, the area values obtained with the Refprop are 
exactly equal to the areas of the UA. When using a sampling 
approach, these will not be exactly the same, but they will 
provide a better estimation than Refmaj. 
 

5. CONCLUSIONS AND FUTURE WORK 

This paper recommends that the labelling protocol used to create 
reference data sets for assessing the accuracy of crisp LULC 
maps, in particular when using photo interpretation, should be 
based on the assignment of not only one class to each spatial unit 
but the percentage of the spatial unit occupied by each class. The 
choice of only one class removes the existence of any other 
classes at that location, and therefore does not express a realistic 
ground truth, but rather a simplified version of it, which will 
introduce bias in the accuracy assessment. 
 
However, we can identify arguments both against and in favour 
of considering the proportions of classes per spatial unit in the 
reference data set. In the next two subsections, some of these 
arguments are presented and discussed. 
 
5.1 Arguments against using proportions in the reference 
data 

1) One of the arguments that may be used against the estimation 
of class proportions is that it will add another source of 
uncertainty to the reference data, since that assessment may be 

subjective. Although this is true, it will be a second order 
uncertainty, as the uncertainty of having, for example, a class 
occupying 20% or 40% of a spatial unit is smaller than the 
uncertainty introduced by completely ignoring its potential 
presence, which will result in much larger errors whenever mixed 
pixels are present. 
 
2) Another possible argument against this approach is that it will 
take more time to create a reference database with class 
proportions than selecting only the most representative class per 
spatial unit. However, mixed pixels are not present all of the time. 
In the situation where the LULC is relatively homogenous, class 
proportions are not relevant, their effect on the accuracy 
assessment will be small and the increase in the time taken to 
create the reference data set will also be very small. In contrast, 
in heterogeneous landscapes where many mixed pixels exist, the 
need to choose one class when several are present also requires 
interpretation time, as it is necessary to identify the class 
occupying the majority of the pixel. Hence in practice, 
identifying proportions in this situation may not require much 
additional time. Moreover, as the case study presented here 
illustrates, the implications of discarding all classes except the 
majority one may have a large influence, for example, on the area 
estimation. Finally, considering only one class per pixel may also 
be a factor that influences the variability of class assignment by 
different photo interpreters in the reference database, 
contributing to the presence of undesirable subjectivity in the 
data set. This problem could be addressed, for example, by using 
several photo interpreters. If it is proven that considering 
proportions of classes per pixels reduces subjectivity, this may 
result in an additional benefit and reduce the workload if fewer 
photo interpreters are needed. Thus, further investigation into the 
pros and cons of using class proportions in reference databases 
instead of identifying only the majority class is still needed. 
 
3) It can also be argued that this approach may be of interest for 
mixed pixels, but it does not solve the problem of having 
difficulties in discriminating between similar classes, such as 
pasture and natural vegetation. In fact, this is a different problem 
that needs to be addressed with other procedures. 
 
5.2 Arguments in favour of using proportions in the 
reference data 

1) The main advantages in using class proportions in the 
reference data is that more realistic accuracy results are obtained 
and areas can be better estimated, as classes occupying many 
small areas are better represented in the reference database.  
 
2) The creation of confusion matrices with class proportions is 
very easy and it is similar to the procedure used when pixels are 
considered as indivisible in terms of class occupation. Moreover, 
all procedures traditionally used to compute accuracy indices 
may also be used in this case. Both these aspects are 
advantageous when compared to other proposed solutions, such 
as the creation of additional accuracy indices such as the MAX 
or RIGHT proposed by Gopal and Woodcock (1994) or the fuzzy 
confusion matrices proposed by Sarmento et al. (2013). Although 
these approaches provide additional information that is 
potentially useful, the fact that they require additional efforts to 
understand and implement may contribute to the resistance of 
most communities in using them. The consideration of class 
proportions per pixel in the reference database would therefore 
be a simpler method, and it is very easy to implement and 
understand, which may be an important aspect for its effective 
use by the remote sensing community. 
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The increasing volume of remotely sensed images, collected by 
different sources and with higher spatial and temporal 
resolutions, translates into more available data to create LULC 
maps, and the possibility of having LULC maps updated with 
very high frequencies (which may reach a few days). This raises 
several challenges, which include the need to create LULC maps 
that translate the ground characteristics as faithfully as possible, 
so that the divergence between products with different origins 
decreases, and they may even be used for change detection. If the 
product’s accuracy assessment relies less on ground truth and 
more on the map characteristics and specifications (such as pixel 
size and MMU), this will make the comparison of the accuracy 
of different products more difficult and less reliable, decreasing 
their reliability and real value. Therefore, it is important not only 
to have research that aims to develop methodologies to improve 
LULC map production, but also to develop methodologies to 
improve and hasten their rigorous accuracy assessment. 
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