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ABSTRACT: 

 

Remote sensing image classification has important applications in many fields. However, the uncertainty of remote sensing image 

classification results will reduce its application value and reliability in these applications. Therefore, the uncertainty of remote 

sensing image classification results must be accurately and effectively measured. To address the shortcomings of the existing 

classification uncertainty measurement model in the utilization of image spatial information, this study proposes a novel uncertainty 

measurement model for remote sensing image classification, which considers the spatial correlation between pixels in images and the 

effects of local spatial heterogeneity during uncertainty measurement. Specifically, the proposed model first measures the 

classification uncertainty of an image at the pixel and local spatial levels on the basis of the posterior probability of image 

classification. Second, the local spatial heterogeneity of an image is quantified, and the proposed model uses the local spatial 

heterogeneity of the image as a weight to adaptively fuse the uncertainties of the pixel and local spatial levels. Accordingly, a joint 

uncertainty measurement index is generated for a more accurate and effective evaluation of the uncertainty of remote sensing image 

classification. Lastly, the classification verification experiments on three publicly available remote sensing images with different 

spatial resolutions confirm the validity of the proposed model. Moreover, experimental results show that the proposed model has 

relative superiority and better stability than the existing and commonly used uncertainty measurement models (e.g., information 

entropy and Eastman’s U) in improving image classification performance.  
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1. INTRODUCTION 

The land cover thematic information obtained through remote 

sensing image classification has important application value in 

natural resource management (do Nascimento Bendini et al., 

2019), disaster monitoring, urban planning, and decision-

making (Cui et al., 2018; Mahdavi et al., 2019; Zhang et al., 

2018; Zhang et al., 2017). However, the premise for the 

effective application of these land use classification products is 

that their reliability is sufficiently high (i.e., the classification 

uncertainty is sufficiently low) (Zhang et al., 2019). In these 

applications, reliable classification results with low uncertainty 

from remote sensing images are important guarantees for 

scientific and reliable decision-making. Therefore, the effective 

and accurate evaluation of the uncertainty of remote sensing 

image classification results is crucial to the further application 

of these classification results (Chen et al., 2019; Ge, 2013; 

Khatami et al., 2017; Shi et al., 2015).  

 

At present, some pixel-based indices or models are used to 

quantify the classification uncertainty of remote sensing images. 

The majority of these indices or models are proposed on the 

basis of the posterior probability of image classification 

(Bogaert et al., 2017; Giacco et al., 2010). For example, the 

most commonly used classification uncertainty index is the 

uncertainty criterion U (referred to as Eastman’s U in this study) 

proposed by Eastman (Bogaert et al., 2017) and Shannon’s 

information entropy (Shannon, 1948). Eastman’s U measures 

the classification uncertainty of pixels in an image by 

calculating the degree to which the maximum probability 

deviates from the average probability in the probability vector; 

such a deviation depends mainly on the maximum posterior 

probability and the total number of classes in an image (Bogaert 

et al., 2017). Shannon’s information entropy measures the 

classification uncertainty of pixels in an image from the 

perspective of information theory, and the large amount of 

information contained in the pixel implies a high classification 

uncertainty (and vice versa) (Shannon, 1948; Yang et al., 2017). 

Other classification uncertainty measures, such as probability 

residual and confusion index, can also be adopted (Burrough, 

1986). Probability residual is the sum of all components, except 

the largest component, in the probability vector. The larger the 

residual, the greater the degree of classification uncertainty of 

the pixel will be. The confusion index has different calculation 

forms, which are often expressed as the ratio of the second 

largest probability to the maximum probability in the 

probability vector of the pixel, or the difference between the 

sum of all the probabilities and the difference between the 

maximum probability and the second largest probability 

(Burrough, 1986; Jiang and Zhou, 2018). In addition, Shi also 

defined four indices to describe the classification uncertainty of 

pixels, including absolute uncertainty, relative uncertainty, 

degree of mixing of pixels (degree of mixed pixels), and 

incompleteness of evidence (Shi and Ehlers, 1996). 
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However, the majority of these uncertainty indices or models 

only consider the posterior probability of a single pixel and 

disregard the spatial correlation between pixels in remote 

sensing images. Consequently, the accuracy and reliability of 

the measurement of image classification uncertainty may be 

reduced. Figure 1 shows that A and B are two different pixels in 

the image that have the same posterior probability output from 

classification. Pixel A is in a heterogeneous area while pixel B 

is in a homogeneous area. When using traditional uncertainty 

measurement models (e.g., Eastman’s U and information 

entropy) to estimate the uncertainty of pixels A and B, the two 

pixels will have the same classification uncertainty. Evidently, 

this result is unreasonable in the uncertainty assessment of 

remote sensing image classification. The reason is that the 

probability that pixel B is correctly classified is generally higher 

than that of pixel A, particularly when the spatial features of the 

image are used to enhance the image classification (Zhang et al., 

2018; Zhang and Zhang, 2019). This result means that pixel B 

should have a lower classification uncertainty than pixel A. 

 

 

Figure 1. Two pixels A and B in the image (the same color 

represents the same classification posterior probability): pixel A 

is in a heterogeneous area and pixel B is in a homogeneous area. 

 

According to the first law of geography, things or attributes that 

are close in geospatial space are similar (Lv et al., 2017; Tobler, 

1970). In remote sensing images, this law indicates that pixels 

in an image often exhibit high similarity to their neighboring 

pixels (Zhang and Zhang, 2019). That is, the uncertainty of the 

pixel is also indirectly affected by the interaction of the adjacent 

pixels in the local spatial region. Therefore, when measuring the 

uncertainty of image classification, the spatial correlation and 

heterogeneity between pixels in the image must be fully 

considered and utilized to highlight the difference between the 

uncertainties of different pixels, which will improve the 

accuracy and reliability of the uncertainty measurement results. 

 

To address the shortcomings of existing classification 

uncertainty measurement models, this study proposes a novel 

classification uncertainty measurement model that considers the 

spatial correlation and heterogeneity in remote sensing images. 

In particular, the proposed model first measures the 

classification uncertainty of the image at the pixel and local 

spatial levels. Thereafter, the image’s local heterogeneity is 

used as the weight to adaptively integrate the uncertainty 

evaluation results at different levels. The proposed model can 

measure the classification uncertainty of an image more 

accurately and reliably than the traditional classification 

uncertainty measurement model. The reason is that the proposed 

model considers the effects of spatial correlation and 

heterogeneity in the image on uncertainty measurement. 

 

The remainder of this paper is organized as follows. Section 2 

proposes a novel classification uncertainty measurement model 

for remote sensing images. Section 3 briefly describes the 

validity verification schemes for the proposed uncertainty 

measurement model. Section 4 presents the experimental results 

and analysis on three test images and discusses the sensitivity of 

the parameters in the proposed model. Lastly, Section 5 draws 

the conclusions. 

 

2. PROPOSED UNCERTAINTY MEASUREMENT 

MODEL 

The majority of the traditional classification uncertainty 

measurement models only consider the classification posterior 

probability of a single pixel to evaluate its uncertainty. 

Moreover, these models disregard the influence of spatial 

correlation and heterogeneity on the classification uncertainty of 

pixels. Hence, the current study proposes a novel classification 

uncertainty measurement model that considers the spatial 

correlation and heterogeneity in remote sensing images. The 

proposed model is summarized by a detailed flowchart in Figure 

2. As shown in Figure 2, the proposed model mainly involves 

four steps: (1) posterior probability assessment of image 

classification, (2) uncertainty assessment at the pixel level, (3) 

uncertainty assessment at the local spatial level, and (4) spatial 

heterogeneity-guided adaptive weighted fusion of the pixel-

level and local-spatial-level uncertainties to generate the final 

uncertainty assessment results. The following section presents 

the details of each step. 

 

 

Figure 2. Flowchart of the proposed model 

 

2.1 Posterior Probability Assessment of Image 

Classification 

The evaluation of image classification uncertainty is generally 

based on the posterior probability output of image classification 

(Bogaert et al., 2017). At present, the posterior probability 

output of image classification (i.e., estimation of the probability 

of each pixel belonging to each of the classes) can be obtained 

through various means, such as probabilistic support vector 

machine (SVM), Bayesian, and maximum likelihood classifiers 

(Ge, 2013; Khatami et al., 2017). Among them, the probabilistic 

SVM classifier is one of the most commonly used methods 

because of its good performance in dealing with high-

dimensional remote sensing data with limited labeled samples 

(Melgani and Bruzzone, 2004). Therefore, the current study 

adopts probabilistic SVM to obtain the posterior probability 

output of image classification. 

 

The standard SVM model does not provide a posterior 

probability output. However, a solution was proposed for the 

posterior probability estimation of multi-class classification and 
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has been implemented in LIBSVM (Chang and Lin, 2011). The 

probabilistic SVM classifier aims to obtain the probability ( p ) 

that each pixel in the image belongs to each class: 

 

 { ( | ),   1,2, , }jp p p y j X j C       (1) 

 

where
jp  represents the probability that the pixel to be classified 

belongs to the j-th class and C represents the total number of 

classes in the image. 

 

This study uses the “one against one” multi-class SVM 

classification strategy with RBF kernel to obtain the probability 

output for each class. The pairwise class probabilities 

( ( |   , )ijr p y i y i or y j X    ) of classes i and j can be 

obtained as follows: 

 

 
1

1
ij Af B

r
e 




                    (2) 

 

where f is the output of the standard SVM and A and B are 

estimated by minimizing the negative logarithm of the 

likelihood function using the training data. 

 

The posterior probability ( ( | )ip p y i X  ) of the pairwise-

coupling-based probabilistic SVM can be obtained by solving 

the following optimization problem: 

 

 2

1 : 1

min ( )      1, 0  
C C

ji i ij j i i
p

i j j i i

r p r p subject to p p i
  

         (3) 

 

Detailed information on how to obtain a unique solution for this 

problem and probabilistic SVM are provided in related 

literature (Chang and Lin, 2011; Wu et al., 2004). 

 

2.2 Classification Uncertainty Assessment at the Pixel Level 

Eastman’s U is one of the most commonly used and effective 

classification uncertainty index at the pixel level. Therefore, in 

this study, we use Eastman’s U to measure the classification 

uncertainty of images at the pixel level. 

 

Let the classification posterior probability of the i-th pixel 
ix  

in the image be { | 1,2, , }i ijp p j C  , and
ijp be the 

probability that pixel
ix belongs to the j-th class. C is the total 

number of classes in the image. According to the definition of 

Eastman’s U, the uncertainty i

pixU of pixel
ix at the pixel level 

can be calculated as follows: 

 

 1

max( )

1
1 1

C

i ij

ji

pix

p p C

U
C





 



   (4) 

 

where i

pixU  ranges from 0 to 1. A large i

pixU implies a high 

classification uncertainty. That is, the corresponding pixel is 

more likely to be misclassified in the image classification.  
 

2.3 Classification Uncertainty Assessment at the Local 

Spatial Level 

As mentioned earlier, the traditional uncertainty measurement 

models disregard the influence of spatial correlation and 

heterogeneity on the measurement of pixel uncertainty, thereby 

decreasing the measurement accuracy of the classification 

uncertainty. Therefore, this study integrates spatial information 

into the measurement of classification uncertainty through local 

spatial uncertainty measurement to improve the accuracy and 

reliability of the uncertainty measurement. As shown in Figure 

3, the uncertainty measurement at the local spatial level mainly 

includes three steps: (1) generating spatial information units for 

local spatial uncertainty evaluation, (2) assessing the posteriori 

probability of classification at the local spatial level, and (3) 

quantifying the classification uncertainty at the local spatial 

level. The specific process is as follows. 

 

 

Figure 3. Flowchart of the classification uncertainty 

measurement at the local spatial level 

 

2.3.1 Generating spatial information units for local spatial 

uncertainty evaluation 

 

In remote sensing image analysis, extracting regular image 

blocks centered on pixels is one of the simplest and most 

effective methods of utilizing spatial information in the image 

(Zhang et al., 2018). Pixels within a small image block tend to 

have similar spectral signatures and are generally likely to 

belong to the same class (Hao et al., 2019; Huang et al., 2019). 
Therefore, we establish spatial information units for local 

spatial uncertainty assessment by extracting regular image 

blocks (see Figure 3). For the i-th pixel
ix in the image, we 

extract the K K image block ( K

iO ) centered on pixel
ix from 

the image to evaluate the uncertainty of pixel
ix at the local 

spatial level. 

 

2.3.2 Posteriori probability assessment of classification at 

the local spatial level 

 

To evaluate the classification uncertainty of pixel
ix  at the local 

spatial level, we must first obtain the posterior probability 

output of pixel
ix at the local spatial level, i.e., the classification 

posterior probability of image block K

iO . The features of image 

block K

iO  should be constructed before evaluating its 

classification posterior probability. In the current research, the 

proposed model uses the first law of geography to construct the 

features of image block K

iO  instead of simply using the mean of 

the features of all pixels in image block K

iO . Let 
qx  be a pixel 

in image block K

iO  centered on pixel
ix . The coordinates of 

pixel 
qx  in image block K

iO  are (m, n), and its feature vector 
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is denoted as
mnv , 1 ,m n K  . Thereafter, the feature vector 

iV of image block K

iO can be calculated according to the 

Equation (5). 

 

 

1 1

K K

i mn mn

m n

V w v
 

     (5) 

 

where
mnw represents the weight of the influence of pixel

qx on 

pixel
ix in image block K

iO . According to the first law of 

geography, things or attributes that are close in geospatial space 

are more similar than distant ones (Lv et al., 2017; Tobler, 

1970). Therefore, we calculate the weight of each pixel in image 

block K

iO according to the principle that the smaller the distance, 

the greater the weight will be. The calculation method of the 

weight is as follows: 

 

 

1 1

1

1

1

1

mn
mn K K

l h lh

d
w

d 







   (6) 

 

where
mnd represents the Euclidean distance of pixel

qx  to the 

central pixel 
ix  in image block K

iO . The coordinates of the 

center pixel
ix in image block K

iO are 1 1
( , )

2 2

K K  , and 

mnd can be calculated using Equation (7). 

 

 2 21 1
( ) ( )

2 2
mn

K K
d m n

 
       (7) 

 

After obtaining the feature vector 
iV  of image block K

iO , the 

classification posterior probability of image block K

iO can be 

evaluated by using the probabilistic SVM model trained in 

Section 2.1. 

 

2.3.3 Quantifying classification uncertainty at the local 

spatial level 

 

Let the classification posterior probability of the image block 
K

iO  obtained in the previous step be
iP , 

where { | 1,2, , }i ijP P j C  ,
ijP is the probability that 

image block K

iO belongs to the j-th class, and C is the total 

number of classes. Similarly, according to the definition of 

Eastman’s U, the classification uncertainty of image block K

iO  

(i.e., local spatial uncertainty i

locU  of pixel
ix ) can be 

calculated as follows: 

 

 1

max( )

1
1 1

C

i ij

ji

loc

P P C

U
C





 



   (8) 

 

where the value of i

locU ranges from 0 to 1. 

2.4 Adaptive Fusion of Uncertainty Evaluation Results at 

the Pixel and Local Spatial Levels 

The proposed model aims to adaptively fuse the uncertainty 

evaluation results at the pixel and local spatial levels to more 

accurately and reliably measure the classification uncertainty of 

images. Here, a weight matrix (W) is adaptively generated to 

guide this fusion process. { | 1,2, }iW W i N  , where N is 

the total number of pixels in the image. The weight 
iW  of 

pixel
ix in weight matrix W is defined as follows: 

 

 min( )

max( ) min( )

i
iW

  


  
       (9) 

 

where 
i represents the local spatial heterogeneity of pixel

ix  

(i.e., the heterogeneity of the local area where pixel
ix is 

located),   is the set of local spatial heterogeneities of all 

pixels in the image, and { | 1,2, }i i N    . The larger 

i , the stronger the heterogeneity of the local area where 

pixel
ix is located and the larger 

iW . Moreover, 
i  can be 

calculated as follows: 

 

 

1

1
( , )

M

i i m

m

x x
M




      (10) 

 

where M represents the total number of neighborhood pixels of 

pixel 
ix  in image block K

iO  with the size of K K centered on 

pixel
ix , and 2 1M K  . ( , )i mx x  represents the degree of 

difference between the features of pixel
ix  and its neighboring 

pixel
mx . Here, we use Euclidean distance to measure this 

difference. That is, ( , )i mx x can be calculated as follows: 

 

 
2

1

( , ) ( )
D

d d

i m i m

d

x x v v


     (11) 

 

where D represents the dimension of the feature vector of pixels 

ix and 
mx , and 

d

iv  and 
d

mv  represent the values of the d-th 

dimension feature of pixels 
ix and

mx , respectively. 

 

In particular, the greater the weight (
iW ) of pixel

ix , the higher 

the heterogeneity of the local spatial area in which pixel 
ix  is 

at will be. In general, when the heterogeneity of the local area 

where pixel 
ix  is located is high, the reliability of the block-

based classification result will be reduced because the image 

block contains more heterogeneous information (Li et al., 2016). 
Therefore, a higher confidence should be given to the pixel-

based classification result. This condition implies that the 

uncertainty evaluation results ( i

pixU ) at the pixel level are more 

accurate and reliable. Thus, a higher weight (
iW ) should be 

given to the uncertainty evaluation result i

pixU  at the pixel level. 

Conversely, the higher the homogeneity of the local area, the 
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higher the weight that should be given to the uncertainty 

evaluation result ( i

locU ) at the local spatial level. In this way, 

we can adaptively integrate the uncertainty evaluation results 

( i

pixU  and i

locU ) obtained at the pixel and local spatial levels 

through weight matrix W to generate a more accurate and 

reliable uncertainty measurement result (i.e., a joint uncertainty 

measurement index). The joint uncertainty of pixel
ix (i.e., its 

final uncertainty measure 
iFU ) is defined as follows: 

 

 (1 )i i

i i pix i locFU W U W U     .   (12) 

 

3. VALIDATION SCHEME FOR THE VALIDITY OF 

THE MODEL 

To clarify the validity of the proposed model, we test the 

proposed model using the classification-based verification 

scheme presented in the related literature (Zhang et al., 2019). 

The main idea of this verification scheme is that if the proposed 

index (i.e., uncertainty measurement index generated by the 

proposed model) can be used to improve the accuracy of image 

classification, then the proposed index/model is beneficial and 

valid. Below, we present a description of this classification-

based verification scheme. 

 

Let the classification posterior probability of 

pixel
ix be { | 1,2, , }i ijp p j C  , where

ijp is the 

probability that pixel
ix belongs to the j-th class and C is the 

total number of classes. To obtain the final classification map of 

an image, the maximum posterior probability method is 

generally used to determine the final classification label of each 

pixel in the image, that is,  

 

 ( ) arg max( ) arg max({ | 1,2, , })i i ij
j

L x p p j C      (13) 

 

where ( )iL x represents the classification label of pixel
ix , 

which is determined by the maximum posterior probability 

method. 

 

In fact, the single pixel-based maximum posterior probability 

method can only guarantee that the obtained classification result 

is a mathematically optimal solution. The continuity of surface 

objects in geospatial requires the final classification results to 

satisfy spatial consistency (Cui et al., 2018), which is an 

inherent requirement of image classification. Therefore, each 

probability layer acquired by the posterior probability 

evaluation can be post-processed before the final classification 

map is generated using Equation (13). The traditional and 

common post-classification processing is to spatially filter each 

probability layer using a K K   neighborhood system centered 

on each pixel (in this study, K  is set to 5). If the new posterior 

probability vector of pixel 
ix  is { | 1,2, , }i ijp p j C    

after spatial filtering, where
ijp  denotes the probability that 

pixel
ix belongs to the j-th class, then 

ijp  can be calculated as 

follows: 

 

 

1

K

ij n nj

n

p w p




      (14) 

 

where
njp represents the probability that the n-th pixel belongs 

to the j-th class in the K K  neighborhood in the original 

probability outputs and 
nw  represents the weight of influence 

of the n-th pixel on the central pixel. In traditional spatial 

filtering, 
nw  is often determined by the Euclidean distance 

from the neighboring pixel to the central pixel, ie 

 

 

1

1

1

1

1
n M

n

mm

d
w

d









   (15) 

 

where M K K    and 
nd ,

md represent the Euclidean distance 

of the n-th and m-th pixels, respectively, to the central 

pixel
ix in the K K   neighborhood. 

 

To prove the validity of the proposed model, we adjust the 

calculation method of the weight in traditional spatial filtering. 
After adjustment, the weight is determined by the magnitude of 

the uncertainty rather than the spatial distance. In particular, the 

higher the classification uncertainty, the smaller the weight will 

be. The new weight (
nw  ) of the n-th pixel after adjustment can 

be calculated by Equation (16). 

 
 

1

1

(1 )

n

M

m

m

n

FU
w

FU







 

  (16)

 

 

where M K K    and 
nFU and

mFU represent the 

classification uncertainty of the n-th and m-th pixels, 

respectively, in the K K  neighborhood. After weight 

adjustment, distance weighted-based spatial filtering becomes 

uncertainty weighted-based spatial filtering. In theory, the 

probability of a pixel with high uncertainty being misclassified 

is relatively high. Therefore, in the uncertainty weighted-based 

spatial filtering, the influence of uncertainty on the 

classification results can be reduced by giving small weights to 

pixels with high uncertainty, and reliability of the classification 

results can be enhanced to some extent. The enhancement of the 

reliability will contribute to the improvement of the accuracy of 

the classification results. 

 

Next, we also use Equation (13) to harden the new probability 

output layers obtained after filtering to generate the final 

classification map. Lastly, the classification accuracies of the 

unfiltered original classification map and filtered classification 

map are quantitatively compared. If the accuracy of the 

classification map obtained by the uncertainty-based filtering is 

higher than that of the unfiltered original classification map and 

the classification map obtained by the distance-based filtering, 
then the proposed uncertainty measurement model and index 

are useful and effective.  

 

In addition, to prove the superiority of the proposed model over 

the existing uncertainty models/indexes, we also compare the 

proposed model with the commonly used uncertainty 
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models/indexes (i.e., information entropy and Eastman’s U). 
Specifically, the proposed uncertainty index (i.e., FU in 

Equation (16) generated by the proposed model) is replaced by 

information entropy and Eastman’s U for spatial filtering based 

on uncertainty weighting. Thereafter, the corresponding 

classification maps are generated, and the classification 

accuracies of these classification maps are compared and 

analyzed. The difference in accuracy of these classification 

maps will relatively reflect the differences in the validity and 

accuracy of these uncertainty indexes/models in measuring 

classification uncertainty. 

 

4. EXPERIMENTS AND ANALYSIS 

4.1 Experimental Data and Settings 

This section tests the validity and superiority of the proposed 

model on three publicly available remote sensing images with 

different resolutions: Pavia University, Vaihingen, and 

WuhanTM images. Detailed information on these three images 

is presented as follows. 

 

The Pavia University image was gathered by the Reflective 

Optics System Imaging Spectrometer (ROSIS-03) sensor during 

a flight campaign over Pavia in northern Italy. The image has 

610 × 340 pixels (Fauvel et al., 2013). The original image 

contains 103 bands, with a 1.3 m/pixel spatial resolution. In the 

actual experiment, the false color composite of the Pavia 

University image is used, which consists of channel numbers 10, 

27, and 46 for red, green, and blue, respectively. Figure 4 shows 

the false color composite of the image and the corresponding 

ground reference map. Nine land-cover classes are considered 

in the experiment, as shown in the legend. 

 

 

Figure 4. Pavia University image and its classification results: (a) 

false color composite of the Pavia University image; (b) 

reference map; (c) OCM; (d) CM_Distance; (e) CM_Eastman’s 

U; (f) CM_Entropy; (g) CM_Proposed. 

 

The Vaihingen image was obtained from the Vaihingen dataset 

of the RS image semantic segmentation dataset, which was 

published by the International Society for Photogrammetry and 

Remote Sensing (Rottensteiner et al., 2012). The Vaihingen 

image has a resolution of 9 cm and consists of three bands: 

near-infrared, red, and green. The size of the image is 1100 × 

950 pixels. In addition, the image scene has four main 

categories: impervious surface, buildings, low vegetation, and 

trees. Figure 5 shows the Vaihingen image and its ground truth. 

 

 

Figure 5. Vaihingen image and its classification results: (a) false 

color composite of the Vaihingen image; (b) reference map; (c) 

OCM; (d) CM_Distance; (e) CM_Eastman’s U; (f) 

CM_Entropy; (g) CM_Proposed. 

 

The WuhanTM image is a 30-m resolution multispectral 

Landsat TM image of Wuhan City, China, with a size of 400 × 

400 pixels and comprising 6 bands (Ma et al., 2015). The 

selected region of the image is expected to contain five classes: 

river, vegetation, lake, bare soil, and building, which numbered 

2577, 4098, 1559, 3037, and 1666, respectively, in the ground 

truth image. The original Wuhan TM image and its ground truth 

are shown in Figure 6. 

 

 

Figure 6. WuhanTM image and its classification results: (a) true 

color composite of the WuhanTM image; (b) reference map; (c) 

OCM; (d) CM_Distance; (e) CM_Eastman’s U; (f) 

CM_Entropy; (g) CM_Proposed. 

 

In the experiments, when probabilistic SVM is used to obtain 

the posterior probability outputs of each image, the spectral and 

texture features of the images are used. Spectral features here 

refer to all spectral bands of the experimental images. The 

texture features refer to the mean, variance, homogeneity, 

contrast, dissimilarity, entropy, angular second moment, and 

correlation extracted from each band of the original image in 

accordance with the grey level co-occurrence matrix (Agüera et 

al., 2008) with a window size of 3 × 3. 

 

When classifying the three images with probabilistic SVM, 3% 

of the ground truth data of each image are randomly selected as 

the training samples, and the remaining 97% are used as the 

verification samples. 
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Datasets Pavia University image Vaihingen image WuhanTM image 

Indexes OA KC OA KC OA KC 

OCM 83.98% 78.35% 81.94% 76.51% 87.03% 83.22% 

CM_Distance 86.78% 82.03% 82.41% 77.14% 90.12% 87.15% 

CM_Eastman’s U 86.19% 81.21% 82.97% 77.91% 90.06% 87.05% 

CM_Entropy 86.21% 81.24% 82.56% 77.41% 90.02% 87.00% 

CM_Proposed 87.22% 82.65% 83.47% 78.60% 90.44% 87.54% 

Table 1. Classification accuracy of the Pavia University image, Vaihingen image and WuhanTM image 

 

4.2 Experimental Results and Analysis 

To prove the validity and robustness of the proposed 

uncertainty measurement model, we performed three 

experiments on the Pavia University, Vaihingen, and 

WuhanTM images according to the validity verification scheme 

described in Section 3. 

 

Figures 4(c), 5(c), and 6(c) are the original classification maps 

(called OCMs) obtained from the original posterior probability 

layers of the three images through the maximum posterior 

probability method. Figures 4, 5, and 6 ((d) to (g)) present the 

classification maps generated after spatial filtering using spatial 

distance, Eastman’s U, information entropy, and the proposed 

uncertainty index as weights, respectively. These generated 

classification maps are correspondingly recorded as 

CM_Distance, CM_Eastman's U, CM_Entropy, and 

CM_Proposed. Table 1 presents the result of the accuracy 

evaluation of these classification maps by using Overall 

Accuracy (OA) and Kappa Coefficient (KC). 

 

Table 1 shows that in the three experiments, the accuracies (OA 

and KC) of the filtered classification maps are significantly 

better than those of the original classification map. Moreover, 

regardless of OA and KC, the classification accuracy of 

CM_Proposed is the highest, thereby implying that the 

classification uncertainty model and index proposed in this 

study are valid. The classification accuracy of CM_Proposed is 

higher than those of CM_Eastman’s U and CM_Entropy. This 

result indicates that compared with the commonly used 

uncertainty indexes (i.e., information entropy and Eastman’s U), 

the proposed model/index has relative superiority in terms of 

improving the accuracy of image classification. 

 

As mentioned in Section 3, distance-based spatial filtering is 

one of the most commonly used post-processing methods for 

image classification. Therefore, we use CM_Distance obtained 

by distance-based spatial filtering as a comparison criterion to 

further compare the proposed uncertainty index with Eastman’s 

U and information entropy. Table 1 shows that the proposed 

classification uncertainty index has stronger stability in 

improving the performance of image classification than 

Eastman’s U and information entropy. The reason is that 

regardless of OA and KC, the classification accuracy of 

CM_Proposed generated by using the proposed index is higher 

than that of CM_Distance in all three experiments, but 

CM_Eastman’s U and CM_Entropy are not. The classification 

accuracies of CM_Eastman’s U and CM_Entropy are lower 

than that of CM_Distance in the Pavia University and 

WuhanTM images, but higher than that of CM_Distance in the 

Vaihingen image. 

 

4.3 Discussion of the Parameter Sensitivity 

In the proposed uncertainty measurement model, the K*K local 

spatial information unit must be established to evaluate the 

classification uncertainty of the local spatial area where the 
target pixel is located. The change in parameter K may affect 

the result of the uncertainty measurement. Therefore, this 

section tests the sensitivity of the proposed model to parameter 

K to further enhance the practical value of this model. 

 

Figure 7 shows the OA trend of the classification maps obtained 

according to the method discussed in Section 3 as parameter K 

changes. Figure 7 indicates that as parameter K changes, the 

magnitude of the change in OA is not apparent on the three 

experimental images with different spatial resolutions. That is, 

the change in parameter K has minimal effects on the proposed 

uncertainty measure model. 

 

 

Figure 7. Relationship between classification accuracy (OA) 

and parameter K 

 

5. CONCLUSIONS 

The reliability of remote sensing image classification results is 

critical to the further application of the classification results. 
Therefore, the uncertainty of image classification results must 

be accurately and effectively evaluated. At present, the 

measurement models of the uncertainty of remote sensing image 

classification results is generally based on the posterior 

probability output of single pixels and disregards the spatial 

correlation and local heterogeneity in the image. In view of the 

shortcomings of the existing classification uncertainty 

measurement models, this study proposes a novel classification 

uncertainty measurement model that considers spatial 

information of the image by effectively integrating the 

classification uncertainties at the pixel and local spatial levels. 
In particular, the proposed model first quantifies the 

classification uncertainty of the image at the pixel and local 

spatial levels and evaluates the local spatial heterogeneity of the 

image thereafter. Subsequently, the proposed model adaptively 

fuses the uncertainty evaluation results obtained at the pixel and 

local spatial levels with the local spatial heterogeneity of the 

image as the weight and generates the final comprehensive 

uncertainty measurement result (i.e., a joint uncertainty 
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measurement index). Lastly, the classification verification 

experiments on three public remote sensing images with 

different resolutions confirm the validity and superiority of the 

proposed model.  

 

In future research, we will focus on developing effective 

uncertainty control methods or reliable remote sensing image 

classification strategies based on the results of uncertainty 

assessment to improve the reliability of remote sensing image 

classification. 
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