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ABSTRACT: 
 

Direct heat and moisture conditions can lead to discomfort for humans and animals and can decrease health performance. The 

discomfort index or temperature-humidity index (THI) represents an important indicator that measures the heat sensed by humans for 

different climate conditions. In extreme situations, heatstroke may occur, which in unfortunate cases will lead to death. Many research 

studies have been conducted on the urban heat island (UHI) phenomenon, although a majority of such work focuses on regional-scale 

analyses and emphasizes the thermal trend through larger administrative units. Fewer micro-scale analyses have been performed at the 

local scale to detect the potential area for increased THI within a city. This work seeks to estimate the THI at the micro-scale level by 

utilizing the thermal camera on-board of unmanned aerial systems (UASs). Thermal information of the surface and visual images are 

collected by the UAS, while a thermohygrometer is used to collect the air temperature and the relative humidity at the ground surface 

for ground truth information. Solar radiation and wind exposure modeled from digital surface model (DSM) and normalized difference 

vegetation index (NDVI) data are used as explanatory variables, and a random forest machine learning method is implemented to 

model the spatial distribution of the THI. The results and discussion will provide future possibilities for micro-scale analyses of the 

UHI. 

 

 

1. INTRODUCTION 

In recent years, as an urban environmental problem, the urban 

heat island (UHI) phenomenon that accompanies urbanization 

has become prominent not only in Japan but also in other 

countries around the world. UHI is a cause of increased tropical 

nights and associated health hazards, such as heatstroke in urban 

areas, changes in ecosystems due to the overwintering of 

mosquitoes that carry infectious diseases, and extreme torrential 

rains (Deilami et al., 2018). It is a serious problem that greatly 

affects urban space environments and leads to associated health 

issues (Royé, 2017).  

Regarding global warming and climate change, irregular climatic 

conditions appear in various urban area locations. Japan is also 

facing irregular cases of climatic conditions (Imada et al., 2019). 

Extreme heat conditions can threaten health, and the temperature 

as well as humidity level can affect heat-related diseases (Fujibe 

et al., 2018; Ito et al., 2018). To understand the human sensations 

associated with different climatic conditions, various indices are 

prepared that consider both temperature and humidity. The 

discomfort index or temperature-humidity index (THI) 

represents how humans feel discomfort depending on the 

combination of low-high temperature and relative humidity. 

With the increasing development of urban areas leading to the 

expansion of hotter areas in combination with a changing climate, 

more threats to health will occur. 

Therefore, determining the heat hotspots or the distribution of 

THI in urban areas (i.e., where is the area exposed to higher 

discomfort) has become an issue. Factors in the formation of UHI 

include low albedo material, complex urban morphology, waste 

heat, low density vegetation in urban spaces, etc. (Aflaki et al., 

2017). Many studies have been conducted on the heat in urban 

spaces (Kolokotroni et al., 2012). However, the results are 

tabulated to determine the trend for the whole city or district. 

Such works estimate heat trends in a relatively large 

administrative unit (Imhoff et al., 2010), and fewer work has 

focused on urban heat in microscale units that form the city, such 

as individual buildings and roads. If there are solutions for 

observing and mapping potentially high THI areas, then strategic 

decisions may be made for mitigating various issues caused from 

UHIs.  

In this work, we focus on developing a new method for observing 

and estimating THI mapping at an extreme micro-scale unit by 

utilizing the unmanned aerial systems (UASs) and satellite 

remote sensing data.     

 

2. EQUIPMENT AND DATA SETS 

2.1 UAS and Camera Specification 

An unmanned aerial system (UAS) is utilized to collect remote 

sensing data of the site (Figure 2). This work utilizes the DJI 

Matrice 210 multicopter UAS (DJI, Shenzhen, China) for the 

aerial system, and the DJI Zenmuse-XT2 (DJI, Shenzhen, China) 

is the sensor that is equipped on board the UAS. Matrice 210 is 

an industrial application UAS improved for various flight 

performance and safety features. Zenmuse-XT2 has two sensors: 

visible and thermal. The camera can simultaneously collect both 

visible and thermal information; therefore, it is suitable when 

both data are needed. 
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Figure 2. UAS utilized in this work (Matrice 210 and Zenmuse-

XT2). 

 

2.2 GNSS and Thermohygrometer 

The Reach (Emlid, Hong Kong, China) global navigation satellite 

system (GNSS) was utilized for recording the geographical 

coordinates (Figure 3). The small and light-weight GNSS makes 

it simple to record positioning at a higher precision using multiple 

L1 GNSSs, e.g., GPS (Global Positioning System), QZSS 

(Quasi-Zenith Satellite System), GLONASS (Global Navigation 

Satellite System), Galileo, BeiDou, etc. The equipment is used 

together with the thermohygrometer to record the temperature 

and relative humidity at each geographical location. A MJ-UDL-

20 thermohygrometer logger (SATOTECH, Kawasaki, Japan) 

can log the temperature and humidity with a minimum interval 

of 2 seconds. The temperature and humidity range can be logged 

from -20 to 70 ℃ and 5 to 95 %, respectively. The 

thermohygrometer is used to collect the ground truth data of the 

study site. 

 

 

Figure 3. GNSS equipment (left) and thermohygrometer (right). 

 

2.3 Flight Design 

On September 9th, a flight campaign was conducted at study site 

1 from 10:58 AM to 11:03 AM and at site 2 from 14:13 PM to 

14:18 PM. The UAS flew at an altitude of 75 m in a single grid 

path (Figure 4) and collected multiple aerial photos during the 

flight. The ground sampling distance (GSD) at the 75 m altitude 

was approximately 1.75 cm and 6.7 cm for the visible and 

thermal sensor, respectively. Forward (side) overlap was set to 

approximately 80 % (75 %), which are the parameters of focus 

for the thermal camera. This setting will correspond to 

approximately 87 % (85 %) of the forward (side) overlaps for the 

visible sensor. 

 

 

Figure 4. Flight path of the UAS for each site. 

 

2.4 Collecting Ground Truth Data for the THI 

The Reach GNSS rover and thermohygrometer was attached on 

top of a safety helmet, and another GNSS was set on the ground 

nearby using a tripod or equipment fixed to the ground as the base 

station (Figure 5). During the aerial survey of the UAS, a crew 

equipped the helmet and walked around the study site to record 

both the geographical position, temperature and humidity from 

each devices. The Reach GNSS was set to observe GNSS signals 

from GPS, QZSS, Galileo and Beidou at a logging frequency of 

1 Hz, and the thermohygrometer was set to a 2 second interval 

for the recording. Furthermore, the GNSS signal data from the 

base station was used together with the rover data for the Post 

Processing Kinematic (PPK) to improve the precision of the 

positioning. Then, the timestamp of the GNSS log and the 

timestamp from the thermohygrometer were matched to generate 

point vector data of the temperature and humidity at each 

geographical location. When the point data were generated, an 

Ordinary Kriging interpolation was performed on the 

temperature and humidity data to develop a spatial map. Using 

equation 1 (Yoo and Chung, 2018), the Temperature-Humidity 

Index (THI) was computed for the study site. The THI represents 

how much discomfort a person feels from the combination of 

temperature and humidity. According to Yoo and Chung (2018), 

a THI below 68 indicates comfort, a THI from 68-75 indicates 

when discomfort begins to occur, a THI from 75-80 will make 

50 % of the people feel discomfort and a THI >80 will lead all 

people to feel discomfort (critical condition affecting health). The 

index is used to facilitate computing the THI, and the function is 

similar to what is often utilized in the study country. 

 

THI � 1.8T � 0.55 �1 � �
���� �1.8T � 26� � 32          (1) 

 

where  T = Temperature (℃). 

 RH = Relative Humidity (%). 

 

 

Figure 5. Equipment to collect ground truth data for THI. 
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3. METHODOLOGY 

3.1 Study Area 

The study area is located at a closed elementary school and junior 

high school in Maebashi City, Gunma Prefecture, Japan (Figure 

1) located near the central area of Maebashi City. The climatic 

conditions of the area vary within a year. Our field work was 

carried out on September 9, 2019. The daily average temperature 

on September 2019 was 24.6 ℃, where the maximum reached 

37.0 ℃. It was an unusual month with hotter days. The total 

precipitation was 75.5 mm, and the average relative humidity was 

70 %, which indicate very hot and moist conditions and higher 

discomfort. 

 

 

Figure 1. Overview of the study area (Gunma Prefecture, 

Maebashi City, Japan). 

 

3.2 Creating Spatial Data and Variables 

3.2.1 Aerial Image Mosaics and Digital Surface Model: 

Using the collected visible and thermal aerial images, the 

Structure from Motion (SfM) technique is implemented using 

Metashape Pro ver. 1.6.0. (Agisoft, St. Petersburg, Russia) to 

generate a mosaicked image of the whole study area. Various 

settings are available in the software for reconstructing the 3D 

model of the scenery. For the visible image, the alignment setting 

is set to “high” with default tie and key points, “high” for dense 

point generation and further processing to generate a digital 

surface model (DSM) with a dense point cloud, and using the 

DSM for orthorectifying the image. The DSM is generated by the 

inversed distance weighting (IDW) interpolation algorithm. For 

the thermal image, the “highest” setting is for the alignment 

process with default tie and key points and the “ultra-high” 

setting for dense cloud generation. Instead of creating a DSM, 

mesh data are built from the dense points and a mosaicked 

thermal image is generated with the mesh data. 

 

3.2.2 Solar Radiation and Wind Exposure: Using the 

generated DSM, the total solar radiation, direct solar radiation 

and diffuse solar radiation are modeled using the ArcGIS Pro ver. 

2.4. (ESRI, Redlands, USA) for the same date and time as the 

observation. For site 1, the solar radiation is modeled from before 

sunrise to 11:00 AM. For site 2, it is modeled from before sunrise 

up to 2:00 PM. System for Automated Geoscientific Analyses 

(SAGA) GIS (Conrad et al., 2015) ver. 6.0.0. is used to generate 

a wind exposition index (Boehner and Antonic, 2009) to 

determine the degree of exposed areas. The local area had some 

degree of wind, which will affect the local heat exchange related 

to evaporation (Lei et al., 2018). It is difficult to map the wind 

velocity for each area; however, by modeling the magnitude of 

wind effects, it is expected to work as an alternative. 

 

3.2.3 NDVI: The Sentinel-2B Multispectral Instrument (MSI) 

Level 2A (L2A) product from the observation date of October 10, 

2019 was collected via the webpage. The L2A product is 

processed with atmospheric correction and derived from the 

associated level-1C products and then converted into the surface 

reflectance (bottom of atmosphere (BOA) reflectance). Using the 

red (band 4) and near infrared (band 8) bands, the normalized 

difference vegetation index (NDVI) was computed for the study 

site and clipped for the study area. The NDVI data were 

resampled to the same resolution as the thermal image using the 

bilinear method for further processing purposes. 

 

3.3 Modeling the THI with the Random Forest Algorithm 

Using the thermal data (total, direct and diffuse solar radiation; 

wind exposition index; and NDVI data) the random forest 

machine learning method is implemented to model the THI of the 

study site. R Studio (Integrated Development for R. RStudio, Inc., 

Boston, MA) and the random forest library (library 

“randomForest”) were installed to process the modeling. A grid 

search method (Garcia et al., 2011) is implemented to train 

various numbers of models with slightly different parameters: 

node size = 10, 20…50; mtry = 1, 2…5; and ntree = 500, 

600…1500. Bootstrap resampling is implemented with a sample 

size of 90 % and iteration = 5. From the multiple generated 

models, the final tuned model is chosen from the lowest errors, 

and it uses the parameter of node size = 10, mtry = 4, ntree = 700. 

The modeled THI is validated via comparison with the reference 

set. To evaluate the model accuracy, the correlation of 

determination (R2), Mean Absolute Error (MAE) and the Root 

Mean Square Error (RMSE) are computed. We would like to 

emphasize that the R2 here is considered as how well the 

predicted model fits to the 1:1 line. To avoid confusion, further it 

will be denoted as fitting R2 (equation 2). 

 

�� � 1 � ∑�������
∑�������   (2) 

 

where  y  = Reference value 

 ��  = Predicted value 

 ��  = Mean of reference value 

 

This work will follow the criteria shown by Alexander et al. 

(2015), recommending a fitting R2 > 0.6 indicates high 

correlation, thus succeed in model development. 

 

4. RESULTS AND DISCUSSION 

4.1 Ortho and Thermal Mosaics 

Figure 6 shows the successfully developed ortho mosaic imagery 

of the visible and thermal images for site 1 and site 2. For the 

thermal image, at site 1, the trend shows that bare soil areas are 

warmer than vegetation areas (e.g., trees). However, the building 

roofs on the east side show rapid heating, which is possibly from 

the material and the exposure to direct solar radiation. The 

northern buildings are composed of white material that has higher 

albedo and lead to less heating. Buildings with darker rooftops 

are also cooler compared to buildings with hotter roofs, which 

seems to be due to the moss grown on the roof. At site 2, the 

thermal trend is similar to that of site 1 for bare soil and 

vegetation, and exposed asphalt has been heated and white roof 

buildings on the south are also heated but show some heat 

gradient because the roofs have a dome-like shape, which leads 

to differences in exposure to direct solar radiation. The thermal 

conditions are clearly visible through UAS sensing.  
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Figure 6. Ortho mosaicked image of the visible data (left) and 

thermal data (right). 

 

4.2 THI Mapping 

Figure 7 shows the mapping result from the interpolation of the 

temperature and humidity vector points collected through the 

ground survey. The approach for using a light-weight GNSS with 

the thermohygrometer to log the spatial location has succeeded, 

and the kriging interpolation lets us interpret the trend of the THI 

on the ground. However, the data were collected by walking the 

ground surface; therefore, the area of the building rooftops is not 

represented correctly. The modeling process excludes those areas 

for the training samples. At site 1, bare soil areas showed higher 

THI and the northern part between one tree and the building on 

the north show small patches of higher THI. Near the tree, a lower 

THI is observed, and the area between the buildings and behind 

the buildings where direct solar radiation is blocked shows a 

lower THI. During the survey, it was confirmed that under trees 

and areas with shadows are much cooler than directly exposed 

areas. The ground THI trend seems to delineate such areas 

successfully. At site 2, it was clear that the bare soil area and 

sparse vegetation areas show lower THI, while the surrounding 

areas clearly show higher THI, which is due to the condition of 

the land use characterized by materials such as asphalt. The 

northeast area shows a gradient change from the center position, 

which leads to a slightly higher THI. The northeast area has a 

smaller fraction of grassy vegetation cover, while the lower THI 

area has a higher fraction. The temperature seems to cool down 

in those vegetative areas compared to exposed bare soil areas. 

 

 

Figure 7. Spatial distribution of the THI interpolated from point 

vectors collected during the ground surveying. 

 

4.3 Explanatory Variables 

Figure 8 shows all the variables generated from the DSM and the 

NDVI collected from the satellite. The ultra-high resolution UAS 

imageries provide a good solution for developing a detailed solar 

radiation model and wind exposure of the sites. Few studies have 

collected such detail modeling results at building to street units, 

and the use of the UAS made it possible to enhance the scale to 

what we usually face during daily life. Just by adjusting the 

accumulation of the solar radiation time, the area can be 

interpreted for higher radiation or shadow areas. For the NDVI 

data, although the Sentinel-2 satellite is at the original 10 m 

resolution, the NDVI trend for each study site can be 

distinguished well. It is clear that at site 1, building areas have 

lower NDVI values, trees show higher NDVI, and bare soil areas 

show lower NDVI. At site 2, the trees along the southeast to the 

north direction show a higher NDVI, the bare soil area at 

northeast side shows a lower NDVI, and the southwest part 

shows a slight increase of the NDVI. Therefore, although the 

resolution is 10 m, the slight green changes on the playground 

can be sensed. These data are used for the explanatory variables 

in the THI modeling process. 
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Figure 8. Explanatory variables for the (1) Total solar radiation 

(Wh/m2), (2): Wind exposure, (3): NDVI for (left) Site 1 and 

(Right) Site 2. Solar radiation shown here is only the total 

radiation for the visual purpose. Note that site 1 is modeled up to 

11:00 AM, while site 2 is modeled until 2:00 PM for solar 

radiation. 

 

4.4 THI Modeling and Validation 

Figure 9 shows the final result of mapping the THI at a micro-

scale unit. On site 1, since the time of observation was 11:00 AM, 

most of the area shows a lower THI. A higher trend is observed 

for rooftops; however, those areas were not considered during the 

model training process. Thus, the actual THI condition is 

uncertain. However, some possible trends can be observed since 

those areas are exposed to more heat; thus, the higher THI could 

be expected. The vegetation area seems to show a lower THI than 

the bare soil area, which again seems to reflect the actual 

environment. For site 2, at 2:00 PM, most of the asphalt area 

shows high THI values. The bare soil area shows a lower THI 

compared to the asphalt area, and the bare soil area with a greater 

fraction of vegetation also shows a lower THI. Some areas behind 

buildings show a low THI even if the land use is asphalt. Such 

areas are cast in shadow; therefore, even if the land use includes 

highly heat absorbing material, the area would show lower THI 

compared to directly exposed areas. The approach for utilizing 

the UAS has succeeded in the modeling.  

From the validation samples, the modeled THI is compared with 

the reference THI (Figure 7). The fitting R2 showed a good fit of 

0.9596, and the RMSE was 0.2371 and the MAE was 0.1526 

(Figure 10). The larger residual above a THI of 83.3 was 

associated with sensor lag during ground surveying. Entering a 

shadowed area after a highly exposed THI area for only few 

seconds was not enough for the sensor to stabilize to the actual 

temperature and humidity; thus, the reference sample shows a 

higher THI than the modeled THI, and vice versa. These models 

can enhance our understanding of potential areas with higher 

THIs, which can further contribute to decision making for 

sustainable city planning. Hotspots of high THI areas can be 

identified to so that announcements can be made to prevent 

heatstroke. These issues can be further analyzed in-depth if the 

thermal conditions at different temporal times are collected 

throughout a day for understanding the THI transition through 

space and time.  

Figure 11 shows the contribution of the variables to the 

developed model. The figure indicates the mean decrease in node 

impurity or the Gini index. Diffuse solar radiation has the greatest 

effect, followed by thermal information based on the UAS, 

modeled total solar radiation, NDVI, wind exposure and modeled 

direct solar radiation. This finding indicates that directly 

observed thermal information corresponds to the THI to some 

degree but will not always reflect such data correctly; moreover, 

using the modeled solar radiation is effective for retrieving the 

THI condition at each site. 

 

 

Figure 9. THI modeling result for site 1 and site 2 implementing 

the random forest regression (Note that site 1 is at 11:00 AM and 

site 2 is at 2:00 PM). The scaling and the color bar is 

synchronized for the interpretation purpose. 

 

 

Figure 10. Evaluation between the reference set and the modeled 

result. The R2 here indicates how well the model fits to the 1:1 

line. 
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Figure 11. Importance of each variable explained as the mean 

increase in node purity (i.e., decrease in node impurity: Gini 

Index). The upper area shows more influential variables used in 

the random forest model for estimating the THI. 

 

5. CONCLUSIONS AND FUTURE WORK 

This work has focused on modeling the temperature-humidity 

index (THI) at a micro-scale unit by utilizing various remote 

sensing data obtained from both unmanned aerial system (UAS) 

and satellite data. The UAS was utilized to collect ultra-high 

resolution aerial imageries for both visible and thermal data, and 

mosaic imagery was produced for the scene. The structure from 

motion (SfM) method was used to develop a 3D model of the 

scene, and a digital surface model (DSM) of the area was 

extracted. The DSM was used to model the solar radiation and 

wind exposure, and the normalized difference vegetation index 

(NDVI) was collected via Sentinel-2B satellite. All of these data 

were used as the explanatory variables for the THI modeling 

using the random forest machine learning method. The results 

indicate that the micro details of THI trends, which cannot be 

seen from conventional approaches by using low resolution data, 

were successfully identified, thus revealing potential areas that 

might be exposed to higher THI and represent potential threat 

areas that could lead to health-related issues. Diffuse solar 

radiation was the most influential variable for the developed 

random forest model. The challenge of this study was integrating 

remote sensing data from multiple platforms at different 

resolutions or acquisition times. Indices such as the NDVI were 

carefully selected at the nearest day to the UAS observation, and 

the authors acknowledge that it would be the best if all data are 

collected on the same day to improve the modeling. 

For future work, a broader spatial extent can be considered, such 

as for the whole city, to identify the temporal and spatial 

characteristics of the high THI environment and the potential 

locations where such risks lie. Such work was not possible in the 

current study due to complex regulations and concerns for UAS 

flights within the city center. In addition, similar challenges may 

occur for where the impact of THI is considered to be more 

serious than Maebashi City, i.e., larger cities than Maebashi City, 

such as Tokyo, and subtropical or tropical cities outside of Japan, 

where more severe weather conditions are observed. The 

progress will be shared with the city in the future for supporting 

the development and planning of smart cities. 
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