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ABSTRACT:

Remote Sensing scene classification aims to identify semantic objects with similar characteristics from high resolution images.
Even though existing methods have achieved satisfactory performance, the features used for classification modeling are still limited
to some kinds of vector representation within a Euclidean space. As a result, their models are not robust to reflect the essential
scene characteristics, hardly to promote classification accuracy higher. In this study, we propose a novel scene classification method
based on the intrinsic mean on a Lie Group manifold. By introducing Lie Group machine learning into scene classification, the new
method uses the geodesic distance on the Lie Group manifold, instead of Euclidean distance, solving the problem that non-euclidean
space samples could not be calculated by Euclidean distance directly. The experiments show that our method produces satisfactory
performance on two public and challenging remote sensing scene datasets, UC Merced and SIRI-WHU, respectively.

1. INTRODUCTION

Remote sensing scene classification refers to distinguishing se-
mantic objects with similar scene characteristics from multiple
image categories and classifying them into scene types accord-
ingly. In other words, different remote sensing images in the
database are classified according to certain dominating features,
which make the extraction of image features a key to scene clas-
sification. In the past, many classical methods for extracting
image features have been developed, which are mainly divided
into three categories: (1) extracting feature descriptors directly
from images, by using methods such as the Scale-invariant fea-
ture transform(SIFT)(Dellinger et al., 2014, Sedaghat, Ebadi,
2015), Histogram of Oriented Gradients(HOG)(Qi et al., 2015,
Kaâniche, Bremond, 2012), and Local Binary Pattern(LBP)(Ren
et al., 2016, Xiao et al., 2018); (2) extracting continuous fea-
tures on the basis of image blocks, by using the Bag-of-visual-
words model (BoVW)(Zhao et al., 2014, Zhu et al., 2016) and
sparse matrix(Ye et al., 2014, Zhang et al., 2018); and (3) ex-
tracting features by training the deep learning models(Yang,
Newsam, 2010, Cheriyadat, 2013, Yang et al., 2015, Huang,
Yan, 2015, Zhang et al., 2015).

Each of the three methods mentioned above for extraction has
its advantages and disadvantages. The first method is simple
and easy to implement, but it contains very little information
about the semantic characteristics of the scene. Although the
classification accuracy of the second method is higher than that
of the first method, the processing process is more complic-
ated. The third method is developed in recent years, which does
not need to extract feature descriptors manually, and the classi-
fication effect on scenes is very good if a learning network is
well trained. Nevertheless, a deep network model needs a large
amount of data for training, which usually takes a long time for
computing and relies on highly configured device supports.

In addition to the above feature extraction methods, the con-
struction of scene classifiers is also very important. For ex-
ample, clustering is a powerful tool for data classification. It is
∗ Corresponding author (G. Zhu)

a kind of method for clustering a data set into groups with the
most similarity in the same cluster and the most dissimilarity
between different clusters(Aggarwal, 2014, Kaufman, Rousseeuw,
2009). Clustering methods mainly include a probability model-
based approach and a non-parametric approach. Among non-
parametric methods, partitional methods are most commonly
used. The k-means algorithm, as an example, is the earliest and
most famous method and has been proved efficient in remote
sensing image classification fields(Pelleg et al., 2000, MacQueen
et al., 1967, Jain, 2010, Kanungo et al., 2002).

Although the k-means model has been widely used in remote
sensing classification, it still has shortcomings. First, the k-
means method requires pre-setting the size of K value accord-
ing to previous experience, and the size of K value largely de-
termines the quality of subsequent classification results. Second
and more importantly, this model relies on the hypothesis that
all training samples satisfy the distribution on classic Euclidean
space. However, when the sample is in the manifold space, the
Euclidean spatial distance cannot accurately reflect the real dis-
tance of the sample, as shown in Figure 1.

In order to solve the above problems, a novel remote sensing
scene image classification method, which is based on the in-
trinsic mean of Lie Groups, is proposed in this study. In a Lie
Group, general means will be further treated as two types: in-
trinsic and extrinsic ones. Since the intrinsic mean is more able
to reflect the commonness between one category and another,
then an unknown sample will be closer to the intrinsic mean of
a category than other categories. Thus it is considered that the
unknown sample is most likely to belong to that category. To
this end, the sample-set will be mapped to the Lie Group man-
ifold space according to the category, and the intrinsic mean of
each category in the Lie Group manifold space is calculated.
For the unknown sample, only the geodesic distance of the in-
trinsic mean from the sample to each category is calculated, and
the category to which the intrinsic mean with the shortest dis-
tance belongs is thus determined.

The major contributions of this paper are as follows:
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1. We propose a strategy to classify the samples of Lie Group
in the space of Lie Group manifold, and implement the in-
trinsic mean classification algorithm within the Lie Group
according to this strategy.

2. We demonstrate that the intrinsic mean within a Lie Group
is more likely to reflect the commonality between one cat-
egory and another. When the sample is projected onto the
manifold space of the Lie Group, it has obvious advant-
ages such as few parameters and strong understanding.

3. Due to Lie Group samples do not belong to vector space,
Euclidean distance cannot be used as a classification met-
rics. Therefore, we propose a novel method of calculat-
ing the distance from geodesics based on the manifold
space, which can better reflect the spatial distance between
samples and has a better classification effect.

The rest of this paper is organized as follows. Section 2 presents
the proposed scene classification method based on the intrinsic
mean of Lie Group. In Section 3, the experimental results are
provided. Finally, the conclusion is given in Section 4.

2. METHODOLOGY

2.1 Definition of Matrix Lie Group

Let Mmn(K) be a matrix of m × n, in which each element
belongs to K, and K represents an (exchange) field. In most
cases, K is defined as R(real number) or K = C (complex
number). In this study, K is restricted as R (real number). Aij
or aij is used to represent the ith row and jth column of m×n
matrix A, so,

A = (aij) =

 a11 · · · a1n

...
. . .

...
am1 · · · amn

 (1)

In matrix theory, the determinant of a matrix is a mapping det :
Mmn(K)→ K, which has the following properties:

1. for any A,B ∈Mn(K), there is det(AB) = detAdetB.
2. det(In) = 1.
3. If and only if A ∈Mn(K), detA 6= 0, A is reversible.

There exists two very important matrix groups, namely general
linear group GLn(K) = {A ∈Mn(K)|detA 6= 0}and special
linear group SLn(K) = {A ∈Mn(K)|detA = 1} ⊆ GLn(K).
The set GLn(K) and SLn(K) constitute the group under mat-
rix multiplication. Further, there is SLn(K) ≤ GLn(K) , that
is, SLn(K) is a subgroup of GLn(K).

In this study, the matrix groups applied later are all subgroups
of GLn(K), and are all subgroups of GLn(R).

2.2 Intrinsic mean of Lie Group for remote sensing image
scene classification

The flowchart of the intrinsic mean of Lie Group for remote
sensing image scene classification is shown in Figure 2, where
this study divides the scene classification process into three por-
tions, i.e. 1)mapping the sample data set to a Lie Group man-
ifold space, 2)calculating the intrinsic mean of each category
in the Lie Group manifold space, 3)calculate the geodesic dis-
tance between the unknown sample and the intrinsic mean of
each category, and finally, the category of the unknown sample
is given.

2.2.1 Mapping operations The training sample set is mapped
to the Lie Group manifold space according to different cat-
egories, and the Lie Group sample data set on the Lie Group
manifold space is obtained after the mapping. Accordingly, we
get {Mij | i = 1, 2, · · · , c; j = 1, 2, · · · , ni}, where Mij rep-
resents the jth sample of the ith category in the sample training
set, and ni represents the number of training samples in the jth

category, with a total of c categories.

xij = exp(Mij) (2)

where xij represents a sample mapped to a Lie Group manifold
space.

2.2.2 Calculating intrinsic mean in the sample of Lie Group
As we can see, the intrinsic mean µ on manifold S1 is shown
in Figure 1-(a). The distance from each data point to µ is the
geodesic distance (curve length) on S1, and the intrinsic mean
obtained is also on S1. Figure 1-(b) is the average value ob-
tained by direct calculation of Euclidean distance, where µ ob-
tained by such calculation is called the extrinsic mean, and ob-
viously, the extrinsic mean is not in the manifold space, i.e. µ
shown in the Figure 1-(b) is in R2 instead of S1. In Rd, the
average value of {x1, x2, · · · , xn} ⊆ Rd set of n data points
can be calculated by the following equation,

µ =
1

nc

nc∑
i=1

xi (3)

where the sample xi can be a vector or matrix, and the obtained
µ can maintain the minimum sum of the Euclidean distance
squared of each point in {x1, x2, · · · , xn}, that is, µ can be
expressed as:

µ = arg min
x∈Rd

n∑
i=1

‖x− xi‖2 (4)

In general, an d-dimensional manifoldMd is not a vector space,
so the Euclidean distance cannot be used to represent the dis-
tance between two points on the manifold. Therefore the above
equation (4) cannot be directly applied to manifolds. But Md

is locally homeomorphic in Rd, so in the local domain of Mn,
by looking for a homeomorphic mapping, Φ : Md → Rd, the
local part of Md is embedded in Rd, and then the calculation
can be made in Rd by µΦ = arg min

x∈Md

∑n
i=1 ‖Φ(x)− Φ(xi)‖2.

At the same time, we need to define another projection mapping
π : Rd → Md, µ = π(µΦ), for mapping µΦ back to Md and
eliminating µΦ. The calculation equation can be obtained:

µ = π

(
arg min

x∈Md

n∑
i=1

‖Φ(x)− Φ(xi)‖2
)

(5)

In practical application, it is difficult to find the right two maps
at the same time, and Md doesn’t have to be one Φ to be all
embedded in Rd. A more reasonable solution is to use Riemann
distance onMd instead of φ function in equation (5) to calculate
the distance between any xi, xj ∈ Md directly on Md, rather
than in Euclidean space.

Therefore, similar to the case in the Euclidean space Rd, the
average value of a set point on Md can be achieved by calculat-
ing the point x, which must meet two conditions: (1) x ∈ Md,
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Figure 1. Difference of intrinsic mean and extrinsic mean.
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Figure 2. Proposed.

(2) the geodesic line of each point in x and {xi}n1 ∈ Md is
the minimum sum of squares. In a tight flow, an intrinsic mean
consisting of a collection of {xi}n1 data points n can be defined
as:

µ = x = arg min
x∈Md

n∑
i=1

d(x, xi)
2 (6)

where d(·, ·) represents the geodesic distance between two points
in parentheses.

From the above contents, it can be obtained that the distance
between any two points in the Lie Group is given by equation,

d(x1, x2) =
∥∥log2(x−1

1 x2)
∥∥ (7)

substitute it into equation(6), and obtain:

µ = arg min
x∈G

n∑
i=1

∥∥log2(x−1xi)
∥∥2

(8)

where G represents the manifold of Lie Groups.

According to the first order BCH equation approximate equa-
tion (8) on the right side of the ‖·‖ content, can obtained:

log2(x−1xi) = −log2(x) + log2(xi) (9)

where x and xi represent Lie algebras of points in Lie Groups,
respectively. Relatively accurate results can be obtained by ap-
proximating the first n-th derivative, which can be obtained
through experimental calculation. The latter approximate cal-
culation is very large, but the contribution to the results is very
small and can be ignored. Considering the substitution of first-
order approximation, the intrinsic mean equation can be ob-

tained:

µ̂ = arg min
x∈G

n∑
i=1

‖−log2(x) + log2(xi)‖2

= arg min
m∈G

n∑
i=1

‖−m+mi‖2
(10)

2.2.3 Algorithm Find the x ∈ G that meets the criteria ac-
cording to equation (9) and (10). In (Fletcher et al., 2003), the
process of solving µ̂ by gradient descent method is given, and
the optimization function is f(x) = 1

2n

∑n
i=1 d(x, xi)

2. The
gradient of function f is Of(x) = − 1

n

∑n
i log(x−1xi). When

estimate of the intrinsic mean for a given k iteration is µk, the
k + 1 iteration equation is µk+1 = exp( τ

n

∑n
i=1 log2(µ−1

k xi),
where τ is the step length. The specific solution algorithm of
the intrinsic mean in Lie Group is given by Algorithm 1.

Algorithm 1 The intrinsic mean algorithm of n category
Input: {xij}j=1,2···ni

i=1,2···c ∈ G, xij represents the ith sample in
the jth class distributed on the Lie Group G, ni represents
the number of training samples in the ith category, with
a total of c classes.
Output: µi, i = 1, 2 · · · c, the intrinsic mean for each category.
1 Do i = 1
2 k = 0
3 µ = xi1
4 Do
5 Oµ = τ

ni

∑ni
j=1 log(µ−1xij)

6 µ = exp(Oµ)
7 k = k + 1
8 While ‖Oµ‖ > ξ and k < Max Iters
9 µi = µ
10 i = i+ 1
11 While i 6 c

The gradient descent method is only local convergence, the
finding is not necessarily the globally optimal µ̂. In practice,
we can get a better effect by modifying the initial estimate µ0
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and step τ . The choice of τ is related to the manifold struc-
ture of Lie Group G. In(Buss, Fillmore, 2001) demonstrates
that τ = 1 is appropriate for spherical manifolds. When the
manifold structure of G is a vector space, the gradient descent
of τ = 1 is equivalent to the linear average, and if it is R+, Rd,
SO(3), τ = 1 is equivalent to the geometric average, and the al-
gorithm l can converge in a one-step iteration. For Lie Groups
under general circumstances, if the algorithm l cannot converge
when τ = 1, a smaller positive number can be set for τ appro-
priately. According to the characteristics of gradient descent
method, when the value of τ is too large, it may cross the ex-
treme point; while if the value is too small, the convergence
speed will be too slow.

2.2.4 Classification Owing the intrinsic mean is more able
to reflect the commonness between one category and another,
if an unknown sample is closer to the intrinsic mean of one
of the categories than other categories, it can be determined
that the unknown sample is most likely to belong to the closest
category. Therefore, a Lie-mean algorithm is designed based
on the intrinsic mean, by comparing the space manifold dis-
tance between the unknown sample and the trained sample Lie
Group intrinsic mean. The unknown sample is determined to
the category with the shortest distance. The specific discrimin-
ant equation is:

i∗ = arg min
i=1,2,··· ,c

n∑
i=1

∥∥log2(µ−1
i x)

∥∥ (11)

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Experiment setup

To evaluate the performance of the proposed method, we se-
lected two datasets, i.e.UC Merced dataset and the SIRI-WHU
dataset. In this study, each of the datasets was randomly split
into 75% for training and 25% for testing. And the experiment
on each data set was repeated five times, the average classifica-
tion accuracy was recorded finally.

3.2 Experiment on UC Merced dataset

The 21-class UCM land-use dataset(Yang, Newsam, 2012) was
designed from large optical images by the U.S. Geological Sur-
vey. The UCM dataset covers all typical regions of the United
States and includes 21 scene categories, each with 100 scene
images. Each scene image consists of 256 × 256 pixels with a
spatial resolution of 1 foot per pixel, as shown in Figure 3.

The scene classification results are reported in Table 1. The res-
ults of previous scene classification methods, such as BoVW,
pLSA, LDA, SPM+SIFT, SIFT+SC(Cheriyadat, 2013), SPCK
++(Yang, Newsam, 2011), S-UTF(Zhang et al., 2014),
GBRCN(Zhang et al., 2015), SAL-PTM(Zhong et al., 2015),
CCNN, SRSCNNNV(Liu et al., 2016), and SRSCNN were com-
pared. To keep things simple, CCNN denotes CNN without
random-scale stretching and voting, and SRSCCNNNV denotes
CNN with random-scale stretching but not voting. Table 1 shows
that our proposed method performs best among all compared
methods, with an overall classification accuracy of 96.71%, on
average 24.66% and 1.61% higher than the BOVW and SR-
SCNN, respectively. Figure 4 shows the confusion matrix es-
tablished on the UC Merced data set, indicating that the scene
mis-classification between categories has relative small percent-
age.

From Figure 4, we can see that our proposed method identifies
most of the scene categories, except dense residential, freeway
and medium residential. From this, we find that there is a ma-
jor confusion between the two categories of medium residen-
tial and dense residential because the intrinsic means of the Lie
Groups of medium residential and dense residential are very
close.

Methods OA(%)
BoVW 72.05
pLSA 80.71

SPCK ++ 76.05
LDA 81.92

SPM+SIFT 82.30
SIFT+SC 81.67

S-UTF 82.72
SAL-PTM 88.33
GBRCN 94.53
CCNN 90.07

SRSCNNNV 92.70
SRSCNN 95.10

PROPOSED 96.71

Table 1. Comparison of the previous reported accuracies with
the UC Merced Dataset.

3.3 Experiment on SIRI-WHU dataset

The SIRI-WHU dataset(Zhao et al., 2015) consists of 2,400
scene sample images mainly collected from China (see Figure
5). The dataset includes 12-classes, and each scene class con-
tains 200 images with a spatial resolution of 2 meters and a size
of 200× 200 pixels. Twelve categories cover agriculture, com-
merce, ports, idleland, industry, grassland, overpasses, parks,
ponds, residential buildings, rivers, and water.

Methods OA(%)
SPM-Sift 80.26
BOVW 73.93

LLC 70.89
LDA 66.85

SRSCNNNV 90.07
CCNN 89.60

SRSCNN 93.40
VGG-VD16 96.88

VGG-M(IFK) 95.10
Caffe features 93.42
PROPOSED 97.16

Table 2. Comparison with the previous reported accuracies with
the Google Dataset of SIRI-WHU

Table 2 compares the scene classification results by some com-
mon methods on SIRI-WHU datasets. Compared with the state-
of-art methods, the proposed method has the highest accuracy
with the overall classification accuracy as 97.16%, on aver-
age 0.28%, 2.06%, 3.74%, and 3.76% higher than the VGG-
VD16(Hu et al., 2015), VGG-M(IFK)(Hu et al., 2015), Caffe
features(Penatti et al., 2015), and SRSCNN, respectively. The
proposed method is still competitive in terms of low require-
ment for computational cost. Figure 6 shows the confusion
matrix established on the SIRI-WHU data set. Likewise, the
results based on the SIRI-WHU dataset can precisely recog-
nize the correct scenes with very low mis-classification percent-
age, compared with the confusion matrix derived from the UC
Merced dataset classification results.

From Figure 6, the classification accuracy of our proposed method
reaches 97%. In the category of misclassified scenes, such as,
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Figure 3. Some category examples from the UC Merced dataset: (a)agriculture, (b)airplane, (c)baseballdiamond, (d)beach,
(e)buildings, (f)chaparral, (g)denseresidential, (h)forest,(i)freeway, (j)golfcourse, (k)harbor, (l)intersection, (m)mediumresidential,

(n)mobilehomepark, (o)overpass, (p)parkinglot, (q)river, (r)runway, (s)sparseresidential, (t)storagetanks, (u)tenniscourt.

Figure 4. Confusion matrix of classification based on UC Merced dataset.
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Figure 5. Some example from the SIRI-WHU dataset: (a)agriculture, (b)commercial, (c)harbor, (d)idle land, (e)industrial, (f)meadow,
(g)overpass, (h)park, (i)pond, (j)residential, (k)river, (l)water.

Figure 6. Confusion matrix of classification based on SIRI-WHU dataset.
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industrial scenes are not well classified, and some river scene
images are misclassified as water, which is likely because the
river scene images contain more water. Therefore, these scenes
may be misclassified as the water scene.

3.4 Comparison between two results

The UC Merced dataset contains 21 categories, and the SIRI-
WHU dataset contains 12 categories. For the UC Merced data-
set, the average accuracy of our method can reach more than
96%, while for the SIRI-WHU dataset, the average accuracy
can reach more than 97%, and the classification accuracy of in-
dividual categories can reach 98%, which has obvious advant-
ages. From the experiment, we find that the classification accur-
acy is higher when there is a large difference between categor-
ies in the data set, on the contrary, the classification accuracy
is lower. For example, in the UC merged dataset, the classific-
ation accuracy of dense residential and medium residential is
lower than other categories, and it is easy to misclassification.
Further analysis, calculation, and analysis of the intrinsic mean
difference within the two categories of Lie Groups, we found
that the difference between the two categories is very small,
but it is quite different from other categories, which is the root
cause of their confusion. In addition, the method we proposed
is based on the design and development of Lie Group manifold
space. Therefore, only when the data samples meet the require-
ments of manifold space can the method have more advantages
and achieve higher classification accuracy.

4. CONCLUSION

In this study, we proposed a high-resolution remote sensing im-
age scene classification method based on the intrinsic mean of
the Lie Group. Compared with the existing methods, which
have a complex network structure, multiple parameters, and
complex calculations, this method has the advantages of high
accuracy, good computing performance, and low characteristic
dimensions. In addition, the method solves the problem that
non-euclidean space samples cannot be calculated by Euclidean
distance. Finally the experiments on UCM and Google Dataset
of SIRI-WHU demonstrate the effectiveness of the proposed
method.

In the future, we will continue to study the scene classifica-
tion method based on Lie Group machine learning to further
improve the accuracy of the classification and maintain high
computational performance.
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Kaâniche, M.-B., Bremond, F., 2012. Recognizing gestures by
learning local motion signatures of HOG descriptors. IEEE
transactions on pattern analysis and machine intelligence,
34(11), 2247–2258.

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D.,
Silverman, R., Wu, A. Y., 2002. An efficient k-means clustering
algorithm: Analysis and implementation. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 881–892.

Kaufman, L., Rousseeuw, P. J., 2009. Finding groups in data:
an introduction to cluster analysis. 344, John Wiley & Sons.

Liu, Y., Zhong, Y., Fei, F., Zhang, L., 2016. Scene semantic
classification based on random-scale stretched convolutional
neural network for high-spatial resolution remote sensing im-
agery. 2016 IEEE international geoscience and remote sensing
symposium (IGARSS), IEEE, 763–766.

MacQueen, J. et al., 1967. Some methods for classification and
analysis of multivariate observations. Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
1number 14, Oakland, CA, USA, 281–297.

Pelleg, D., Moore, A. W. et al., 2000. X-means: Extending k-
means with efficient estimation of the number of clusters. Icml,
1, 727–734.

Penatti, O. A., Nogueira, K., Dos Santos, J. A., 2015. Do deep
features generalize from everyday objects to remote sensing and
aerial scenes domains? Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, 44–51.

Qi, S., Ma, J., Lin, J., Li, Y., Tian, J., 2015. Unsupervised ship
detection based on saliency and S-HOG descriptor from optical
satellite images. IEEE Geoscience and Remote Sensing Letters,
12(7), 1451–1455.

Ren, J., Jiang, X., Yuan, J., 2016. Lbp-structure optimization
with symmetry and uniformity regularizations for scene classi-
fication. IEEE Signal Processing Letters, 24(1), 37–41.

Sedaghat, A., Ebadi, H., 2015. Remote sensing image matching
based on adaptive binning SIFT descriptor. IEEE transactions
on geoscience and remote sensing, 53(10), 5283–5293.

Xiao, B., Wang, K., Bi, X., Li, W., Han, J., 2018. 2D-LBP: an
enhanced local binary feature for texture image classification.
IEEE Transactions on Circuits and Systems for Video Techno-
logy.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-75-2020 | © Authors 2020. CC BY 4.0 License.

 
81



Yang, W., Yin, X., Xia, G.-S., 2015. Learning high-level
features for satellite image classification with limited labeled
samples. IEEE Transactions on Geoscience and Remote Sens-
ing, 53(8), 4472–4482.

Yang, Y., Newsam, S., 2010. Bag-of-visual-words and spa-
tial extensions for land-use classification. Proceedings of the
18th SIGSPATIAL international conference on advances in geo-
graphic information systems, ACM, 270–279.

Yang, Y., Newsam, S., 2011. Spatial pyramid co-occurrence for
image classification. 2011 International Conference on Com-
puter Vision, IEEE, 1465–1472.

Yang, Y., Newsam, S., 2012. Geographic image retrieval using
local invariant features. IEEE Transactions on Geoscience and
Remote Sensing, 51(2), 818–832.

Ye, M., Qian, Y., Zhou, J., 2014. Multitask sparse nonnegative
matrix factorization for joint spectral–spatial hyperspectral im-
agery denoising. IEEE Transactions on Geoscience and Remote
Sensing, 53(5), 2621–2639.

Zhang, F., Du, B., Zhang, L., 2014. Saliency-guided unsuper-
vised feature learning for scene classification. IEEE Transac-
tions on Geoscience and Remote Sensing, 53(4), 2175–2184.

Zhang, F., Du, B., Zhang, L., 2015. Scene classification via
a gradient boosting random convolutional network framework.
IEEE Transactions on Geoscience and Remote Sensing, 54(3),
1793–1802.

Zhang, J., Suo, Z., Li, Z., Zhang, Q., 2018. DEM Generation
Using Circular SAR Data Based on Low-Rank and Sparse Mat-
rix Decomposition. IEEE Geoscience and Remote Sensing Let-
ters, 15(5), 724–728.

Zhao, B., Zhong, Y., Xia, G.-S., Zhang, L., 2015. Dirichlet-
derived multiple topic scene classification model for high spa-
tial resolution remote sensing imagery. IEEE Transactions on
Geoscience and Remote Sensing, 54(4), 2108–2123.

Zhao, L.-J., Tang, P., Huo, L.-Z., 2014. Land-use scene clas-
sification using a concentric circle-structured multiscale bag-
of-visual-words model. IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, 7(12), 4620–
4631.

Zhong, Y., Zhu, Q., Zhang, L., 2015. Scene classification based
on the multifeature fusion probabilistic topic model for high
spatial resolution remote sensing imagery. IEEE Transactions
on Geoscience and Remote Sensing, 53(11), 6207–6222.

Zhu, Q., Zhong, Y., Zhao, B., Xia, G.-S., Zhang, L., 2016.
Bag-of-visual-words scene classifier with local and global fea-
tures for high spatial resolution remote sensing imagery. IEEE
Geoscience and Remote Sensing Letters, 13(6), 747–751.

Revised January 2020

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-75-2020 | © Authors 2020. CC BY 4.0 License.

 
82




