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ABSTRACT: 

 

This study aims to assess surface urban heat islands (SUHIs) pattern over the city of Zagreb, Croatia, based on satellite (optical and 

thermal) remote sensing data. The spatio-temporal identification of SUHIs is analysed using the 12 sets of Landsat 8 imagery 

acquired during 2017 (in each month of the year). Vegetation cover within the city boundaries is extracted by using Principal 

Component Analysis (PCA) data fusion method on calculated three vegetation indices (VI): Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI) and Ratio Vegetation Index (RVI) for each set of bands. The first principal component 

was used to compute the land surface temperature (LST) and deductive Environmental Criticality Index (ECI). As expected, the 

relationship between LST and all VI scores shows a negative correlation and is most negative with RVI. The environmentally critical 

areas and the patterns of seasonal variations of the SUHIs in the city of Zagreb were identified based on the LST, ECI and vegetation 

cover. The city centre, an industrial area in the eastern part and an area with shopping centers and commercial buildings in the 

western part of the city were identified as the most critical areas. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

The surface urban heat island (SUHI) is a phenomenon in urban 

environmental studies which represents the difference of land 

surface temperature (LST) between urban and neighbouring 

non-urban surfaces (Zhou et al. 2019). SUHI occurs in a 

different way from urban heat island (UHI) (Roth et al., 1989; 

Tran et al., 2006). UHI is mainly caused by the differences in 

radiative cooling between urban and rural areas during night-

time, while SUHI is mainly caused by the differences in 

radiative surface heating between urban and rural areas during 

the daytime (Choi et al., 2014). Furthermore, according to 

(Zhou et al. 2019), UHIs can be classified into two broad 

categories based on the way they are formed and on heights 

(Oke, 1982): “air” (or “atmospheric”) and “surface” UHIs. The 

UHI is usually measured by in situ observed air temperature 

data from meteorological stations on the ground (Nichol et al., 

2009) which can provide a high temporal frequency and 

accuracy. But it has limitations in regard to the spatial 

resolution that can be derived from the observing stations. Due 

to these limitations, the in situ measured air temperatures 

usually can‟t provide enough spatial details for detection and 

extraction of UHI. This fact affects the quality of the estimation 

of spatio-temporal variability in UHIs and the spatial 

distribution of it. In contrast, the SUHI is primarily measured by 

satellite thermal remote sensing data, which offers the ability to 

study the urban thermal environment at various spatial (from 

local to global scales) and temporal (daily, seasonally, and inter-

annually) scales (Pal et al., 2012, Zhou et al. 2019). With the 

increase in population and economic factors in cities, concrete 

areas increase and areas under urban vegetation decrease. These 

result in increased heat in cities. As a result, densely populated 

parts of the urban area become warmer than sparsely populated 

areas and areas with much vegetation. LST increases in the 

urban area compared to the surrounding rural landscape and 

forms the urban heat island effect (Oke, 1982). Authors Weng 

(2001), Badarinath et al. (2005), Mallick et al. (2008) have 

shown a relationship between LST, built-up, vegetation areas 

and UHI impact. 

 

Multi-temporal Landsat data have proven to be useful in the 

study of LST variations. The thermal band of Landsat imagery 

helps in the calculation of LST on the region of interest (Weng, 

2001, Chen et al., 2002). The high-LST regions correspond 

with high rising residential buildings and industrial areas with 

low vegetation coverage (Li et al. 2013). The vegetation cover 

inside the city boundaries affects the physical environment of 

the city. It helps in the selective absorption and reflection of 

incident radiation and also regulates the exchange of permanent 

and sensible heat (Gallo et al. 1995, Nichol 1996). Urban areas 

covered with vegetation reduce the possibility of creating 

SUHIs, while the removal of existing vegetation areas 

contributes to the formation of SUHIs (Foley et al., 2005; Wong 

and Yu, 2005). Consequently, the availability of vegetation 

cover is considered as an indicator of ecological sustainability 

in an urban community (Senanayake et al. 2013a). In this way, 

the maintenance and increase of vegetation surfaces in urban 

areas has become one of the most important activities in the 

effort of sustainable urban development (Bernatzky, 1982, 

Senanayake et al., 2013b). Temporal analysis of the relationship 

between LST and Normalised Differential Vegetation Index 

(NDVI) shows that the relationship amongst these varies 

temporally and NDVI arises as reliable tool for quantitative 

analysis of LST over different time in urbanised areas (Chen et 
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al., 2006). The negative differences of NDVI between urban 

and rural was analysed by Choi et al. (2014). They indicated 

that the fractional coverage and conditions of vegetation at the 

rural points were greater than those at the urban points during 

the daytime. In addition, Grover and Singh (2015) analysed the 

UHI in relation to NDVI. They used all the pixels of LST and 

NDVI in the regression analysis, where NDVI was considered 

as the independent and LST as the dependent variable, as LST 

has been found to be strongly determined by vegetation health 

(Yue et al., 2007, Zhang and Chen, 2010). 

 

Due to the importance of vegetation cover in LST and 

derivation of Environmental Criticality Index (ECI) 

(Senanayake et al. 2013a), two more vegetation indices: 

Enhanced Vegetation Index (EVI), Ratio Vegetation Index 

(RVI), beside NDVI,  are used to better estimate the emisivity, 

LST and ECI. EVI was used due to the fact that it was 

developed to improve the NDVI, and RVI is widely used for 

vegetation monitoring, specifically, at high density vegetation 

coverage. For better insight into the surface and vegetation 

conditions, data fusion was performed using the Principal 

Component Analysis (PCA) method with all three vegetation 

indices. Different characteristics of vegetation indices were 

extracted in this way. This study aims to analyse the association 

between built area, green cover and LST and ECI for the 

purpose of detecting and extracting SUHIs over the area of the 

City of Zagreb, Croatia.  

 

2. MATERIALS AND METHODS 

2.1 Study Area: City of Zagreb, Croatia 

Zagreb (45° 49' N, 15° 59' E) is a medium sized European city 

and capital of the of Republic of Croatia, located in the central 

part of the state on the plain bordered by the River Sava to the 

south and the Mt. Medvednica to the north (Figure 1). The 

urban area extends along the plain to Medvenica in the south 

and its slopes in the north. The gently sloping hills of the 

Medvednica Mountain (north of the Sava River) and the flat 

land between Medvednica and the Sava River make most of 

Zagreb. The climate of Zagreb is classified as an oceanic 

climate, but with significant continental influences and very 

closely bordering on a humid continental climate as well as a 

humid subtropical climate, with distinctive four seasons. Zagreb 

summers are usually warm and wet, but the temperatures can 

touch 32.2°C (90°F) during July and August at the peak of the 

season, particularly during a heat wave. Winters are cold, and 

the temperatures regularly drop below freezing with a moderate 

amount of snow and icy precipitation. Spring is mild and 

pleasant with unpredictable weather changes, which can push 

down the temperatures due to the prominent southerly winds. 

Autumn is temperate but rainy and foggy during the latter half 

of the season (Weather Atlas, 2020). A densely populated urban 

area with 792,875 citizens (according to the last population 

census in 2011), covering an area of 641.36 m², Zagreb is 

characterised by moderate urban expansion. The extent of the 

study area covers the entire municipality of Zagreb, while 

satellite images were processed within the administrative 

boundary of the City of Zagreb.  

 

2.2 Satellite and Meteorological Data 

USGS/NASA Landsat 8 satellite data (OLI and TIRS) covering 

Zagreb are used in this study for the calculation of LST during 

each season in 2017 (in total of 10 months). The data included 

Landsat 8 images obtained on January 20, February 14, March 

25, April 3, April 10, May 28, June 22, July 31, August 25, 

October 12, October 19 and December 6 (Table 1).  

 

Since there were no usable visible and near infrared Landsat 8 

images for the months of September and November (Zagreb 

area was covered with clouds), LST estimation was not made 

for these months. Bands 1–7 and 9 (with spectral range from 

0.433 to 1.390 µm) are acquired in 30 m resolution while 

thermal bands, 10 and 11 (with spectral range from 10.6 to 12.5 

µm), are acquired in 100 m resolution. Band 8 is the 

panchromatic band (with spectral range from 0.500 to 0.680 

µm) which can get more light at once and it‟s the sharpest of all 

Figure 1. Location map of the study area (left)  

and a Bing Aerial image showing the City of Zagreb 

administrative area with three meteorological stations:  

Grič, Puntijarka and Maksimir (right) 

Figure 1. Location map of the study area (left)  

and a Bing Aerial image showing the City of Zagreb 

administrative area with three meteorological stations:  

Grič, Puntijarka and Maksimir (right) 
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the bands, with a resolution of 15 meters. The downloaded 

Landsat 8 satellite images are in UTM (Universal Transvers 

Mercator) projection. Most continental vegetation, under 

normal circumstances, with the onset of late autumn (October, 

November), discard the leaves and enter a standstill. It usually 

ends in early spring (March, April) when the vegetation starts to 

bloom again. For these reason satellite images from April and 

October were selected to calculate the LST.  

 

 Satellite system Landsat 8 

Image dates 

20/01/2017   

14/02/2017   

25/03/2017     

03/04/2017 

10/04/2017   

28/05/2017    

22/06/2017   

31/07/2017   

25/08/2017   

12/10/2017   

19/10/2017   

06/12/2017 

Spatial resolution 30 m (B1-B7 & B9) 

Spatial resolution 100 m (B10 & B11) 

Radiometric resolution 12 bit 

Processing level 1T 

Table 1. Details of satellite images used in this study 

 

It should be noted that all Landsat 8 transit times above Zagreb 

occurred between 9:39 and 9:45 UTC and all available images 

were recorded during the day (morning). So, an insight into the 

LST during the night hours when the impact of urban heat 

islands is more pronounced was not gained. 

 

MAKSIMIR 

Measured land 

temperatures at a 

depth of 2 cm [°C] 

Linearly 

modelled 

land 

temperatures 

at 09:40 

UTC [°C] 

Date and time of data 

collection 
07:00 h 14:00 h 

20/01/2017 (winter)  -4.4 -0.2 -2.2 

14/02/2017 (winter) -0.7 10.2 5.0 

25/03/2017 (spring) 8.0 25.0 16.9 

03/04/2017 (spring) 10.1 29.8 23.2 

10/04/2017 (spring) 11.0 33.1 25.7 

28/05/2017 (spring) 21.4 36.8 31.7 

22/06/2017. (summer) 24.2 44.8 37.9 

31/07/2017 (summer) 25.0 43.1 37.1 

25/08/2017 (summer) 21.4 40.4 34.1 

12/10/2017 (autumn) 9.0 22.1 17.7 

19/10/2017 (autumn) 5.8 22.0 16.6 

06/12/2017 (winter) -0.7 6.7 3.2 

Table 2. Terrestrial (in situ) land temperatures form Croatian 

Meteorological and Hydrological Service measured at a depth 

of 2 cm and linearly modelled land temperature at 09:40 UTC 

(in °C) at Maksimir meteorological station 

 

Meteorological data were obtained for the same dates from the 

Croatian Meteorological and Hydrological Service (CMHS). 

Data were collected from three meteorological stations in 

Zagreb: Grič and Puntijarka which measure air temperature, and 

Maksimir, where air and soil temperatures are measured (Table 

2). CMHS data were used to compare with the LST results, that 

is, to analyse the approximate accuracy of the calculated LSTs. 

 

Grič meteorological station is located near the city center (urban 

environment), Puntjarka station on the northern slope of 

Medvednica (rural area) that is mostly covered by forest, and 

Maksimir station is located within a city park surrounded by 

buildings (mixed environment) (Figure 1). Land temperatures 

for the UTC time of 09:40 h when all the satellite images used 

in this study were collected, were linearly modelled relatively to 

the in situ measured temperatures at Maksimir station at 07:00 

and 14:00 h, for the dates indicated. 

 

2.3 Vegetation Indices and Principal Component Analysis 

Because vegetation surfaces play an important role in 

minimising the possibilities for the creation of SUHI and 

calculation of LST, special attention was given to the 

calculation of the vegetation index (VI). A similar study was 

conducted and presented in Kayet et al. (2016), and a 

methodology has been proposed for the relationships between 

multiple vegetation indices and LST based on thermal remote 

sensing data. The author's conclusion is that the 

experimentation in this field needs to increase. In this study, we 

used multiple vegetation indices in the process of computing 

LST. Normalized Difference Vegetation Index (NDVI), the 

Enhanced Vegetation Index (EVI) and the Ratio Vegetation 

Index (RVI) are used to enhance the vegetation present in the 

observed area. NDVI (Kriegler et al., 1969) is the common 

vegetation index referring to VI. The ratio of the NIR and red 

band is used for the calculation because the absorption by 

chlorophyll of these two bands of the electromagnetic spectrum 

is the highest (Bindi et al. 2009). NDVI was calculated using 

the (Landsat 8) red (B4) and near-infrared (B5) bands with the 

Equation (1):  

 

     (
         

         
)    (

     

     
)                            

 

EVI (Huete et al., 1997) was developed to improve the NDVI 

by optimizing the vegetation signal in Leaf Area Index (LAI) 

regions by using the blue reflectance to correct for soil 

background signals and reduce atmospheric influences. This VI 

is therefore most useful in LAI regions, where the NDVI may 

saturate. EVI was calculated using the (Landsat 8) blue (B2), 

red (B4) and near-infrared (B5) bands with the Equation (2):  

 

          
         

                       
 

 

      
     

                
                         

 

A common practice in remote sensing is the use of band ratios 

to eliminate various albedo effects. In case of using RVI 

(Jordan, 1969), the vegetation isoline converges at origin. And 

it is calculated with the Equation (3): 

 

    
    

    
 

  

  
                                          

 

The fusion of the NDVI, EVI and RVI was performed using the 

principal components analysis (PCA) to better evaluate and 

define vegetation cover. In this case, the input for LST 

calculation is the first principal component calculated from 

NDVI, EVI and RVI (PC1_NDVI-EVI-RVI = PC1_NER). 
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2.4 Land Surface Temperature Calculation from Landsat 8 

Thermal Bands 

Averaged values of both thermal bands (10 and 11) of the 

Landsat 8 images were used to calculate the LST distribution 

pattern of the city of Zagreb using remote sensing and image 

processing techniques (Figure 3). The spectral range of these 

thermal bands is from 10.60 to 11.12 µm and 10.50 to 12.51 µm 

respectively. Landsat 8 Data Users Handbook describes the 

retrieval method of LST from the thermal band of an image 

(USGS, 2019). In terms of atmospheric correction, the digital 

number (DN) values of all 12 visible and thermal bands were 

converted to spectral radiance values by using offset (bias) and 

gain values of the images as shown in the Equation (4) provided 

by the Landsat 8 Handbook (USGS, 2019): 

 

                                                 
 

where          = the spectral radiance of termal band in 

W/(m² ster mm), 

 Gain = the gain value for a specific band, 

 DN = quantised calibrated pixel value, 

Bias = the bias value for a specific band. 

 

These Gain and Bias values are found in the metadata file 

provided in satellite data (USGS, 2019). Effective at-satellite 

temperatures in Kelvin (T) by applying the inverse of the Planck 

function are calculated using the Equation (5) (Aniello et al., 

1995; Chen et al., 2006; Li et al., 2012): 

 

  
  

  (
  

       
  )

                                         

where  T = Effective at-satellite temperatures in Kelvin (K), 

 K2 = Calibration constant 2 in Kelvin (K), 

 Kl = Calibration constant 1 in mW/(cm² µm). 

 

K2 and K1 vary with the type of sensor and are given in the 

metadata file. To relate the at-satellite brightness temperature 

and LST, emissivity properties of objects play an important 

role, and it is necessary to make the corrections using emissivity 

values of land use classes to estimate the real LST. For that 

purpose, Landsat 8 bands were classified using maximum 

likelihood classification method to identify the land use classes 

in the city of Zagreb. Subsequently, water bodies, vegetated 

areas, and bare lands and built-up areas were assigned with the 

emissivity values of 0.990, 0.985, 0.950 and 0.946, respectively 

(modified from Ramachandra and Kumar, 2009). The emissivity 

corrected LST values were then computed by using the Equation 

(6) (Senanayake et al. 2013a, Barane and Dwarakish, 2017): 

 

   
 

            
                                     

 

where  TS = the emissivity corrected LST in Kelvin (K), 

 λ = the wavelength of emitted radiance, 

 q = hc K-11 (1.438 * 10-2 mK, 

 h = Planck‟s Constant (6.626 * 10-34J s-1), 

 c = the velocity of light (2.998 * 108 m s-1), 

 K = Boltzman constant (1.38 * 10-23 J K-1), 

 ε = surface emissivity. 

 

The calculated temperature values in Kelvin were converted to 

Celsius degrees by using the Equation (7): 
 

                                                   

Figure 3. Annual distribution of land surface temperature (LST) in the year 2017 on the City of Zagreb area (Čmrlec, K., 2019) 
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2.5 Emissivity Correction 

In the Equation (6), only emissivity is an unknown value and 

needs to be predicted. It is mentioned in (Barane and 

Dwarakish, 2017) that the method based on LU/LC classified 

map is the simplest one, but the accuracy of LU/LC 

classification has significant influence on emissivity prediction, 

especially when using Landsat 8 satellite images with a spatial 

resolution of 30 m. In this research, the method which uses ratio 

values of vegetation and bare land was conducted. It is an easy 

to use method to predict emissivity which using NDVI image 

(in this case, the first principal component calculated from 

NDVI, EVI and RVI: PC1_NER) as given by Sobrino et al. 

(2004) with the Equation (8): 

 

                                                        
 

where  Pv = proportion of vegetation obtained (Carlson et al., 

1997), Equation (9). 

 

                        (
            

               
) 

 

                      (
                  

                     
)                         

 

2.6 Environmental Criticality Index Retrieval 

In an analysis conducted in (Senanayake et al. 2013a), the 

authors concluded that LST and NDVI have direct and 

inversely proportional relationships, respectively, with the 

environmental criticality level of the analysed area. Based on 

this fact, they defined a deductive Environmental Criticality 

Index (ECI) as shown in the Equation (10) to identify the level 

of combined environmental criticality based on LST and 

availability of vegetation surface. 

 

             
                    

                     
                          

 

where                        = LST, values histogram 

stretched from 1 to 255, 

                      = NDVI, values histogram 

stretched from 1 to 255. 

 

The pixel values of the raster used for ECI computing are 

stretched from 1 to 255 to increase clarity and contrast in the 

results and to avoid infinite small values in NDVI. In this study, 

                      has been replaced with 

                        . ECI is calculated to show the impact 

of SUHIs on urban areas, i.e. to show where surface heat islands 

have the greatest impact with respect to land cover. 

 

3. RESULTS AND DISCUSION 

Atmospheric correction of the Landsat 8 bands was conducted 

using the Fast Line-of-Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) (ENVI, 2009) in the ENVI 5.0 software 

package applying the data provided in the included metadata 

files. Vegetation indices (VI) were also calculated in the same 

software package along with principal component analysis 

(PCA). The land surface temperatures (LST) and environmental 

criticality indices (ECI) were calculated within QGIS using the 

Remote Sensing & GIS plugin (Barane, 2017). 

 

3.1 Spatial Distribution of Land Surface Temperature 

In this research VI, LST and ECI are calculated over Zagreb 

area for each month in 2017. Greater attention has been given to 

calculations of VIs. For this purpose, NDVIs, EVIs and RVIs 

were calculated for each season (Table 1) in 2017, and the PCA 

fusion of their data was performed. The first principal 

component (PC1_NER) was used in the LST calculation, in 

addition to Landsat 8 thermal bands. 

 

The correlations between LST and NDVI, RVI, SAVI show 

poor negative correlation on 25 randomly collected sample 

points from LST raster and VIs (respectively: -0,28436; -

0,36028; -0,44548) (Table 3). 

 

Correlation NDVI EVI RVI 

LST -0,28436 -0,36028 -0,44548 

Table 3. Correlations between LST and NDVI, EVI and RVI 

 

 

Figure 4. LST and air temperatures in 2017 

 at the meteorological station Maksimir 

 

 

Figure 5. Differences between in situ measurements of LST (at 

a depth of 2 cm), air temperature and retrived value of LST in 

the area of the meteorological station Maksimir for 2017 

 

 

Figure 6. Correlation between retrieval LST (blue data) and in 

situ measurements of LST (at a depth of 2 cm) (red data) at the 

Maksimir meteorological station 
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The warmer areas are residential areas north (densely populated 

downtown) and south of the Sava River (densely populated 

newer part of the city), as well as densely populated areas on the 

slopes of Medvednica. Colder places are the areas along the 

Sava River, parks, peripheral rural areas in the south and north 

and the sparsely populated northern slopes of Medvednica. The 

visual interpretation reveals that the hottest area is the strict 

center of the city, which lies in the plain between the Sava River 

in the south and the Medvednica Mountain in the north. 

 

For the purpose of accuracy estimation of the derived LSTs ((5), 

(6) and (7)), the comparisons of land and air temperature were 

measured in situ and from retrieved LST (Figure 4) on 

corresponding pixels, noting that the in situ LST values and air 

temperature were linearly modelled for the purpose of 

estimating the temperature in the moment of the satellite 

passing over Zagreb. The difference between in situ and 

retrieved LST is the greatest in summer (in situ values are 

higher) and the smallest in winter (retrieved values are greater) 

(Figure 5). On the other hand, the largest differences between in 

situ measured air temperatures and retrieved LST values are the 

greatest in spring and the least in summer (Figure 5). 

 

A correlation between in situ measured LST and air 

temperature, and derived LST values was performed. The high 

correlations (between in situ and derivative LST is 0.974 and 

between in situ air temperature and derivative LST is 0.977, 

Figure 6) justify the use of the methodology based on thermal 

remote sensing data (Landsat 8) for the calculation of LST. 

 

3.2 Spatial Distribution of Environmental Criticality Index 

ECI (Senanayake et al. 2013a) was calculated as shown in the 

Equation (10) to identify the level of combined environmental 

criticality in the city of Zagreb on the basis of LST and existing 

vegetation cover. One LST was made for each season. This was 

done by averaging the LST over all months of one season. The 

same was done with calculated VI (PC1_NER). This is the 

input to calculating ECI for each season. The number of classes 

within the LST and ECI rasters depends on the climate, i.e. air 

temperature. Due to the values of temperature and condition of 

vegetation in each season, spring, summer and autumn have one 

common classification, while winter has a different 

classification of LST values. Air and soil temperatures reach 

maximum values during summer days, and vegetation is at its 

peak, so the contrast within the LST is the strongest. Due to the 

low temperature values, winter LSTs were not taken into 

account when calculating the final ECI value because they 

would be too averaged (this can easily be observed in Figure 3). 

Therefore, the final ECI was calculated by averaging the LSTs 

for spring, summer, and autumn (Figure 7). ECIs and LSTs 

were used to detect SUHIs. Given that the area of interest is an 

urban area dominated by the areas with buildings with little 

vegetation cover, ECI is a function of (mostly) LST and has the 

highest values in the city centre area. A look at the final ECI 

shows the supposed locations of SUHI in the City of Zagreb.  

 

3.3 Hot Spots Determination 

The LST is always lower in areas covered with vegetation and 

water bodies, and in some instances creates sharp boundaries 

between regions with high LSTs. According to LST and ECI 

maps of Zagreb, most of the SUHIs identified are located away 

from water bodies (the River Sava, Jarun Lake) and large 

forested areas of the northern slopes of Medvednica. The study 

reveals that the areas north and south of the Sava River have 

great LST values mainly due to dense build up area. One of the 

largest high-temperature zones is in the city centre (Figure 7) 

Figure 7. Environmental criticality index (ECI) 

in the city of Zagreb during 2017 (left) and 

spatial distribution of ECI in the Zagreb city 

centre (right) with Park Zrinjevac and Botanical 

Garden (in poligons) with the lowest ECI 
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mainly due to anthropogenic land use. Dense concrete blocks of 

buildings are intersecting with asphalt streets (with a few trees) 

where heavy traffic is taking place (Figure 7). In the City of 

Zagreb, beside the city centre, the most common locations of 

SUHIs are in Žitnjak (industrial zone in the east), Jakuševac 

(garbage dump), Prečko and Jankomir (shopping centers and 

commercial buildings in the west). Larger areas covered by low 

vegetation and parks (Zrinjevac and Botanical Garden 

downtown (Figure 7), Maksimir in the east, Bundek in the 

central and Jarun in the western part of the city) can also be 

observed within the urban area with lower LST and ECI values. 

The ECI map was overlaid on Google Maps (Figure 7) to detect 

sites of increased surface temperature, or places of potential 

SUHIs. 

 

The initial objective of this research for the purpose of detecting 

potential SUHIs and creating the basis for further research 

involving experts in the fields of meteorology, agronomy, 

forestry, sociology, to create a detailed picture of SUHI and 

measures to reduce this problem in the City of Zagreb was 

accomplished by making LSTs and ECIs maps. 

 

4. CONCLUSION 

In this study, locations of SUHIs and environmentally critical 

areas based on LST and ECI distribution and vegetation cover 

were identified in the city of Zagreb, Croatia. This was done 

with the integration of the daily satellite remote sensing Landsat 

8 data and in situ measured air and land temperature on three 

meteorological stations in every month in 2017 (except for 

September and November which were cloudy). A comparison of 

in situ and satellite data showed that LST and ECI derived from 

the Landsat 8 spectral and thermal data are a good base for 

SUHI detection. Retrieved LST can evaluate urban surface 

temperature by quantity and in spatial patterns. The PCA 

method of image fusion (vegetation indices) was implemented 

to reduce redundant data from multiple VIs (NDVI, EVI, RVI) 

and to create a product that contains the highest percentage of 

variance of the entire set. Vegetation indices comparable to the 

NDVI, like EVI and RVI are useful measures in getting better 

perspective to the condition of vegetation cover and the relation 

to built-up areas and water bodies. 

 

The Zagreb city centre, Jankomir in the western part and Žitnjak 

in the eastern part of the city were identified as the 

environmentally most critical region based on LST and ECI. 

Concrete and asphalt surfaces, roofs of buildings with low 

albedo and parking lots were identified as the major sources of 

high values of LSTs.  On the other hand, the areas with lower 

LST values are also located, such as the areas along the banks 

of the Sava River, Parks Maksimir, Zrinjevac, Bundek and the 

Botanical Garden that break down the texture of high value LST 

areas within city borders.  

 

Considering that the use of satellite remote sensing data allows 

a time and cost-effective methodology for detecting the SUHIs, 

the results of this and similar studies can be used for future 

urban development and planning the projects intended for the 

increase in vegetation areas in urban areas and reducing the 

impact of SUHI on the urban population. The continuation of 

the research is aimed at analysing LST and ECI over a long 

period of time in order to identify trends in the movement of 

LST and to involve experts in the field of meteorology, 

agronomy, forestry, civil engineering, sociology for the purpose 

of analysing other parameters affecting the value of LST. 
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