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ABSTRACT:

Man-made impervious surfaces, indicating the human footprint on Earth, are an environmental concern because it leads to a chain
of events that modifies urban air and water resources. To better map man-made impervious surfaces in any region of interest
(ROI), we propose a framework for learning to map impervious areas in any ROIs from Sentinel-2 images with noisy reference
data, using a pre-trained fully convolutional network (FCN). The FCN is first trained with reference data only available in Europe,
which is able to provide reasonable mapping results even in areas outside of Europe. The proposed framework, aiming to achieve
an improvement over the preliminary predictions for a specific ROI, consists of two steps: noisy training data pre-processing and
model fine-tuning with robust loss functions. The framework is validated over four test areas located in different continents with a
measurable improvement over several baseline results. It has been shown that a better impervious mapping result can be achieved
through a simple fine-tuning with noisy training data, and label updating through robust loss functions allows to further enhance the
performances. In addition, by analyzing and comparing the mapping results to baselines, it can be highlighted that the improvement
is mainly coming from a decreased omission error. This study can also provide insights for similar tasks, such as large-scale land
cover/land use classification when accurate reference data is not available for training.

1. INTRODUCTION

The global man-made impervious surface, consisting of build-
ings, roads, and other man-made structures, is a crucial indica-
tor of the human footprint on Earth. It provides a possibility
for evidence-based decision making with respect to various ap-
plications and challenges such as climate change, disaster man-
agement, and sustainable development (Pesaresi et al., 2016).
Like any other classification tasks, impervious area mapping
can be performed using deep learning (DL) approaches, that
have proved to be very powerful tools (Zhu et al., 2017, Lang
et al., 2019).

Despite the success of deep neural networks in the remote sens-
ing (RS) field for various supervised learning tasks such as land
cover classification and change detection, its superior perfor-
mance highly depends on the availability of massive training
data with accurate annotations. Without them, the performance
of DL would inevitably suffer because deep neural networks
can overfit to the noise in the training data (Zhang et al., 2016).
Even though DL is shown to be robust to non-adversarial label
noise, the required amount of clean data increases as there are
more noisy labels (Rolnick et al., 2017). This aspect is crucial
for RS, because collecting reliable training labels for extended
areas or even on a global scale is a costly and error-prone task.
On the other hand, there is a large amount of geospatial data
products available from previous efforts. In the case of built-
up area/human settlement/impervious area mapping, examples
include the Global Urban Footprint (GUF) (Esch et al., 2012,
Esch et al., 2013), the Global Human Settlement Layer (GHSL)
(Corbane et al., 2017), the GlobeLand30 land cover map (Chen

∗Corresponding author

et al., 2017), and the Global Human Built-up And Settlement
Extent (HBASE) Dataset (Wang et al., 2017). To fully exploit
such datasets for training, however, one has to take into account
the errors they, as predictions of machine learning approaches,
may contain, due to temporal gaps or inaccuracy in the original
processing chain. In addition, the classes in the reference data
might have a slightly different definition from those to be con-
sidered for the task at hand. Therefore, how to robustly learn a
superior model from potentially noisy reference data is a prob-
lem of great importance, especially in deep learning applied to
remote sensing.

The idea of learning from noisy samples is based on the desire
to better exploit the reliable samples of the training set, while
being less impacted by the unreliable ones. For this purpose,
it is critical to distinguish the reliable or clean samples from
the others (Chen et al., 2019, Han et al., 2018, Northcutt et al.,
2017).

A first way to deal with this problem is resorting to different
forms of regularization algorithms and avoiding the overfitting
to noisy labels (Damodaran et al., 2019, Han et al., 2018, Ma
et al., 2018). Another approach is to explicitly or implicitly
model the noise using a noise transition matrix that is either
based on prior knowledge or learned using e.g. directed graph-
ical models or conditional random fields (Patrini et al., 2017,
Sukhbaatar, Fergus, 2014). A third idea is to use noise-tolerant
loss functions such as mean square error and mean absolute er-
ror, which theoretically guarantee a good results according to
statistical learning principles (Zhang, Sabuncu, 2018, Reed et
al., 2014). In a different way, inaccurate labels can be also cor-
rected and updated during the iterative training process with a
bootstrapping scheme. This can be carried out either by alterna-
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tively updating network parameters and correcting labels during
the training process (Reed et al., 2014, Tanaka et al., 2018) or
by means of an independent prediction step based on selected
reliable samples.

Inspired by the related work about learning from noisy samples,
in this study, we propose a framework to exploit noisy training
samples from existing maps (called reference data from hereon
in order to distinguish it from actual ground truth) to improve
baseline mapping results achieved by means of attention-based
FCNs. In this framework, robust loss functions for fine-tuning
of the pre-trained models are used so that the employed original
reference data labels can be modified during the fine-tuning of
the pre-trained model. This way, the adverse effect of incorrect
labels can be alleviated.

The remainder of this study is organized as follows. Section 2
contains a description of our proposed framework including the
general idea and details of the specific implementation used in
this study. In Section 3, we introduce the experimental design
as well as the used data and experimental setup. We compare
our achieved results from different approaches with each other
and with the state-of-the-art in Section 3.2 and 3.3. An interpre-
tation and discussion of the outcome of our experiments is also
presented along with the results. Finally, Section 4 summarizes
the main findings and contributions of this study.

2. A FRAMEWORK FOR LEARNING FROM NOISY
REFERENCE DATA

The proposed framework is illustrated in Fig. 1. The focus of
this study is highlighted by colorization. The main part is to
improve the preliminary mapping results of specific areas via
fine-tuning of the pre-trained model, where we propose to con-
sider using robust loss functions because the employed refer-
ence data is not absolutely accurate with respect to our target
task. Instead of using the default loss function for classifica-
tion problems, i.e. binary cross-entropy, we propose to use two
kinds of robust loss functions, which are able to consider noises
within the reference labels during training. To compare the per-
formance of different approaches, we chose to map test areas
that are far from the training sites and as a result might be sub-
ject to domain shift.

The network architecture for the first preliminary prediction and
the subsequent finetuning, our choice and preparation of refer-
ence data used for fine-tuning, and the employed robust loss
functions will be presented in detail in the following sections.

2.1 Attention-based FCN for MIS mapping

The adapted attention-based FCN-ResNet architecture is illus-
trated in Fig. 2. The main part is a ResNet-based FCN-8s,
which is chosen to capture spectral and spatial local features
by multi-scale feature fusion (Long et al., June 8–10, 2015).
In addition to this ResNet-based FCN-8s, we employ attention
modules: a position attention module (PAM), and a channel at-
tention module (CAM). PAM and CAM together, in a parallel
manner is called dual attention module. These attention mod-
ules, on the one hand, are similar to a “feature selection” pro-
cess where salient features are being assigned larger weights.
On the other hand, they are assumed to learn additional features
by taking into account the long-range contextual information
over both the channel dimension and the spatial dimension (Fu

Figure 1. The framework for learning from noisy reference data
for impervious area mapping, with the main content colorized.

et al., 2018). In this way, the feature representation can be fur-
ther improved and enhanced. The sum of the output features of
the modules is subsequently exploited for the prediction of the
HSE. Additionally, this architecture is adapted for HSE map-
ping by outputting a final prediction of the half-size, instead of
the same size as the input images, as illustrated in Fig. 2. This
is realized by removing one up-sampling layer from the orig-
inal FCN-8s. This architecture results in a HSE classification
map with 20 m GSD, which is the same as the GSD of the used
reference data during the preliminary training.

2.2 Reference data preparation for fine-tuning

When ground truth data collecting is not desired for training
models, data from existing maps (the so called reference data)
can be used. To this aim, in this study a combination of points
extracted from the GUF map and from the one obtained by a
pre-trained model is used. Specifically, if in one location the la-
bel is non-built-up according to GUF and non-urban according
to the DL pre-trained model, that location will be added to the
non-impervious training set. In all other cases, it will be added
to the impervious training set. This decision is based on the ob-
servation that GUF is strong at detecting sparsely built-up areas
in villages or suburban areas and the predictions from the DL
model include roads and other impervious surfaces (Esch et al.,
2017, Qiu et al., 2020).

Considering the errors in the original data, it is certain that there
is some noise in the labels. Accordingly, the use of these data
to refine DL predictions for a specific test area should be per-
formed carefully. This is the reason why robust loss functions
has been applied to the fine-tuning of the pre-trained models.

2.3 Model Fine-tuning via Robust Loss Functions

CNN training is based on updating the network weights to min-
imize a loss function that expresses the divergence between the
model predictions and the reference labels. If the labels are
noisy, the weights update can be sub-optimal, thus hindering
model convergence or even worse leading to overfitting to the
noisy input data. Loss functions that are robust against label
noise are helpful because they rely less on the labels in the
reference data. In this study, we propose to use two kinds of
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Figure 2. Attention-based FCN-ResNet architecture. “H”, “W”, and “C” denote height, width, and the channel number of the feature
maps, respectively. The size of the final prediction is half of the input patch, which is decided based on the GSD of the used reference

data during the preliminary training.

robust loss functions that are both modifications of the categor-
ical cross-entropy (CCE) loss commonly used for classification.
The original CCE loss is defined as

Lcce = −
K∑

k=1

yklog(ŷk), (1)

where yk is the k-th element of the target label represented by a
one-hot encoded vector. ŷk is the k-th element of the predicted
class probabilities, and K is the number of classes. The case of
impervious area mapping is a binary classification problem, so
the loss is simplified into binary cross-entropy (BCE):

Lbce = −(yklog(ŷk) + (1− yk)log(1− ŷk)) (2)

Instead of directly using the original labels, the Lsoft loss func-
tion dynamically changes the target labels based on the current
state of the model:

Lsoft = −
K∑

k=1

[βyk + (1− β)ŷk]log(ŷk) β ∈ [0, 1] (3)

where β is a parameter to be selected according to the con-
fidence in the reference data. Specifically, instead of directly
using the label in the reference data for loss calculation, Lsoft
updates the label by combing it with the current prediction from
the model. In this way, both the predictions and the reference
data are used for loss calculation, a procedure mentioned as soft
bootstrapping in (Reed et al., 2014). As a result, the potentially
noisy samples are less heavily relied during fine-tuning.

A second option is theLq loss function, a generalization of CCE
and mean absolute error (MAE) proposed in (Zhang, Sabuncu,

2018):

Lq = −
1− (

∑K
k=1 ykŷk)

q

q
q ∈ (0, 1] (4)

where q is a hyper-parameter that controls how CCE and MAE
are combined: Lq is equivalent to CCE when q → 0, and be-
comes MAE when q = 1. The idea is to take advantage of
the benefits of both CCE and MAE, as successfully shown in
(Fonseca et al., 2019).

3. EXPERIMENTAL RESULTS AND DISCUSSION

To validate the proposed framework, a number of experiments
with Sentinel-2 images have been performed.

3.1 Experimental Setup

The original reference data for the preliminary training comes
from five European scenes, Berlin, Lisbon, Madrid, Milan, and
Paris, as indicated in Fig. 1, which is with a GSD of 20 m
(Langanke, 2016). The test areas have been selected across the
world to better assess the potential of the framework. Specif-
ically, in this study four sites were selected for test: Beijing,
Jakarta, Nairobi, and Tehran. For each test scene, checking
points for accuracy assessment (manually labeled grid-based
checking point, MLGCPs) were prepared, as presented in Fig.
3. Only the Sentinel-2 bands with 10 and 20 meter spatial reso-
lution were considered. More details of reference and Sentinel-
2 data pre-processing, and MLGCPs can be found in the previ-
ous work (Qiu et al., 2020).

In the first stage, the input images and their corresponding ref-
erence labels (from the five European scenes) are used to train
the network with the Nesterov Adam optimizer implementation
of Keras (Chollet et al., 2015). We used a minibatch size of 8
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Table 1. OA and Kappa values for different approaches in the four test cities. Boldface indicates there is an improvement over results
from pre-trained classifiers (Pre), and red color indicates an improvement over the default fine-tuning approach (BCE).

approach
OA Kappa

Beijing Nairobi Tehran Jakarta Mean Beijing Nairobi Tehran Jakarta Mean

baseline GUF 82.1 85.5 88.0 81.7 84.3 0.64 0.70 0.76 0.60 0.68
pre 86.3 84.2 89.5 86.9 86.7 0.73 0.68 0.79 0.71 0.73

fine-tuning

BCE 86.0 89.1 89.0 87.9 88.0 0.72 0.78 0.78 0.72 0.75

L soft

0.1 86.0 89.1 90.9 87.5 88.4 0.72 0.78 0.82 0.71 0.76
0.3 87.1 87.9 90.0 87.7 88.2 0.74 0.75 0.80 0.72 0.75
0.5 87.4 88.5 90.0 87.1 88.2 0.75 0.77 0.80 0.70 0.75
0.7 87.4 91.5 90.4 87.9 89.3 0.75 0.83 0.81 0.72 0.78

L q

0.3 86.3 90.9 90.0 87.5 88.7 0.73 0.82 0.80 0.71 0.76
0.5 86.3 90.9 90.4 86.5 88.5 0.73 0.82 0.81 0.69 0.76
0.7 86.3 89.7 89.5 86.3 87.9 0.73 0.79 0.79 0.68 0.75
0.9 87.1 89.1 90.4 85.4 88.0 0.74 0.78 0.81 0.66 0.75

Table 2. Omission and commission error percentages for different approaches in the four test cities. Boldface indicates there is an
improvement over results from pre-trained classifiers (Pre), and red color indicates an improvement over the default fine-tuning

approach (BCE).

approach
omission error commission error

Beijing Nairobi Tehran Jakarta Mean Beijing Nairobi Tehran Jakarta Mean

baseline GUF 22.1 28.2 16.8 16.0 20.8 16.3 3.4 6.0 12.7 9.6
pre 11.0 29.5 7.1 9.6 14.3 16.4 5.2 11.8 10.5 11.0

fine-tuning

BCE 8.7 17.9 4.4 4.2 8.8 18.2 5.9 14.3 13.1 12.9

L soft

0.1 9.9 16.7 4.4 4.8 8.9 17.6 7.1 11.5 13.2 12.3
0.3 8.7 21.8 4.4 4.5 9.9 16.5 4.7 12.9 13.1 11.8
0.5 8.7 17.9 3.5 4.8 8.8 16.0 7.2 13.5 13.7 12.6
0.7 7.0 12.8 2.7 4.5 6.7 17.1 5.6 13.4 12.9 12.2

L q

0.3 8.7 15.4 4.4 5.1 8.4 17.8 4.3 12.9 12.9 12.0
0.5 8.7 15.4 3.5 5.1 8.2 17.8 4.3 12.8 14.2 12.3
0.7 9.3 16.7 4.4 5.8 9.0 17.5 5.8 13.6 14.0 12.7
0.9 8.7 16.7 3.5 5.4 8.6 16.5 7.1 12.8 15.2 12.9

0 200 400 600

Beijing

Nairobi

Tehran

Jakarta

Number of Samples

MIS: True False

Figure 3. Number of MLGCPs for MIS mapping assessment.

images. The learning rate is 2 × 10−3. To control the train-
ing time and avoid overfitting, early stopping was used, and
the monitored metric is the validation loss with patience of 10
epochs. After getting the pre-trained model from the first stage,
a preliminary prediction can be obtained by feeding the images
to the model. Subsequently, fine-tuning is carried out for each
ROI for 10 epochs. With the fine-tuned models, the final pre-
dictions can be obtained.

3.2 Accuracy Assessment

The accuracy of the mapping results is presented in Tab. 1 and
2, and is based on the independent MLGCPs. To show the im-
provement from this study, we also show some baseline maps,
including the GUF layer, the maps obtained by DL, i.e., without

fine-tuning, as well as the results after fine-tuning without con-
sidering the sample noise. Four parameters are used for both
Lsoft loss (β) and Lq (q) loss, respectively. Tab. 1 and 2 show
an improvement from the default fine-tuning (using BCE), with
the average Kappa value increasing from 0.73 to 0.75, and the
average Omission error decreasing from 14.3% to 8.8%. Addi-
tionally, there is a further improvement from fine-tuning to fine-
tuning with robust loss functions, with the average Kappa value
increasing to 0.78, and the average Omission error decreasing to
6.7%. Finally, within the employed robust loss functions, Lsoft
is better than Lq in general, and Lsoft with β = 0.7 provides
the best results. Accordingly, the best setup has been used in all
the following reported tests.

Please note that all these improvements are consistent among
the four test areas. By comparing OA and Kappa values, as
well as omission and commission errors, it is clear that this im-
provement is mainly coming from a decreased omission error
while the commission error may increase. One possible expla-
nation is that the above mentioned pre-processing procedure is
prone to include more errors due to commission. As a result,
areas containing even a small proportion of buildings or man-
made structures tend to be recognized as impervious areas after
the fine-tuning process.

3.3 Discussion

To better understand the results, in this section we visualize the
achieved improvements by means of colored maps. We first
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Figure 4. Comparison of mapping results to baseline maps using MLGCPs in the city of Nairobi. Top: final mapping result overlaid
by MLGCPs: ∗ pervious, + impervious. Bottom: Sentinel-2 images overlaid with MLGCPs, where colored ones indicate mistakes,

either false positives (green) or false negatives (red). Specifically, top-left is based on the results before refinement, top-right based on
those after refinement with CCE, bottom-left based on those after refinement with robust loss function, and bottom-right based on the

GUF layer.

compare the results to baseline maps looking at the classifica-
tion of the MLGCPs, and then present a detailed comparison of
mapping results on a city scale as well as in zoomed-in areas.

3.3.1 Analysis of the causes for omission and commission
errors Figure 4 presents the comparisons with test areas in
Nairobi as an example, representing pervious points as ”∗” and
impervious points as ”+”. The mapping result after fine-tuning
overlaid with MLGCPs is first presented on the top, followed
by Sentinel-2 images overlaid with MLGCPs, where false pos-

itives and false negatives, corresponding to commission and
omission errors of different approaches, are colored in green
and red, respectively.

It is clear from Fig. 4 that the main urban areas as well as some
big roads are correctly mapped. By comparing with the results
from baseline approaches, the decreased omission error is vi-
sualized by the decreased number of red crosses. Additionally,
it can be seen that the remaining mistakes of the fine-tuning
approach, both false positives and false negatives, are in areas
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such as roads, sparsely built-up areas such as small villages, as
well as at the urban-rural fringe. In all these areas it is difficult
to discriminate between built-up areas and non built-up areas
using images with 10 meter spatial resolution. This can also be
partly explained from the fact that the remaining false negatives
(omission errors, red crosses), are missing in the GUF layer, too
(Esch et al., 2017). We need to mention that the roads and other
non-vertical impervious surfaces are not included in the GUF
layer.

3.3.2 Spatial analysis of the improvements Figure 5 visu-
alizes the difference between the final result of the procedure
presented in this work with respect to some baseline maps, i.e.
the results before fine-tuning (Pre), the GUF layer, and the used
reference (Ref), using the whole city of Nairobi as an exam-
ple. The figure shows additionally mapped areas in green as
well as those areas that are eventually removed in red. While
most of the map remains the same, there is a clear difference
between the mapping results after robust-loss-based fine-tuning
and those from other approaches. Compared to Pre, there are
clearly more impervious areas, which is consistent with the de-
creased omission error observed in Tab.2. Compared to GUF,
some roads are added as impervious areas, which again is ex-
pected according to the experimental setup as well as the defi-
nitions of the GUF layer and the mapped impervious surface in
this study. Compared to the chosen reference, there is mainly
a removal of impervious areas, which is expected as pervious
areas might be mistaken as impervious ones in the reference
preparation procedure, and these mistakes are corrected during
fine-tuning, even using robust loss functions.

A more detailed analysis is provided in Fig. 6, where three
zoomed-in areas for Beijing, Jakarta, and Nairobi, respectively,
are shown. Some correctly removed and added areas in the
mapping results with respect to Pre, GUF, as well as Ref are
clearly visible.

Finally, Figure 7 compares the mapped impervious areas ob-
tained by means of different approaches as well as in the orig-
inal baseline maps in subset areas of Nairobi. In line with pre-
vious observations, the improvement is mainly resulting from
a decreased omission error. Possible explanations for the re-
maining mapping mistakes, mainly due to commission errors,
include the small data size for the model fine-tuning, as well
as the about pixel-level geo-location accuracy of the Sentinel-2
images (Drusch et al., 2012).

4. CONCLUSIONS AND OUTLOOK

MIS mapping provide key information in support of the devel-
opment of local governments and world-wide collaborations to
address issues such as climate change and air pollution. To bet-
ter map man-made impervious surfaces on a large scale without
relying on massive amounts of training data, and more specifi-
cally to decrease the omission errors for impervious area map-
ping, this paper proposes a framework to exploit possibly noisy
reference data that are already globally available. The main
idea is fine-tuning pre-trained DL models using available refer-
ence data in a specific ROI. To this aim, robust loss functions
are used to mitigate the effect of potential errors in the refer-
ence data. This framework is validated using four test areas
across the world, and improvements over baseline results have
been obtained. Future research effort is aimed at an improved
verson of the proposed framework for a better understanding
and practical applications, e.g., by further investigating into the

removed mapped additionally no change

Figure 5. Comparison of the produced results in Nairobi to three
kinds of baseline maps: Pre (top), GUF (middle), and Ref

(bottom), respectively.

influences of different FCN architectures and comprehensively
testing the potential of this approach in more test sites.
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