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ABSTRACT:

Fully automatic large-scale land cover mapping belongs to the core challenges addressed by the remote sensing community. Usually,
the basis of this task is formed by (supervised) machine learning models. However, in spite of recent growth in the availability of
satellite observations, accurate training data remains comparably scarce. On the other hand, numerous global land cover products
exist and can be accessed often free-of-charge. Unfortunately, these maps are typically of a much lower resolution than modern day
satellite imagery. Besides, they always come with a significant amount of noise, as they cannot be considered ground truth, but are
products of previous (semi-)automatic prediction tasks. Therefore, this paper seeks to make a case for the application of weakly
supervised learning strategies to get the most out of available data sources and achieve progress in high-resolution large-scale land
cover mapping. Challenges and opportunities are discussed based on the SEN12MS dataset, for which also some baseline results
are shown. These baselines indicate that there is still a lot of potential for dedicated approaches designed to deal with remote
sensing-specific forms of weak supervision.

1. INTRODUCTION

The problem of automatic land cover mapping from remote
sensing imagery is traditionally cast as a (supervised) machine
learning task, especially when applied to large study areas (Cih-
lar, 2000). However, while the amount of available satellite
data keeps on growing, training labels remain rare, because of
the difficulty to create reliable land cover annotations that can
be referred to as “ground truth”. On the other hand, manifold
large-scale land cover datasets already exist, all of which are
the result of (semi-)automated processes themselves. This in-
troduces weakly supervised learning as a promising strategy to
train well-generalizing models on available data – even if the
labels come with a significant error bar or at comparably low
resolutions.

In this paper, we discuss the problem of weakly supervised
learning of models for land cover prediction from satellite data.
For this purpose, we focus on the freely available global im-
agery provided by the Sentinel-1 and Sentinel-2 missions of
the European Copernicus program (Torres et al., 2012, Drusch
et al., 2012) and a simplified version of the land cover classi-
fication scheme of the International Geosphere-Biosphere Pro-
gramme (IGBP) (Loveland, Belward, 1997), which is reflec-
ted by the SEN12MS dataset (Schmitt et al., 2019) and the
2020 IEEE-GRSS Data Fusion Contest (DFC2020) (Yokoya
et al., 2020). Besides a description of the challenge and how
SEN12MS and DFC2020 are addressing it, baseline results us-
ing off-the-shelf deep learning models are provided to highlight
the importance of dedicated research.

2. WEAKLY SUPERVISED LEARNING

In his excellent review, (Zhou, 2018) defines weakly supervised
learning as an umbrella term addressing the attempt to construct
predictive models from three types of weak supervision:

• Incomplete supervision
In this case, a small amount of labeled data, which is insuf-
ficient to train a good model and abundant unlabeled data
are available.

• Inexact supervision
In this case, some supervision information is given, but it
is not as exact as necessary. An example of this is land
cover labels, which have a lower resolution than the satel-
lite observations that shall be processed.

• Inaccurate supervision
In this case, annotations cannot be considered as ground-
truth; i.e., at least some of the labels are erroneous.

In the context of this paper, weakly supervised learning is
restricted to the cases of inexact and inaccurate supervision,
which can also be seen as different forms of label noise. In con-
trast to that, incomplete supervision is seen as a different case,
which is addressed by semi-supervised learning (Zhu, Gold-
berg, 2009), which is not covered here. As shown in the follow-
ing sections, dealing with different forms of noisy samples has
become a well-addressed field in machine learning and should
receive quite some attention by remote sensing researchers as
well.

2.1 Machine Learning with Noisy Samples

Weakly supervised learning in the above-defined sense, i.e.
learning from inexact and inaccurate samples, has become a
sub-field in machine learning research that has been drawing
a significant amount of interest. While there are some studies,
which indicate that deep neural networks are relatively robust to
label noise (Rolnick et al., 2018), many researchers investigate
approaches to deal with this challenge based on insights from
robust statistics and dedicated mathematical modelling. Thus,
popular solutions in this context are either the formulation of
robust loss functions, e.g. (Ghosh et al., 2017), the iterative
improvement of training data via bootstrapping (Reed et al.,
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2015), or the addition of dedicated noise layers to the neural
network (Sukhbaatar et al., 2015). As summarized in (Frenay,
Verleysen, 2014), it can be stated that numerous possible coping
strategies exist.

2.2 Relevance for the Remote Sensing of Land Cover

Remote sensing has long been a primary source of big data (Chi
et al., 2016), with the numbers of available observations and
measurements of our planet continuously on the rise. Driven by
this development, deep learning has drawn significant attention
from the research community (Zhu et al., 2017). However, as
highlighted by (Reichstein et al., 2019), the lack of dedicated
large training or benchmark datasets still remains one of the
grand challenges in the creation of operational models for real-
world applications. On the other hand, past efforts of remote
sensing scientists and practitioners have led to the production
of numerous large-scale – or even global – land cover maps.
As nicely summarized by (Grekousis et al., 2015), the resolu-
tions of those maps typically range from 30m to 1,000m per
pixel with overall accuracies between 64% and 88%. In other
words, plenty of noisy training labels are potentially available
free of charge! Inspired by the generic techniques for machine
learning from noisy samples described in the previous section,
one would think that weakly supervised learning of land cover
prediction models using these available datasets as training in-
put would have become a major theme in modern day remote
sensing research. Interestingly, however, the literature dedic-
ated to this challenge is still rather scarce. While most papers
addressing weak supervision in a remote sensing context deal
with object detection, e.g. (Zhang et al., 2015, Kellenberger
et al., 2019), the few papers addressing weakly supervised se-
mantic segmentation usually rely on sparse or even only image-
level annotations, e.g. (Fu et al., 2018, Wang et al., 2020), in-
stead of coarse and/or noisy labels available in a dense man-
ner. A quite notable exception is the work by (Robinson et al.,
2019), who fused low-resolution and high-resolution labels in
order to produce a high-resolution land cover map of the con-
tiguous United States. Their approach is based on what they
called super-resolution loss in an earlier contribution (Malkin
et al., 2019), which allows to predict high-resolution land cover
from low-resolution labels by modeling the expected distribu-
tion of high-resolution land cover and using its distance to the
predicted distribution as an additional loss term.

Using the SEN12MS dataset, which combines noisy land cover
labels with a resolution of 500m with Sentinel-1 SAR and
Sentinel-2 optical data, as an example, this paper seeks to
provide a basis for further explorations of weakly supervised
semantic segmentation of satellite images for land cover pre-
diction.

3. WEAKLY SUPERVISED LEARNING FOR LAND
COVER MAPPING WITH SEN12MS

The SEN12MS dataset (Schmitt et al., 2019) was published in
2019 as the largest curated dataset dedicated to deep learning
in remote sensing at that time. It consists of 180,662 patch
triplets sampled over all meteorological seasons and all inhab-
ited continents in order to represent a global distribution. Every
triplet consists of a dual-polarimetric Sentinel-1 SAR image, a
multi-spectral Sentinel-2 image tensor, and four different land
cover maps following different internationally established clas-
sification schemes. In the frame of the 2020 IEEE-GRSS Data
Fusion Contest (DFC2020), the organizers defined the weakly

supervised training of globally applicable land cover prediction
models as the contest goal (Yokoya et al., 2020).

3.1 The Simplified IGBP Land Cover Classification
Scheme

For the DFC2020 the IGBP classification scheme, which ori-
ginally is comprised of 17 classes (Loveland, Belward, 1997),
was aggregated to 10 less fine-grained classes (see Tab. 1). This
simplified IGBP scheme is similar to the classification scheme
adopted by the authors of the FROM-GLC10 dataset (Gong et
al., 2019), which constitutes the first global land cover map with
a resolution of 10m (at an overall validation accuracy of about
73%). Both schemes differ in only one class: While the simpli-
fied IGBP scheme contains a Savanna class, the FROM-GLC10
scheme contains a Tundra class. However, both classes are re-
stricted to certain geographical regions: According to the En-
cyclopedia Britannica, a savanna “is characterized by an open
tree canopy (i.e., scattered trees) above a continuous tall grass
understory (the vegetation layer between the forest canopy and
the ground)”. Mostly found “in Africa, South America, Aus-
tralia, India, the Myanmar (Burma)-Thailand region in Asia,
and Madagascar”, savannas thus are a land cover type, which
can not be found around the globe, but only in specific geo-
graphical regions. Above that, they are also not suitable for
classical pixel-based classification approaches, since at a res-
olution of 10m no Savanna pixels exist – one will either find
pixels containing trees (i.e. the Forest class in simplified IGBP
terms), or grass (i.e. Grassland). At a resolution of 500m, how-
ever, the mixing of the spectral responses of sparse trees and
grass understory can well lead to a distinct spectral Savanna
profile. It has to be noted that this is different for approaches
that take spatial context into account as do, for example, con-
volutional neural networks – as long as their receptive field is
large enough.

As can be seen in Fig. 1, in the MODIS-derived IGBP land
cover map, which constitutes the basis of the SEN12MS land
cover annotations, the Savanna class is way more widely spread
than one would expect based on the above-mentioned defini-
tion, even outside those regions where savannas actually exist,
which should be considered as a form of systematic label noise.
For generic solutions to global land cover mapping, it will thus
be advisable to adapt suitable strategies that either ignore train-
ing pixels with Savanna label, or that allow a transformation of
Savanna into classes such as Grassland, or Forest, which are
applicable in all regions of the world. Since there is certainly
no one-to-one mapping between Savanna and the alternative
classes, statistical strategies such as, e.g., the one proposed by
(Malkin et al., 2019) are in need.

3.2 SEN12MS

The distribution of the pixels contained in the SEN12MS data-
set over the 10 classes of the simplified IGBP scheme is shown
in Fig. 2. While the distribution is relatively balanced in terms
of the classes Forest, Grassland, Croplands, and Urban, the
classes Shrubland, Barren, and Water are slightly less frequent.
The major outliers are the classes Wetlands and Snow/Ice,
which hardly exist, and the largest class Savanna, which ac-
counts for almost a quarter of all pixels in the dataset.

The reason for this imbalancing are multifaceted: Firstly, wet-
lands, for example, are simply relatively rare in reality. Apart
from that, water areas were purposefully undersampled because
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Forest Shrubland Savanna Grassland Wetland Cropland Urban Snow Barren Water

Figure 1. The MODIS-derived world map at a resolution of 500m following the simplified IGBP scheme. While larger areas of the
Savanna class (in yellow color) are found in South America, Africa and Australia as expected, there are also vast areas of Savanna in

Canada, Scandinavia, and Siberia – regions in which savannas in the geographical sense of the term usually do not exist.

of the simplicity to map them, whereas urban areas were pur-
posefully oversampled because of their heterogeneity and also
their importance to geographical science. As discussed in Sec-
tion 3.1, the Savanna class is over-represented because the
global, MODIS-derived IGBP land cover map, which consti-
tutes the basis of the SEN12MS land cover annotations, contains
much more savanna areas than one would expect. This has to be
considered when using the dataset as basis for the development
of land cover-oriented semantic segmentation models.

3.3 DFC2020

For the IEEE-GRSS 2020 Data Fusion Contest, a high-
resolution (GSD: 10m) dataset for validation and testing was
generated in a semi-manual manner, following the simplified
IGBP scheme as well. While the DFC2020 validaton and test
labels and all relevant meta-information will only officially be
published after the end of the contest in April 2020, the class
distributions of the data are already shown in Fig. 2 for sake of
comparison with SEN12MS. It can be seen that the distributions
are fairly similar. The most important exception is the com-
plete absence of the Savanna class. This is due to the fact that
the DFC2020 maps were created in a semi-manual manner and
on a pixel-level basis for regions of interest outside the typical
savanna regions. Besides the absence of the Savanna class, also
no Snow/Ice pixels exist in the DFC2020 data.

As can be seen from Fig. 2, another interesting difference
between the SEN12MS and the DFC2020 datasets is the fact
that the high-resolution DFC2020 patches either contain a
single class (e.g. in homogeneous Forest or Water areas) –
or more than five classes, whereas the low-resolution MODIS-
derived labels of SEN12MS mostly contain one to three classes.
This is a clear hint towards the significant resolution difference.

3.4 Predicting High-Resolution Land Cover from Low-
Resolution Labels

With the availability of SEN12MS for training and DFC2020
for validation and/or testing, a wide range of possibilities for
weakly supervised training of high-resolution land cover pre-
diction models opens up. To make full use of them it is crucial
to have a common understanding of the data structures. A sum-
mary is given in Tab. 2. While it is perfectly possible to keep
all 180,662 patches of SEN12MS in a single dataset purely used
for training, and all 6,114 patches of DFC2020 in another data-
set purely used for testing, we suggest to make use of the splits

proposed in this paper in future work to ensure comparability
between achieved results in a benchmarking sense. The list of
hold-out scenes for SEN12MS can be found in the SEN12MS
support repository at https://github.com/schmitt-muc/

SEN12MS, and the DFC2020 data is provided in separate val-
idation and test packages at https://ieee-dataport.org/
competitions/2020-ieee-grss-data-fusion-contest.

4. BASELINE RESULTS

To provide a first intuition about what is possible when using the
SEN12MS and DFC2020 datasets for weakly supervised learn-
ing, first results are collected in this section. They shall also
serve as examples for future benchmarking purposes. While
land cover maps are traditionally assessed via the overall ac-
curacy (OA) measure, we propose to use the less optimistic av-
erage accuracy (AA) for comparison, as it gives less weight to
large classes, which are rather simple to classify, e.g. Forest
and Water. It is important to note that in this paper, AA refers
to average producer’s accuracy, which is highly correlated to
the often-used mean intersection over union (mIoU) metric.

To implement the considerations about the difficult Savanna
class described in Section 3, during training of all machine
learning models, Savanna pixels were not used.

With respect to the satellite input data, the following pre-
processing was applied: The Sentinel-1 backscatter values were
clipped and normalized to the interval [−25, 0], before rescaling
to [0, 1]. In a similar manner, we clipped the intensity values of
the Sentinel-2 top-of-atmosphere observations to [0, 104], cor-
responding to a maximum of 100% surface reflectance before
rescaling as well. It is important to note that we made only use
of the 10 surface-related Sentinel-2 bands (i.e. the bands with
an original resolution of 10m and 20m), while the atmosphere-
related bands (with an original resolution of 60m) B1, B9 and
B10 were not used.

4.1 Low-Resolution vs. High-Resolution Labels

As a sanity check and the lower end of what is possible, the low-
resolution MODIS-derived labels can simply be tested against
the high-resolution DFC2020 validation set. The results are
shown in the leftmost column of Tab. 3. While frequent and
easy-to-determine classes such as Forest, Urban, and Water
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IGBP Class
Number IGBP Class Name

Simplified
Class
Number

Simplified Class Name Color

1 Evergreen Needleleaf Forest

1 Forest 009900
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest

6 Closed Shrublands 2 Shrubland c6b0447 Open Shrublands

8 Woody Savannas 3 Savanna fbff139 Savanna

10 Grasslands 4 Grassland b6ff05

11 Permanent Wetlands 5 Wetlands 27ff87

12 Croplands 6 Croplands c24f4414 Cropland / Natural Vegetation Mosaics

13 Urban and Built-up Lands 7 Urban/Built-up a5a5a5

15 Permanent Snow and Ice 8 Snow/Ice 69fff8

16 Barren 9 Barren f9ffa4

17 Water Bodies 10 Water 1c0dff

Table 1. The simplified IGBP land cover classification scheme.

Dataset Size Comment

SEN12MS
training 162,556

subset of SEN12MS dedicated to
training

SEN12MS
hold-out 18,106

hold-out set with low-res labels; similar
spatial and temporal distribution as the
overall dataset; used for validation or
testing

DFC2020
validation 986

used for testing in the first phase of
DFC2020, and for validation in the
second phase

DFC2020
testing 5,128

used for testing in the second phase of
DFC2020

Table 2. The different sub-datasets that can be built from the
SEN12MS and DFC2020 data.

show relatively good agreement between the low-resolution la-
bels and the high-resolution reference, less frequent classes,
which are harder to identify (e.g. Shrubland, Barren, and Wet-
lands) cause the average accuracy to drop to a mere 37.2%.
On the other hand, it seems a bit surprising that the Crop-
lands class also shows a satisfying agreement, although empty
fields could certainly be confused with Barren or crops grow-
ing up with Grassland. On the opposite, the Grassland class
shows an unexpectedly bad accuracy, which is mainly due to
a confusion with Shrubland or Wetlands pixels in the high-
resolution reference. More details can be seen from the class
transition matrix shown in Fig. 3, which depicts the likelihood
of a class in the high-resolution DFC2020 data given a class in
the low-resolution MODIS-derived land cover map. The good
agreement of Forest, Croplands, Urban, and Water are con-
firmed, while the confusion-prone classes Shrubland, Grass-
land, Wetlands and Barren can be further interpreted. While
the transition of a Wetlands pixel into a Water pixel can be rel-
atively comprehensible, the transition of Barren pixels into Wa-
ter pixels can be considered a relevant potential source for label

noise.

4.2 Off-the-Shelf Models for Semantic Segmentation

To provide a baseline for future developments, Tab. 3 also con-
tains the results for off-the-shelf models for semantic segment-
ation. All of them were trained on the SEN12MS training sub-
set, validated with the SEN12MS hold-out subset, and tested
on the DFC2020 validation set, which was already officially
available during the writing of this paper. We implemented the
ignoring of the Savanna pixels during training using a masked-
cross-entropy loss.

• DeepLabv3+ (DLv3)
Achieving top-ranking results on various semantic seg-
mentation benchmarks, DeepLabv3+ (Chen et al., 2018)
represents a state-of-the-art semantic segmentation archi-
tecture and was, thus, used for our baseline experiments.
Our implementation used a ResNet-101 backbone with
ImageNet pre-trained weights as an initialization. In order
for results to be comparable, we fixed the hyperparameters
for training. Training was conducted for ten epochs.

• Unet
In addition to DLv3 we further applied a Unet type ar-
chitecture (Ronneberger et al., 2015) to the segmentation
task. We adopted the last layer to contain nine segmenta-
tion maps and masked the loss function to ignore the neg-
lected tenth class. The model contains ≈ 31 million (ran-
dom initialized) parameters, and is therefore significantly
larger then the DLv3. Another important difference is the
utilization of long skip connections in the Unet architec-
ture, which is expected to have a positive influence on pre-
serving fine spatial details.

Our Pytorch-based implementations of the two baseline net-
works are available at https://github.com/lukasliebel/
dfc2020_baseline.
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Class LR-HR DLv3
S2 only

DLv3
S1+S2

Unet
S2 only

Unet
S1+S2

k-means
S2 only

k-means
S1+S2

RF
S2 only

RF
S1+S2

Forest 51.6% 71.4% 61.2% 67.3% 55.4% 2.4% 1.7% 77.1% 76.9%
Shrubland 7.7% 2.3% 3.8% 0.0% 3.7% 7.7% 5.9% 0.0% 0.0%
Savanna – – – – – – – – –
Grassland 6.7% 64.4% 48.2% 76.7% 77.2% 11.2% 12.5% 90.3% 90.5%
Wetlands 0.6% 2.4% 3.8% 3.7% 3.2% 2.2% 0.3% 4.1% 4.0%
Croplands 64.4% 53.3% 61.9% 65.7% 50.7% 42.1% 13.4% 42.1% 39.6%
Urban 71.5% 71.0% 62.8% 80.9% 73.1% 0.0% 0.0% 0.0% 0.0%
Snow/Ice – – – – – – – – –
Barren 0.3% 0.2% 1.0% 0.6% 0.8% 54.4% 6.2% 0.0% 0.0%
Water 95.1% 88.9% 95.8% 89.4% 92.7% 55.8% 68.9% 25.4% 34.5%
Average 37.2% 44.2% 42.3% 48.1% 44.6% 22.0% 13.6% 29.9% 30.7%

Table 3. Class-wise and average accuracies achieved on the DFC2020 validation dataset for different benchmarks. S2 only indicates
that only Sentinel-2 data have been used for the prediction, whereas S1+S2 indicates the case of Sentinel-1/Sentinel-2 data fusion.
LR-HR indicates the baseline check of evaluating the MODIS-derived low-resolution labels against the high-resolution DFC2020

reference labels.

Figure 2. The distribution for the different land cover classes
(top) as well as the number of different classes per

256× 256-pixels image patch (bottom).

Figure 5 compares how the validation accuracy on the
SEN12MS hold-out set and the test accuracy on the DFC2020
validation set change over time for the different models. Since
the training is carried out in on the low-resolution MODIS-
derived land cover labels without any specific adaptations to
cope with the situation of weak supervision, the slightly posit-
ive trend of the validation accuracy is not mirrored by the test
accuracy – the evolution of the networks remains unstable. In
order to fill Tab. 3, we select the checkpoint with the best test
accuracy for evaluation. This should be seen as the upper bound
of what is achievable with off-the-shelf semantic segmentation
networks and does not allow a judgment between the models.
The confusion matrix achieved by the best deep semantic seg-
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Figure 3. Class transition matrix from low-resolution,
MODIS-derived labels to high-resolution DFC2020 labels.

mentation network (i.e. the Unet relying on only Sentinel-2) is
shown in Fig. 4.

The results show that even off-the-shelf semantic segmenta-
tion models produce results that are significantly better than
the low-resolution reference. The most notable improvement is
observed for the Grassland class, with also Forest, Croplands,
Urban, and Water performing reasonably well. On the down-
side, Wetlands and Barren are not really mapped well, whereas
Shrubland becomes even worse than in the low-resolution in-
put. The main source of confusion is the Grassland class, which
collects most predictions from Shrubland, Wetlands and Barren
classes. With erroneous Grassland predictions also affecting
the Forest, Shrubland and Croplands reference classes, this land
cover type will need more attention in future model designs.

Figure 6 provides a visual impression of the mapping quality,
taking a prediction example after the first epoch. While the
off-the-shelf deep semantic segmentation models are able to re-
cover the general scene structure, fine details get completely
lost.

4.3 Shallow Learning Baselines

To provide further baselines for the problem at hand, we trained
two shallow classifiers – one unsupervised, one supervised – on
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Figure 4. Confusion matrix of the Unet model using only
Sentinel-2 data as input.

Figure 5. Comparison of the Average Accuracy metric achieved
on both the DFC2020 validation as well as the SEN12MS

hold-out set over the training process for the different deep
semantic segmentation networks described in section 4.2.

a subset of the SEN12MS training set. Both classifiers were
trained on just 2,500 patches uniformly sub-sampled from the
full dataset. Due to the pixel-wise classification approach this
amounts to an effective training data set size of about 164 mil-
lion individual observations. The sub-sampling is required due
to the computational complexity of parts of the training, such
as the Kuhn-Munkres algorithm having a run time of O(n3).

Details of the two setups are described in the following. Both
used just the above-described 12 channels of Sentinel-1 and
Sentinel-2 as pixel-wise input features.

• k-means clustering
k = 8 clusters, set according to the number of simpli-
fied IGBP classes encountered in the sub-sampled training
data. The cluster segments are learned completely unsu-
pervised. The re-ordering of cluster labels is done via the
Kuhn-Munkres algorithm (Munkres, 1957), with the given
low-resolution MODIS-derived labels of the sub-sampled
train split serving as a reference. Clustering is done with
the best-fitting of 10 k-means++ initializations (Arthur,
Vassilvitskii, 2007), each fitted for up to 300 iterations.

• Random Forests (RF)
supervised training on low-resolution MODIS-derived la-
bels of the previously mentioned SEN12MS subset. The

model consists of an ensemble of 100 trees, each with a
maximum depth of 10 nodes.

As can be seen from Tab. 3, shallow classifiers doing simple
pixel-wise classification are not capable of reaching the baseline
accuracy provided by the low-resolution labels and perform sig-
nificantly worse than the deep learning models. Interestingly,
for k-means, a fusion of Sentinel-1 and Sentinel-2 data de-
teriorates the result, which seems to be mainly caused by the
classes Croplands and Barren. Another fact to note is that the
predicted maps displayed in Fig. 6 show more spatial details
than the results achieved by the deep learning models, albeit
at worse semantic accuracy. The existence of some spatial co-
herence in those pixel-based maps shows that the numerically
observed misclassifications are of systematic nature. The Ap-
pendix provides supplementary results for weakly supervised
learning of shallow classifiers trained directly on the target data,
i.e. without spatial generalization.

4.4 Data Fusion

All machine learning models have used either the ten surface-
related bands of Sentinel-2 as input, or have relied on a form
of early data fusion by combining this Sentinel-2 input with the
two polarimetric channels of Sentinel-1. As can be seen from
Tab. 3, the fusion of Sentinel-1 and Sentinel-2 data only leads to
slightly better results than what is achievable if only Sentinel-2
is used in the RF case. The fact that the fusion doesn’t seem
to help to improve the metrics achieved with the deep learn-
ing models should not be misunderstood: Since Tab. 3 collects
the best validation results, a fair comparison among the four
deep semantic segmentation setups is not ensured. However,
it will certainly be necessary to develop more sophisticated fu-
sion procedures than simple band concatenation, e.g. with sub-
networks that take the different data peculiarities into account
as, e.g. proposed in (Gawlikowski et al., 2020).

5. DISCUSSION

The baseline results presented in Section 4 show that mapping
land cover on a global scale with models learned on inaccurate
and inexact training labels remains an exciting challenge.

In particular, it is interesting to note that three classes get con-
sistently bad metrics throughout all classification methods (cf.
Tab. 3): Shrublands, Wetlands and Barren. As can be seen in
Fig. 2, those three classes are the least frequent in the SEN12MS
dataset (except the understandably rare Snow/Ice class). On
the other hand, Wetlands are massively over-represented in the
DFC2020 validation set.

Figure 3 shows that all three problematic classes seem to be
significantly mislabeled in the low-resolution land cover maps
– while Wetlands and Barren areas used to label pixels actu-
ally containing water, Shrubland pixels often are represented as
Barren in he high-resolution reference.

Finally, it seems very promising that the Grassland class is ap-
parently not well represented by the low-resolution MODIS-
derived labels, but can be well predicted by most models be-
sides the unsupervised k-means. This indicates the potential of
the topic addressed in this paper.

All in all, it becomes apparent that good models would have to
solve two challenges: The transfer of spatial information from
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Figure 6. Land cover mapping results achieved with the baseline
models for two example patches. Note that for Unet and DLv3
the models based on Sentinel-1 and Sentinel-2 data fusion and
achieved after the first training epoch were used to predict the

maps shown in this figure, as they provided a visual upper
bound.

the training data sampled by the SEN12MS dataset to the loca-
tion of interest; and the transfer of land cover annotations from
low resolution and noisy quality to high resolution and better
quality. Standard methods without dedicated adaptations are
apparently limited in their capabilities to do so.

6. SUMMARY & CONCLUSION

In this paper, we have used the SEN12MS dataset and the data
provided in the frame of the IEEE-GRSS 2020 Data Fusion
Contest to address the challenge of learning semantic segment-
ation models for global land cover mapping from inaccurate
and inexact labels. While standard shallow and deep learning
approaches were shown to already provide promising mapping
capabilities, the results are not satisfying enough yet to consider
off-the-shelf approaches for operational solutions. Therefore,
we argue that specific models from the field of weakly super-
vised machine learning must be developed and expect that they
will contribute greatly to a regular and fully automatic satellite-
based monitoring of global land cover.
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APPENDIX: WEAKLY SUPERVISED LEARNING
WITHOUT SPATIAL GENERALIZATION

Of course, the question may arise whether the problem of
weakly supervised learning for semantic segmentation of satel-
lite images for land cover mapping could be simplified by aim-
ing at less generic models. One way to create a less gen-
eric model is to forgo the desire to encode spatial generaliz-
ation required by a globally applicable model and to train a
scene-dependent model instead. To provide a sanity check,
we have trained the shallow classifiers described in Section 4.3
not on any data of the SEN12MS dataset, but only on the low-
resolution labels included in the DFC2020 validation set. This
follows the rationale that such labels are available for every loc-
ation on the globe. The results are depicted in Tab. 4 and Fig. 7.
It can be seen that these results exceed the quality of the results
achieved for the scene-agnostic models, even though only shal-
low classifiers and only 986 training samples were used. Ap-
parently, transferring noisy, low-resolution labels into more ac-
curate, high-resolution labels is a much simpler task than trans-
ferring land cover labels from one region of the globe to another
region.

Class k-means
S2 only

k-means
S1+S2

RF
S2 only

RF
S1+S2

Forest 80.7% 93.3% 80.1% 80.1%
Shrubland 0.3% 44.7% 0.9% 0.8%
Savanna – – – –
Grassland 21.2% 49.8% 78.0% 78.2%
Wetlands 38.2% 1.3% 0.0% 0.0%
Croplands 33.4% 40.3% 80.7% 80.9%
Urban 38.8% 50.7% 91.8% 91.7%
Snow/Ice – – – –
Barren 0.4% 9.8% 0.0% 0.0%
Water 73.1% 48.7% 99.9% 99.8%
Average 35.8% 42.3% 54.0% 54.1%

Table 4. Quantitative results achieved on the DFC2020
validation dataset for the shallow classifiers trained on the

low-resolution labels of the DFC2020 validation set.
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Figure 7. Qualitative results achieved with the shallow classifiers
trained on the low-resolution labels of the DFC2020 validation

set.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-795-2020 | © Authors 2020. CC BY 4.0 License.

 
802




