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ABSTRACT: 

 

In this study we analyse the factors of variability of Sentinel-1 C-band radar backscattering over tropical rainforests, and propose a 

method to reduce the effects of this variability on deforestation detection algorithms. To do so, we developed a random forest regression 

model that relates Sentinel-1 gamma nought values with local climatological data and forest structure information. The model was 

trained using long time-series of 26 relevant variables, sampled over 6 undisturbed tropical forests areas. The resulting model explained 

71.64% and 73.28% of the SAR signal variability for VV and VH polarizations, respectively. Once the best model for every 

polarization was selected, it was used to stabilize extracted pixel-level data of forested and non-deforested areas, which resulted on a 

10 to 14% reduction of time-series variability, in terms of standard deviation. Then a statistically robust deforestation detection 

algorithm was applied to the stabilized time-series. The results show that the proposed method reduced the rate of false positives on 

both polarizations, especially on VV (from 21% to 2%, α=0.01). Meanwhile, the omission errors increased on both polarizations (from 

27% to 37% in VV and from 27% to 33% on VV, α=0.01). The proposed method yielded slightly better results when compared with 

an alternative state-of-the-art approach (spatial normalization).  

 

1. INTRODUCTION 

Weather and seasonal-related conditions of the surface can 

considerably affect SAR measurements modifying SAR time-

series characteristics (Benninga et al., 2019). SAR variability can 

be either due to long-term factors, like seasonal droughts and rain 

scarcity and to short-term events, such as storm surges. Several 

authors have studied susceptibility of C-band measurements to 

dense rain cells (Atlas et al., 1993; Kasilingam et al., 1997; Lin 

et al., 1997), to intercepted precipitation water in the canopy 

(Dobson et al., 1991; Henderson and Lewis, 1998; De Jong et al., 

2000; Cisneros Vaca and Van Der Tol, 2018),  and to canopy 

humidity (see for example Quegan et al., 2000).  

 

Reportedly, C-band SAR backscattering can suffer attenuations 

between -2 and -2.4 dB when crossing dense storm cells (Moore 

et al., 1997; Danklmayer et al., 2009) and can increase 1 to 1.5 

dB (Dobson et al., 1991) due to intercepted rain. Benninga et al. 

(2019) found increases of 0.5 dB after medium to severe rain 

showers (1.8-4.5 mm/12 h). Seasonal changes on water content 

of the canopy can lead to oscillations of 2.5 dB (Quegan et al., 

2000, on ERS-C) to 1.5 dB (Benninga et al., 2019, on Sentinel-

1) over mature temperate forests. Frolking et al. (2011) found a 

strong negative anomaly on SeaWinds active microwave Ku-

band backscatter data collected over the Amazon Basin during 

the 2005 drought and detected a striking correlation between 

water deficit measurements and Ku signal. 

 

This reported instability can affect several kinds of techniques 

that make use of radar backscattering. In this work we will focus 

on deforestation detection on an Early Warning context. Early 

Warning Systems (EWS) are defined as a collection of 

algorithms and procedures able to identify tree loss or 

disturbance, on a periodic (monthly, weekly or daily) basis 

(Petersen et al., 2018). EWS has been a crucial element to 

reinforce public policies that have led to significative 
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deforestation rates decrease in Brazil (Soares-Filho et al., 2010; 

Assunção et al., 2013; Nepstad et al., 2014) and in Peru (Finer et 

al., 2018).  A recent survey among users pointed to cloud cover 

as the most important effectiveness limiting factor to the actual 

EWS (Weisse et al., 2019). Hansen et al. (2016), reported 80% 

cloud cover during the wet season on Peru Landsat-7/8 data. In 

Brazil, frequent observations over Amazonian basin are seriously 

affected, as mean annual cloud cover on the Brazilian part of the 

biome is approximately 74%. This observational gap caused by 

cloud cover can be filled by orbital active microwave sensors, 

namely Synthetic Aperture Radar (SAR) satellites. However, the 

referred variability in backscattering time-series can mislead a 

potential automatic deforestation detection algorithm based on 

time-series analysis, decreasing its accuracy. Here we have 

reviewed some successful mitigation strategies: (1) Lin et al. 

(1997) were able to accurately model attenuation due to storm 

rain cells using meteorogical radar measurements and an 

attenuation model proposed by Atlas, Rosenfeld and Wolff 

(1993). (2) While searching for an optimal method to retrieve soil 

moisture using SAR data, Benninga et al. (2019) developed a 

complete set of rules and algorithms to deal with Sentinel-1 (S1) 

variability. Regarding seasonal trends, they proposed an 80-day 

window moving average computed over σ0 values. Additionally, 

they propose a masking threshold based on the accumulated rain 

on the last 12 hours before SAR acquisition. (3) Reiche et al. 

(2017) proposed a different approach, using the regional 

backscatter P95 percentile value to define a mean forest response 

for every recorded date and then normalizing all the image pixels 

by this value. This approach has an added advantage: it will deal 

with sensor oscillations as those reported by El Hajj et al. (2016). 

And (4) Reiche et al. (2018) fitted a harmonic function to S1 γ0
VH 

time series to allow detrending of long-term variations. 

 

Lin’s approach, as any climatological modelling strategy dealing 

with rapid, small scale events such as storm surges should use 

climatological data with very high spatial and temporal 
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resolution, such as those made available by meteorological 

radars. Unfortunately, this kind of data is far from being widely 

available over entire tropical basins. Regarding Benninga et al. 

approach, the suggested 80-day moving average is unfeasible on 

an EWS context, as we can’t foresee future’s SAR 

measurements. Reiche’s spatial normalization seem very suited 

to EWS and would be used as a benchmark for our results. 

Reiche’s harmonic fitting strategy can be very valuable (and, in 

fact, has inspired this work), but it can fail and produce 

significant errors as it doesn’t account for inter-annual variability 

of rain and temperature regimes. As this, a harmonic fit trained 

on a humid year would probably overestimate backscatter values 

on the next, drier year. Climate change should potentialize this 

issue, as erratic rain patterns, altered dry seasons and extreme 

events gets more frequent (IPCC, 2014). Additionally, harmonic 

fit approach would not deal with short-term variations of 

backscattering due to heavy-rain episodes. 

 

In this work we will investigate a novel approach to SAR 

variability mitigation. We will use precipitation, 

evapotranspiration, forest structure and drought indexes to model 

backscatter signal over intact forest tracks on the Amazonian 

basin, and then we will use this model to predict and stabilize 

SAR signal.  The main advantage of a model built with such kind 

of data is that it won’t depend on any optical measurement of land 

surface, and it will be sensible to seasonal changes and abrupt 

alterations of climate patterns.  

 

2. MATERIALS AND METHODS 

All data collection and pre-processing tasks were performed 

using the Google Earth Engine (GEE) platform (Gorelick et al., 

2017).  

 

2.1 Study area and sampling space definition 

The selected Area of Interest (AOI) covers a 67.000 km² tilted 

rectangle over the Brazilian Eastern Amazon (Figure 1). The area 

follows a ~500 km stretch of the Transamazonian highway (BR-

230), between the cities of Altamira and Itaituba, on the Brazilian 

state of Pará.  

 
Figure 1. Study area (red), located along the Transamazonian 

Highway (BR-230), between the cities of Altamira and Itaituba, 

on the Brazilian state of Pará. Background image: Google Inc. 

 

The AOI belongs to a tropical region, characterized a wet season 

from November to May, followed by a drier (but not completely 

dry) season, from June to October. Total precipitation in Altamira 

varies around 1800 mm/yr. Regarding vegetation, dense 

ombrophylous forest covers all the intact vegetation areas. 

Flooded forests are not practically not present in the studied area.  

The main drive of deforestation in the AOI is land clearing for 

cattle-ranching in small to medium patches, corresponding to a 

low productivity, unsustainable production framed by land 

ownership concentration by largeholders (Brondizio et al., 2009). 

Figure 2 shows a classic deforestation setup, with patches of 

forest being cleared on rectangular shapes next to previous 

deforested areas, along a secondary road. 
 

 
 

Figure 2. Top: Aerial image showing the spatial configuration 

of the deforestation patches along the secondary roads of the 

AOI. Source: personal archive of the first author. 

 
Two different sampling sets were built for the purposes of this 

study (Figure 1): (1) An invariant forest data sample set, made 

of 6 hand-picked large patches of intact forest area, as assured by 

the PRODES/INPE records (INPE, 2019). The size of the intact 

forest patches ranges from 242 km² to 79 km², being the main 

patch size 125 km², large enough to diminish radiometric 

uncertainty and speckle effects when computing mean 

backscatter values (Benninga et al., 2019), and (2) a cleared 

forest data sample set, based on the DETER 2018 (INPE, 2019) 

deforestation data (August/17 to July/18 period). This last 

sampling set was built following a complex selection procedure: 

(i) The 2826 available polygons of the DETER/INPE 2018 

dataset on the AOI were filtered to retain only clear-cutted areas 

with no previous degradation. (ii) The resulting 1203 polygon 

dataset was thinned, by removing all the areas which weren’t 

observed, due to cloud cover, on the observation that predated the 

polygon creation date. This procedure, which retained 407 

polygons, assured that the date of the polygon would be close to 

the date of the real deforestation; and (iii) the resulting polygons 

were intersected with the PRODES 2018 dataset. This final 

operation resulted on 198 fine-tuned, manually confirmed 

deforestation polygons, with a mean size of 0,92 km² and a total 

size of 182 km². These sets are illustrated in Figure 1 by yellow 

and black areas, respectively. 

 

2.2 Input SAR data 

The SAR data used on this study were delivered by ESA’s C-

band Sentinel-1A satellite. Sentinel-1 data are made available in 

the GEE platform as pre-processed, terrain-corrected σ0 values, 

on VV and VH polarizations, and were converted to γ0 values 

using the following expression (Woodhouse, 2006): 

𝛾0 =
𝜎0

cos 𝜃𝑖
(1) 

where 𝜃𝑖  represents the local incidence angle (LIA) and 𝛾0, 

known as gamma naught, is the backscattering coefficient 

normalized by the incidence angle. 

 

In order to reduce speckle noise, SAR data were filtered using a 

time-series filter (Quegan and Yu, 2001) and then a Frost 5x5 

adaptative spatial filter (Frost et al., 1982). The adopted spatial 

resolution of the Sentinel-1 pixel was 20 meters. 
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2.3 Climatologic and hydrological stress information 

Daily precipitation data was obtained from the Climate Hazards 

Group Infrared Precipitation with Stations (CHIRPS) data set 

(Funk et al., 2015). Hourly data, used to compute the 12 hours 

accumulated precipitation, was adquired from NASA’s 

Integrated Multi-satellitE Retrievals for GPM (IMERG), on its 

version 06 (Huffman et al., 2019). CHIRPS delivers global 

calibrated daily precipitation data on 0.05° (roughly 5x5 km) 

resolution. IMERG systems produce 0.1° (~10x10km) global 

precipitation data with a cadence of 30 minutes. 

 

Water Deficit (WD) was computed as the accumulated negative 

difference between precipitation and evapotranspiration (ET), 

and represents a measure of the meteorologically-induced water 

stress (Aragão et al., 2007).  For every location and S1 

acquisition date, WD was computed following the rule: 

𝐼𝑓 𝑊𝐷𝑖−1 + 𝑃𝑖 − 𝐸𝑇 < 0 
𝑡ℎ𝑒𝑛 𝑊𝐷𝑖 = 𝑊𝐷𝑖−1 + 𝑃𝑖 − 𝐸𝑇 (2) 
𝑒𝑙𝑠𝑒 𝑊𝐷𝑖 = 0 , 𝑖 ∈ {1, … , 𝑛}  

where WDi and Pi represent the n-sized 180-day daily time-series 

of WD and precipitation before the date of interest. For every 

location and acquisition date, WD will be considered as the WDn 

value of the WD time-series computed following eq. 2. Daily ET  

was supposed to be constant and equal to the mean value of the 

PML-V2 (Zhang et al., 2019) ET time series for every location. 

 

Dry periods (DP) were computed by counting the number of days 

without a significative rain before the date of interest, for every 

location. Up to 5 thresholds were used to define what would be 

considered as a significative rain: 0, 1, 2, 5 and 10 mm·d-1, 

generating 5 different indexes: DP0, DP1, DP2, DP5 and DP10. 

 

2.4 Forest structure data 

Above ground biomass density (AGBD) information was 

obtained from two different sources: (1) the 500 m. resolution 

WHRC Pantropical National Level Carbon Stock Dataset 

(Baccini et al., 2012), which was assembled from a combination 

of co-located field measurements, orbital LiDAR observations, 

and imagery recorded from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), and (2) the 250 meter resolution 

EBA2 dataset, computed using 836 LiDAR airborne transects 

randomly distributed across 3.5 million km2 of the Amazon 

forests, and data from MODIS, SRTM, TRMM and ALOS-

PALSAR datasets. It’s worth noting that, although both datasets 

refer to the same variable, they can have significative differences, 

due to the different dates of reference (2010 for WHRC, 2016 for 

EBA), data, resolution and methods employed. Mean canopy 

height (CH) was extracted from the 2005 Global Forest Canopy 

Height data (Simard et al., 2011).  

 

2.5 Backscatter modelling 

To estimate backscattering on both VV and VH polarizations 

using the cited precipitation, drought and forest structures data 

we developed two different models. Firstly, we built a 

multivariate linear regression model. Due to the large number and 

strong collinearity of some of the predictors, an exploratory 

analysis was performed in order to reduce the number of 

variables and to evaluate eventual transformations to be 

performed on the variables before modelling. Non-normality of 

some of the selected variables lead us to build and use a second, 

non-parametric model using the Random Forest model (Breiman, 

                                                                 
2 The AGB map of Amazon Brazilian Forest was developed by 

Environmental Monitoring via Satellite in The Amazon 

2001), which initially used the 26 computed variables (3 forest 

structure, 5 Dry Period, 16 precipitation indexes, plus Local 

Incidence Angle (LIA) and Water Deficit (WD). To avoid 

overfitting and computational oberburden we then reduced the 

number of predictor variables using the rfcv function of the 

randomForest R package. The training period ranged from 

November 2016 to November 2018. To measure the robustness 

of the computed models, we used them to predict backscatter 

values one year ahead the training period. We then measured the 

standard deviation and the range, in dB, associated to the original 

and predicted time-series, to check if the modelled backscattering 

values could contribute to decrease the variability of the S1 

backscattering values. 

 

2.6 Pixel-wise time-series stabilization and deforestation 

detection 

Once an optimal model was defined for VV and VH 

backscattering, we used a GEE script to extract filtered 

backscatter values and all the selected climatological and 

structural indexes on a set of 2000 points inside the AOI, being 

half of them intact forest and the other half deforested areas. The 

sampling areas for each of the forest/non-forest categories were 

built following the procedure described in 2.1. The sampled data 

were then injected into the optimized random forest VV and VH 

models to build a predicted backscattering series (𝛾0). Finally, 

the predicted values and the observed values were combined to 

form a stabilized time-series. The expression used to compute the 

k element of a n sized time-series was:  

𝛾 𝑠𝑡𝑘
0 = 𝛾𝑓𝑘

0 − 𝛾𝑁𝑘

0  ;   𝑘 ∈ {1,… , 𝑛}  (3) 

where 𝛾 
𝑠𝑡𝑘

0
 is the stabilized backscattering value, 𝛾𝑓𝑘

0  is the 

original filtered backscatter and 𝛾𝑁𝑘

0 = 𝛾𝑘
0 −

1

𝑛
∑ 𝛾𝑖

0𝑛
𝑖=1  , is the 

mean-normalized predicted value. 

 

After stabilization we applied a change detection procedure to the 

data (detailed below) and compare the results with the results of 

the same methodology applied to the original backscatter series. 

The adopted deforestation pixel-wise detection procedure 

follows the steps detailed below: 

- Fitting of a statistical distribution for every time-series using 

a designated training period (in our case, Nov/16 to Jul/17. 

- Determination of a change threshold based on the fitted 

distribution and a significance level (for this study we tested 

1%, 2% and 5% significance levels). 

- Thresholding of every pixel’s time-series during the 

detection period (in our case, Aug/17 to Jul/18). 

- A ‘direct alert’ will be flagged if a backscatter value falls 

below the threshold.  

- Two consecutives ‘direct alerts’ will trigger a ‘confirmed 

alert’. 

3. RESULTS 

3.1 Predictors characterization 

Regarding statistical characteristics of the predictor variables, 

none of the considered rain and drought indexes can be 

considered as normally distributed (Figure 3). This fact will 

affect modelling results. 

 

All the time-dependent studied variables (backscattering, 

precipitation, WD and DP) show a periodic behaviour (see for 

example, VH in Figure 4). Sentinel-1 γ0 values show a minimum-

maximum range of 1.08-1.53 dB, with a mean of 1.27 dB for VV 

Biome- MSA/Amazon Fund -Subproject 7- Estimating 

Biomass in the Amazon (EBA), to be available on Pangaea. 
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and 1.01-1.38 dB, with a mean of 1.17 dB for VH polarizations, 

slightly more stable than the temperate forests studied by 

Benninga et al. (2019), which showed mean ranges around 1.5 

dB for both polarizations.  

 

3.2 SAR backscatter modelling 

Although precipitation indexes showed a strong linear correlation 

with backscattering values (120-day accumulated rain had 

ρ=0.67 correlation with γ0
VV, for example), and γ0

VH values had 

also significative linear correlation with short-term rain indexes 

(12 hours had a ρ=0.49), non-linearity of the main predictor 

variables led to a biased multivariate linear regression model. The 

results of the linear regression modelling lead us to test a non-

parametric approach, more suited to deal with the non-normality 

of the used predictors. 

 

 
Figure 3. Probability density of accumulated mean daily rain 

indexes. Rain[i]d stands for “Accumulated [i] days rain/[i]”. 

Rain_12h stands for the accumulated rain before12 before SAR 

measurement. 

 
Figure 4. Periodicity of the mean SAR VH backscattering 

signal, of the selected forests areas. Every colour represents a 

different forest area (see Figure 1 and Figure 4 for area colors). 

 

In this sense, we tested a Random Forest (RF) approach 

(Breiman, 2001), following the methodology detailed in 2.5. The 

optimal mtry parameter (or number of variables available for 

splitting at each tree node1) was determined by iterative 

modelling using R² as a measure of model quality and was fixed 

to half of the used predictors. The optimal number of predictors 

was fixed to 22 and 25 for VH and VV respectively. Figure 5 lists 

the selected predictors and their relative importance for each 

polarization. The values of explained variance of the final models 

were 71.64% and 73.28% for VV and VH respectively. 

 

  
Figure 5. Relative importance of the predictors used on the final 

random forests models for VH (left) and VV (right) 

backscattering. Biomass: WHRC AGB datatet. Biomass_inpe: 

AGB EBA dataset. LIA: Local Incidence Angle. 

 

3.3 Forest SAR measurements stabilization 

Once defined the final random forest models, we use them to 

predict the Sentinel-1 measures corresponding to a whole year 

after the training period, as a validation process. Figures 6 and 7 

detail the results of the validation. The predicted series showed a 

good overall accord with the actual values, being able to follow 

the seasonal trends and eventually to model peaks of 

backscattering due to short-term variations of precipitation. 

Extreme backscattering values were not so faithfully modelled as 

the moderate ones, probably due to the difficulties that random 

forest regression algorithms have to predict values out of the 

range of the training dataset. 

 
Figure 6. Observed and predicted values. Training dataset (top) 

and validation dataset (bottom). 
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We then measured the variability of the stabilized time-series, 

that is, the variability of the model residuals, as a measure of the 

performance of the stabilization process (Table 2).  

 

Measure Mean std Range 

Observed VV 2.48E-01 1.90E-02 9.28E-02 

Predicted VV 2.42E-01 1.20E-02 5.28E-02 

Stabilized VV  6.13E-03 1.15E-02 8.04E-02 

Observed VH 5.58E-02 4.23E-03 2.25E-02 

Predicted VH 5.79E-02 3.04E-03 1.38E-02 

Stabilized VH -2.05E-03 2.60E-03 1.70E-02 

Table 2. Results of the stabilization of the validation dataset 

(time-series from 10/2018 to 10/2019). Units are linear. 

 

Overall, there is a reduction of 39% of the variability of both VV 

and VH polarizations, in terms of standard deviation. 

 

 
Figure 7. Predicted backscattering time-series on each studied 

forest tract for VV (top) and VH (bottom) backscattering. The 

dashed vertical line specifies the start of the validation period. 

 

3.4 Application to deforestation detection on stabilized time-

series 

To test our method on operational conditions, we applied the 

stabilization procedure detailed on section 2.6 to time-series 

extracted on 2000 points of the AOI, half of them being recently 

deforested areas and the other half intact forests. For benchmark 

purposes, we applied the same methodology using the 𝛾0 P95 

value of the 2 km neighbourhood of the pixel as the stabilization 

value, instead of the climate predicted value.  

 

This last technique, called spatial normalization, was 

successfully used by Reiche et al. (2017) in Bolivian tropical 

forest to improve deforestation detection. We will use “SpNorm” 

to refer to this methodology, and “ClSt” (Climate Stabilization), 

for the methodology proposed here. 

 

Figure 8 shows the initial result of the climate stabilization 

procedure, showing the original time γ0 series, the filtered values 

and the predicted values of 8 randomly chosen samples. 

 

Overall, the stabilization procedure lowered the γ0
VH standard 

deviation values from 6.86·10-2 to 6.16·10-2, and the γ0
VV 

standard deviation values from 0.029 to 0.025, which represents 

a 10% and 14% reduction on VH and VV instability, 

respectively. 

 

 
Figure 8: Original (dashed), filtered (black) and predicted (blue) 

γ0
VH values on 8 random locations. Upper 2 row time-series 

correspond to intact forest areas. Lower 2 row time-series come 

from deforested areas. 

 

After stabilization, we followed the procedure described in 2.6 to 

determine the accuracy of deforestation detection on the 

stabilized time-series. The first step (statistical modelling) 

yielded the following results: 

 

- None of the pixel-based backscatter time-series, in 

linear or logarithmic scale, can be considered as 

normal, having Shapiro-Wilk normality test p-values 

consistently above 0.4. 

- Kolmogorov-Smirnoff tests against gamma and 

lognormal distributions are substantially more 

significant for the linear-scaled filtered and stabilized 

time-series, with p-values around 0.08. 

- As this, for every pixel, thresholds were fixed based on 

a fitted lognormal distribution, with levels of 

significance of 1%, 2% and 5%, based on the pre-

detection period (10/2016 to 07/2017) time-series. 

 

Once the thresholds were fixed, a simple detection procedure was 

performed, being the alert triggering criteria the occurrence of 

two consecutive values under the threshold. 

 

Figure 9 depicts the deforestation detection procedure results on 

8 random points. Note how point 841 deforestation wasn’t 

detected, causing an omission error. Remark how, in point 48, the 

proposed methodology triggered an SAR alert (red line) more 

than two months before the optical alert date (in blue). 
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Figure 9. Results of the deforestation detection procedure on 8 

random locations. Upper 2 row time-series correspond to intact 

forest areas. Lower 2 row time-series come from deforested 

areas. Horizontal brown line represents the detection threshold 

for the stabilized series. The vertical red line is a confirmed 

alert. Blue lines show when the DETER optical detection 

system flagged the location as deforested.  

 

The results of the detection procedure using observed, filtered, 

spatially normalized and climatic stabilized values are detailed in 

the following table, in terms of commission error (CE), omission 

error (OE) and weighted overall error (WOE). WOE was 

computed as: 

𝑊𝑂𝐸 =
√(3 ∙ 𝐶𝐸)2 + 𝑂𝐸2

2
 (4) 

The rationale behind WOE computation is to penalise the 

occurrence of commission errors, which are to be absolutely 

avoided on an operational EWS. For brevity purposes, only the 

results for a significance level of 1% are shown in Table 3. Higher 

significance values showed inferior results. 

 
Polarization Processing CE (%) OE (%) WOE (%) 

VH D 4 55 28 

VH F 10 27 20 

VH F+SpNorm 1 38 19 

VH F+ClSt 2 33 17 

VV D 4 62 32 

VV F 21 27 34 

VV F+SpNorm 2 38 19 

VV F+ClSt 2 37 19 

Table 3. Results of the deforestation detection procedure for a 

0.01 significance. D: Original data. F: Filtered data. SpNorm: 

Spatial normalization. ClSt: Climate Stabilization. CE: 

Commission errors. OE: Omission errors. WOE: Weighted 

overall error. 

 

The results of the stabilized series are clearly superior to the non-

stabilized ones, showing that the use of raw or filtered S1 

backscattering for deforestation detection is non-advisable. The 

bigger improvement occurs on the commission errors rate, that 

had reductions of 9% and 19% in VH and VV respectively. 

 

Finally, we computed the delay of detection compared to the 

optical DETER system. We wanted to determine if the more 

frequent but cloud-impacted optical observations could 

overcome our proposed method, in terms of rapidity of response. 

The results for the nearly 1000 sampled points in that the mean 

difference for stabilized alerts is -11 days, and the median is 11 

days (positive values imply fastest SAR detection) (figure 10). 

The benchmark method, spatial normalization, showed similar 

values: a mean of -12 days and a median delay advantage of 11 

days. Thus, we can say that most of the SAR detections came 

before the optical ones. 

 
Figure 10: distribution of the difference on detection times 

(SAR-Optical system), in days. Positive values imply faster 

SAR detection. D: Original data. F: Filtered data. ClSt: Climate 

Stabilization. 

 

4. DISCUSSION 

The performance of random-forest regression, with R² values 

superior to 0.7, proves that non-parametric modelling is well 

suited to deal with the proposed problem. The computed 

precipitation indexes have a strong bimodality, and WD and DP 

variables have a complex distribution. In this particular situation, 

non-parametric models, such as the one used here, should 

overpass parametric models like linear regression. Random trees 

optimization did not reduce significantly the number of used 

variables (from 26 to 23 in the case of VH and 25 for VV), 

showing the complexity of the modelled system. Also, the 

random forest model had difficulties predicting backscattering 

values lower or higher than the ones used for training. Other types 

of algorithms, like support vector machines (SVM), should be 

tested against this specific issue. 

 

The most important information for the models was the above 

ground biomass (AGB). The optimal random forest models used 

two different AGB datasets (WHRC and EBA), bringing 

information of both datasets, indicating that they respond for 

different forest structure characteristics, as pointed out by Longo 

et al. (2016). Other than AGB, long term precipitation and water 

deficit were useful on VV modelling. The 3 to 4 months 

periodicity of VV-used rain variables is consistent with the 

seasonality detected by Benninga et al. (2019). VH was more 

susceptible to short-term precipitation (12 hours accumulated 

rain) and local angle of incidence (LIA), indicating that 

intercepted rain possibly enhances depolarization of the radar 

signal thus increasing volume scattering. The overall evaluation 

of the random forest variable importance (Figure 5) suggests that 

co-polarized backscattering is more sensible to forest long-term 

phenological changes, represented by the long-term precipitation 
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indexes, while cross-polarized backscattering variability is 

mostly dominated by short-term precipitation. Drought indexes, 

namely WD (water deficit) and DP (dry period) were important 

as well on both polarizations, confirming the influence of 

phenology cycles on SAR backscattering variation. 

 

Regarding detection after stabilization results, the most striking 

result of the stabilization procedure is the reduction of the false 

deforestation alerts, especially on the VV polarization, that goes 

from 21% to 2% for a 0.01 level of significance. This decrease 

should be ascribed to the seasonality reduction after stabilization. 

Meanwhile, this improvement comes with a price, as omissions 

grew 5% and 10% for VH and VV, respectively. These increases 

can be explained by the reduction on backscattering range 

following the stabilization, especially during the dry season (as 

precipitation diminish, backscattering signal decrease, increasing 

γ0 values after stabilization, and making slightly more difficult to 

detect deforestation during this period). Luckily, during the dry 

season most optical sensors are active, and the consequences of 

the increased error can be controlled using combined EWS 

information.  

 

It’s worth noting that the thresholds of deforestation detection 

were based on pixel-wise statistical modelling of the original and 

stabilized series over a short period of time (10 months, from the 

start of regular acquisition of Sentinel-1A satellite over the AOI 

until the start of the detection period). Longer series should 

increase performance of the detection. 

 

Regarding to the state-of-the-art alternative approach to the 

problem (spatial normalization), we consider that both 

approaches are equally efficient, in terms of precision and 

computational costs. Spatial normalization will spend more effort 

looking for reference forest areas, while climatic normalization 

will be costlier during the model development phase. 

 

5. CONCLUDING REMARKS 

SAR measurements instability can have different origins, among 

others: electronic noise, ionospheric activity, tropospheric 

attenuation, presence of water droplets on the canopy, changes 

on water content and structure of the vegetation and soil 

moisture. In this work we have tried to model and reduce the 

variability related to short-term and seasonal precipitation and the 

lack of it, making use of globally available climatological and 

forest structure data. 

 

Modelling results were satisfying and contributed to reduce the 

variability of the S1 time-series, thus improving the deforestation 

detection accuracy by drastically reducing the commission 

errors. Additionally, the results of the deforestation detection 

procedures indicate that deforestation detection using stabilized 

SAR time-series will anticipate the alert trigging time by 

approximately 11 days, if compared to the stablished manual, 

optical-based approach. This value will be significantly higher 

for deforestation produced at the beginning of the rainy season, 

that will remain undiscovered until the dry season, several 

months later, if only optical sensors are used for deforestation 

detection. 

 

The results of our work suggest as well that filtering and 

stabilization of backscattering time-series are effective and 

should be a premise of any SAR-based deforestation detection 

method that seeks operational reliability. 

 

Regarding future developments, longer SAR time-series, new 

forest structure measurements coming from the Global 

Ecosystem Dynamics Investigation (GEDI) and refined 

algorithms should improve future models built upon the proposed 

methodology. More research is needed to determine the 

performance of the proposed climatological stabilization method 

in other regions of the Amazon basin having different rain 

regimes. Analogous modelling of non-forest land covers (grass, 

crops, deserts) can be an interesting way to gain insight on SAR 

backscattering variability. 
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