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ABSTRACT: 

The understanding of the Earth through global land monitoring from satellite images paves the way towards many applications 

including flight simulations, urban management and telecommunications. The twin satellites from the Sentinel-2 mission developed 

by the European Space Agency (ESA) provide 13 spectral bands with a high observation frequency worldwide. In this paper, we 

present a novel multi-temporal approach for land-cover classification of Sentinel-2 images whereby a time-series of images is 

classified using fully convolutional network U-Net models and then coupled by a developed probabilistic algorithm. The proposed 

pipeline further includes an automatic quality control and correction step whereby an external source can be introduced in order to 

validate and correct the deep learning classification. The final step consists of adjusting the combined predictions to the cloud-free 

mosaic built from Sentinel-2 L2A images in order for the classification to more closely match the reference mosaic image.  

1. INTRODUCTION

The ever-increasing amount of available optical satellite images 

has enabled the development of new techniques for global land-

cover classification. Manual annotations are time-consuming 

and sometimes less accurate than automatic methods. Moreover, 

traditional semantic segmentation approaches, as well as 

methods based on machine/deep learning, usually present 

misclassified parts in the case where prediction is limited to a 

single image. 

Single-date satellite images are traditionally used for land-use 

segmentation (Desclée et al., 2006). Access to time-series 

images can improve recognition integrity and accuracy by using 

new algorithms and strategies as shown in several studies (Yan 

and Roy, 2014, Kamdem de Teyou et al., 2020). 

With a revisit time of 5 days, the freely-available images from 

high-temporal resolution satellites Sentinel-2A and Sentinel-2B, 

launched in 2015 and 2017 respectively, enable the production 

of a 10-meter cloud-free Earth mosaic and multi-temporal 

classification. In this work we address the problem of a pixel-

wise classification, where each image pixel is assigned to a 

thematic class. 

To produce a high-quality mosaic and accurate land-cover map 

in an automatized way, solutions to three major issues were 

focused on: 

 A cloud-free mosaic from Sentinel-2 images must be

automatically generated, with natural and aesthetically

pleasing colors, while simultaneously preserving

details of the landscape.

 High-quality classification maps need to be extracted

from time-series images, which must closely fit the

cloud-free mosaic. The goal is to limit manual

correction (adding omissions and deleting over-

detected pixels), which has been essential in most

operational scenarios to provide compliant data.

 Finally, it is desirable to have an estimated measure of

the extraction accuracy by zone, with the purpose to

speed up quality control procedures.

To overcome the above mentioned issues, we propose an 

automated chain that combines multi-date predictions in a 

probabilistic way, and further refines the obtained classification 

map to fit the mosaic images. The major contributions of this 

work lie in combining several images and sources in order to 

assess and improve semantic labeling results on the enhanced 

mosaic. The combination of predictions from different dates 

increases the completeness. The resulting classification map is 

then automatically assessed and corrected using an external data 

source as well as an unsupervised classification of the mosaic 

image. The aim is to obtain an up-to-date land use map together 

with its confidence score. 

2. PROPOSED METHOD

Single-date classifications can yield imperfect results, thus this 

paper proposes a multi-temporal approach. A limitation 

however is that the resultant classification must correspond to a 

single reference image. Thus it is essential to automatically 

readjust the prediction according to this reference image. To 

reach this goal, the proposed pipeline consists of four main 

steps: 

1) Generation of a cloud-free mosaic from Sentinel-2 L2A

images.

2) Multi-date deep learning-based classification from

Sentinel-2 L1C images.

3) Combining deep-learning based classification with an

external data source (e.g., outdated prediction,

OpenStreetMap, etc.).

4) Automatic correction of natural environments to fit the

cloud-free mosaic.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2021-101-2021 | © Author(s) 2021. CC BY 4.0 License. 101



Figure 1: The proposed workflow to improve land-cover segmentation. 

Each step will be explained in detail and illustrated with 

examples from different parts of the world. The proposed 

pipeline for reaching an optimal land-cover extraction in a 

reduced time is illustrated in Figure 1. 

2.1 Generation of a cloud-free mosaic from Sentinel-2 L2A 

images  

Recently, LuxCarta has completed a 2019/2020 vintage global 

10-meter mosaic, named BrightEarth1. This followed on from

the work (Swaine et al., 2020) where an operational pipeline for

a global 10-m resolution mosaic was produced. A number of

enhancements have been added to this chain, namely; (a) the

used source imagery processing level and (b) the image

normalization methodology.

2.1.1 Source Imagery Processing Level: A major improvement 

on the existing pipeline has been the integration of Sentinel-2 

L2A processed data as the source input data as opposed to 

Sentinel-2 L1C processed data.  Sentinel-2 data has five 

processing levels, namely; level-0, level-1A, level-1B, level-1C 

and level-2A, with only the last two processing levels available 

to users. Table 1 provides the description for each processing 

level as set out by Sentinel’s technical guides. 

*1 https://www.luxcarta.com/products/brightearth/

Processing level Description 

L0 Compressed raw data. 

L1A Uncompressed raw data with spectral 

bands coarsely co-registered and ancillary 

data appended. 

L1B Radiometrically corrected radiance data. 

The physical geometric model is refined 

using available ground control points and 

appended to the product, but not applied. 

L1C Orthorectified Top-Of-Atmosphere (TOA) 

reflectance, with sub-pixel multispectral 

registration. 

L2A Orthorectified Bottom-Of-Atmosphere 

(BOA) reflectance, with sub-pixel 

multispectral registration. 

Table 1: Sentinel-2 Processing levels description. 

Since December 2018, ESA has provided L2A processed data 

globally (ESA, 2018). We have taken advantage of this product 

as it saves thousands of processing hours to manually process 

L1C data to L2A using Sen2Cor processor (see Figure 2 for 

comparison between L1C and L2A processed data) 
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Figure 2: (1) L1C and (2) L2A processed data as viewed in EO 

Browser. 

2.1.2 Image normalization: The 8-bit True Color Image (TCI) 

provided by ESA is not adequate to create a global mosaic. 

From previous experience, the TCI lacks a balance in detail 

retention and brightness. Thus, LuxCarta has produced a scaling 

process which retains detail in bright areas where detail would 

traditionally have been blown out, yet still maintains an 

adequate brightness throughout the image. Due to different 

reflectance values across the Earth, Sentinel grid tiles were split 

into three scaling zones representing differing reflectance 

categories, namely bright desert, glacial and mixed. Bright 

desert areas mainly consists of North Africa where very high 

reflectance values are observed. Similarly, glacial areas include 

grids where permanent ice or snow occurs.  

Each scaling zone utilizes a different set of scaling parameters 

which is optimized for each zone in order to retain detail in the 

downscaling to 8bit depth process. Figures 3 and 4 illustrate the 

difference in the LuxCarta-based and ESA-based downscaling 

for glacial and desert zones. 

Figure 3: (1) LuxCarta downscaled 8bit, (2) ESA downscaled 

8bit. 

Figure 4: (1) LuxCarta downscaled 8bit, (2) ESA downscaled 

8bit. 

2.2 Multi-date classification from Sentinel-2 L1C images 

With a revisit time of five days and free online data access, the 

satellites from the Sentinel-2 constellation provide multi-

spectral images, making multi-date predictions possible.  

Obtaining a convincing result from a single Sentinel-2 image is 

a challenge. For example, due to cloud shadows or difference of 

reflectance between images, results might vary from date to 

date. To minimize omissions and wrong detections, we have 

opted for the use of multiple images acquired on different dates. 

As mentioned in Section 2.1, two products can be used as input 

for classification. The Level-1C (L1C) introduced in 2015 and 

the Level-2A (L2A) introduced at the end of 2018. As the L1C 

images have a larger catalog and better retain the original 

physical properties of the image, this processing level has been 

chosen for the multi-date classification.  

A cloud-free image can be obtained by combining several parts 

of Sentinel-2 L1C images (Swaine et al., 2020). Thus, three 

recent cloud-free mosaics are produced for semantic labeling by 

U-Net convolutional neural network models. The U-Net

architecture (Ronneberger et al., 2015) has shown its high

performances for pixel-wise classification in various remote

sensing studies (Huang et al., 2018, Le Saux et al., 2019). The

applied network architecture is adopted from (Tasar et al.,

2018) and illustrated in Figure. 5.

Figure 5: U-net model used for landcover classification. 

Three distinct models have been trained to separately classify 

vegetation classes (grass, tree/forest), buildings (residential and 

industrial/commercial) and water.  

The near-infrared, red and green bands were used as an input 

for the vegetation and water models while red, green and blue 

spectral channels were exploited for building classes. A large 

amount of accurately annotated ground-truth data (property of 

the LuxCarta company2) has yielded efficient models that 

succeed in generalizing all around the world. 

The proposed method consists of applying all of the trained 

models on the three mosaics (on different periods of time) and 

coupling the results using a probabilistic algorithm. Following 

this approach, a resulting 6-class land-cover in a raster format is 

generated by inferring a thematic label for every pixel: water, 

grass, forest, barren, industrial building or residential building. 

Even though the combined results are more accurate than a 

single-date prediction, at the end of this automatic classification 

step no information is available about reliability of each 

classified pixel truly belonging to the assigned class. Our 

*2 https://www.luxcarta.com

(1)  (2) 

       (1)        (2) 

       (1) (2) 
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probabilistic model purposely tends to over classify forest and 

water classes (denoted as natural environment classes in this 

work). This choice allows us to boost up the number of well-

detected pixels for these classes knowing that the next step will 

refine the contours to gain accuracy. 

In the following section, we propose a procedure for automatic 

assessment and correction of classification maps. For the 

purpose of illustration in this work, we are going to focus on the 

automatic correction of the forest class. However, the method is 

applicable to other classes as well. 

2.3 Combining deep learning-based classification with an 

external data source 

The main idea of the proposed method consists in using another 

available data source, even if this data is not accurate (outdated, 

lower resolution or contains artefacts). The assumption is that if 

a multi-date classification on the recent imagery agrees with an 

independent external data source, the reliability of such 

prediction is very high. 

Providing geodata for thirty years, LuxCarta 

(www.luxcarta.com) has collected a very large quantity of data 

all around the world. From coarse to very-high resolution 

satellite imagery, such as Sentinel-2 or Pléiades, land-cover 

maps have been created (we call them OTS - On The Shelf).  

To generate high-quality geodata for our customers, manual 

quality control and correction allow us to assert that our OTS 

maps contain few false positive predictions, even though the 

data is not up to date. These data can be used as an external 

source. 

There are many other possibilities of free external data sources. 

For example, open databases, such as Corine Land cover 

(Bossard et al., 2000) or OpenStreetMap (OSM) (Johnson and 

Iizuka, 2016) can be exploited in the same way as an input.  

The method for an automatic enhancement and assessment of 

the classification maps uses three input data: 

 Cloud-free mosaiced image (ref. Section 2.1).

 Deep learning-based multi-temporal classification

(ref. Section 2.2).

 External classification map (e.g. OSM, OTS, etc.).

An intersection between a multi-date classification map and an 

external classification map yields an under detected, but rather 

confident area (see Figure 6(4)). In our automatic pipeline, we 

assign a reliability code of 1 to each pixel in the intersection 

area, which denotes a very reliable classification. 

To proceed to the next step, the multiband mosaic image must 

be converted to a single raster band using an unsupervised 

classification algorithm (e.g., k-means was chosen in our study 

(Jain., 2008), with 255 clusters). With this step, a unique value 

is associated to each image pixel. 

1) Cloud-free mosaic 2) 2020 OTS 3) Multi-date classification

4) Intersection 5) Multi-date (orange) cover by the final result 6) Final result fitting the image

Figure 6: Results of the colour propagation (Guatamala).
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Figure 7: (1) Mosaic image over the city of Ballarat, Australia, 

and (2) the corresponding confidence map: the green corresponds 

to code 1, the orange to code 2 and the red to code 3.

2.4 Automatic correction of the classification map to fit the 

cloud-free mosaic 

The last step consists of an automatic enhancement of the 

classification map. Our method is inspired by the hysteresis 

thresholding algorithm (Sornam et al., 2016). The novelty 

consists in combining deep learning-based classification results 

approved by an additional external data source, with 

unsupervised classification results, using the principles similar 

to hysteresis thresholding. The output of this step is a more 

precise classification map, together with the associated 

reliability codes for every pixel, as well as the estimated 

confidence score for each image. 

The following methodology can be applied to each class 

independently. 

We seek to determine if the pixels of the multi-date prediction 

not contained in the high confidence areas (ref. Section 2.3), are 

part of the class and with which confidence score.  

The main idea to solve this problem is to collect the pixel values 

of the unsupervised classification result (i.e. indices of clusters) 

which are significant for the class. For this purpose, we first 

polygonise high confidence areas. Then, for each polygon Pi we 

collect the cluster indices it contains, we call this set of pixel 

values SPi. Only cluster indices with an acceptable number of 

occurrences are retained to represent the class of interest, 

avoiding spreading false information. For the same reason, we 

do not include the polygons composed of less than 10 pixels.  

We defined two cases: 

1. For the pixels of the multi-date prediction, which are

connected to a polygon Pi: if its cluster index in the

unsupervised classification is contained in SPi, we

add this pixel to the final classification map with the

confidence score = 1; otherwise this pixel is rejected

from the classification result.

2. For the pixels of the multi-date prediction, which are

not connected to any Pi: if its cluster index in the

unsupervised classification is contained at least in one

SPi for the polygons Pi present within a radius of 500

pixels, we add this pixel to the confidence map with a

confident score = 2 (medium confidence); otherwise

with a confident score = 3 (low confidence).

Finally, a confidence map is obtained where every pixel is 

assigned a low to high reliability index, an example of this is 

shown in Figure 7. For the final evaluation, a confidence score 

is calculated by dividing the number of pixels considered as 

well-classified (code 1) by the set of pixels of the final layer 

(code 1 + code 2 + code 3) on the work area. 

This classification accuracy assessment is an efficient tool to 

quickly validate the quality of the land-cover map and highlight 

complicated areas where the predictions are not accurate.  

3. EXPERIMENTS

Two evaluation strategies are used to better understand the 

efficiency of the proposed pipeline. The first strategy consists of 

observing the time required for manual correction on the same 

zone based on the single image prediction, the multi-date 

extraction and the result from this methodology. The second 

approach use very accurate ground truth to compare pixel-wise 

classification results. 

Throughout the paper, the automatic chain has been illustrated 

for the forest layer on Sentinel-2 images over samples in 

Guatemala (confidence score of 98%), Denmark (confidence 

score of 89%) and Australia (confidence score of 92%) at the 

spatial resolution of 10m/pixel. As the presented methodology 

is currently operational to produce land-cover for our 

customers, it has already been tested on five other zones. We 

have chosen data over countries (Austria, France, Vietnam, 

USA and Brazil) with different types of forest (coniferous and 

broadleaved), the obtained confidence scores are between 79 

and 98%. In all study areas and based on the feedbacks of the 

quality control team, the land-cover map was significantly 

improved by applying the proposed methodology. The 

confidence score allows quick validation of the accuracy. It 

provides an unambiguous indication of the prediction 

reliability.  

Further validation has been carried out over Austria, which has 

a confidence score of 91%. An accuracy assessment was made, 

in which a validation team has done manual correction on the 

prediction from a single date, the multi-date prediction and the 

final result obtained following the proposed chain. The results 

are indisputable, to obtain an equivalent result, it was necessary 

to spend twice as long as manual corrections on the prediction 

carried out in a single date compared to the extraction from 

three dates. Better yet, the final result required half the effort for 

the validation team when compared to multi-date prediction. 

Moreover, the quality control team has determined that some 

       (1) (2) 
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manual corrections were less accurate than the predictions at the 

end of the proposed processing chain.  

Furthermore, an automatic evaluation strategy was applied to 

the single-date prediction, the multi-date extraction and the 

result after applying the developed framework. Corine 

Landcover is the classification map used as an external source 

in this case. A very precise, manually labeled, ground truth 

dataset (at a much higher resolution, 50 cm/pixel) was used to 

outline forest of 20 km2 over the cities of Mailly and Nozay in 

France allowed the comparison of the results obtained pixel by 

pixel. 

For the evaluation, the most common metrics for semantic 

segmentation were used. The Intersection over Union (IoU), 

also known as Jaccard index (Rahman and Wang, 2016) and 

used during the deep learning training as a loss function, 

compares the overlap between two shapes. It measures the 

number of pixels in common divided by the total number of 

pixels present in both predictions. If the prediction corresponds 

totally to the ground truth, the IoU = 1 and it decreases with an 

increasing difference. 

The second metric is the F1 score also called F-score (Tatbul et 

al., 2018), it combines the complementary effects of recall and 

precision. The recall indicates the proportion of successfully 

detected objects in the image, it is a measure of completeness 

and the precision describes the accuracy by calculating the 

fraction of all the detected pixels that are real forest. As it takes 

false positives and false negatives into account, it is an efficient 

measure for evaluating data. 

The metrics obtained in Table 2, in line with the visual results 

illustrated in Figures 8 and 9, show that the multi-date 

prediction greatly improves the quality of the forest detection. 

In addition, an even higher score is attributed to the method 

applied to improve the contours of the prediction and remove 

false positives through the unsupervised classification (ref. 

Section 2.4). This is mainly due to an increase in precision as 

the over-detection is broadly reduced. 

The latest experiments concern the water bodies, for this class 

the same pipeline can be applied. We have made only a few 

minor changes to adapt the algorithm to the water class, notably 

to keep the rivers continuity. The obtained results on several 

tests sets are very promising, significantly outperforming the 

state-of-the-art deep learning-based semantic labeling.  

4. CONCLUSION

In this paper, we have proposed an operational pipeline to 

enhance land-cover maps using a multi-date and multi-source 

approach. This has been made possible through the use of time-

series images provided by the Sentinel-2 constellation that 

continuously acquires data. 

As manual annotations of multiple images over large areas are 

time-consuming and inefficient, new strategies were required to 

reach high-quality products. The emergence of new techniques 

based on deep learning opens doors for automation of Earth 

observation analysis. 

By exploiting these methods, LuxCarta is now more than ever 

able to provide a high-quality mosaic derived from Sentinel-2 

L2A images and the corresponding 6-class land use map with a 

high level of detail, an example of which can be seen in Figure 

10.  

Single-date Multi-date Final layer 

Mailly – France 

IoU 0.72 0.74 0.76 

F1 score 0.84 0.85 0.86 

Nozay – France 

IoU 0.65 0.70 0.72 

F1 score 0.79 0.82 0.83 

(4) (3) 

(5) (6) 

(1) (2) 

Table 2: Experimental assessment on the cities of Mailly 

and Nozay 

Figure 9: (1) Sentinel-2 L2A cloud-free mosaic over Mailly, 

France, and (2) corresponding ground truth, (3) prediction from a 

single image, (4) multi-date extraction, (5) final result and (6) 

comparison between (3: orange) and (5: green). 

Figure 8: (1) Mosaic image over Denmark with the 

corresponding (2) multi-date water body extraction in purple and 

(3) the final result fitting the image in light blue.
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 (2) 

Figure 10: (1) Sentinel-2 L2A cloud-free mosaic over 

Hillerod, Denmark, and (2) corresponding 6-class land-cover 

map: water (blue), grass (light green), tree/forest (dark green), 

residential building (red), industrial/commercial building 

(orange) and barren (cream). 

 

The multi-model deep learning approach trained on a large set 

of data coupled with the use of multiple well-chosen temporal 

images have proved to be an efficient way to improve the 

classification results. Additionally, the confidence index as a 

measure of agreement between several sources is now available 

for the quality control team to decrease the time required for the 

manual corrections. 
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